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Preface
Programming languages sometimes fit neatly into tidy categories like imperative 
and functional. Imperative languages might further subdivide into those that are 
procedural and those that include features for object-oriented programming. The 
Python language, however, contains aspects of all of these three language categories. 
Though Python is not a purely functional programming language, we can do a great 
deal of functional programming in Python.

Most importantly, we can leverage many design patterns and techniques from  
other functional languages and apply them to Python programming. These 
borrowed concepts can lead us to create succinct and elegant programs. Python's 
generator expressions, in particular, avoid the need to create large in-memory data 
structures, leading to programs which may execute more quickly because they use 
fewer resources.

We can't easily create purely functional programs in Python. Python lacks a number 
of features that would be required for this. For example, we don't have unlimited 
recursion, lazy evaluation of all expressions, and an optimizing compiler.

Generally, Python emphasizes strict evaluation rules. This means that statements 
are executed in order and expressions are evaluated from left to right. While this 
deviates from functional purity, it allows us to perform manual optimizations when 
writing in Python. We'll take a hybrid approach to functional programming using 
Python's functional features when they can add clarity or simplify the code and use 
ordinary imperative features for optimization.

There are several key features of functional programming languages that are 
available in Python. One of the most important is the idea that functions are  
first-class objects. In some languages, functions exist only as a source code  
construct: they don't exist as proper data structures at runtime. In Python,  
functions can use functions as arguments and return functions as results.
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Python offers a number of higher-order functions. Functions like map(), filter(), 
and functools.reduce() are widely used in this role. Less obvious functions like 
sorted(), min(), and max() are also higher-order functions; they have a default 
function and, consequently, different syntax from the more common examples.

Functional programs often exploit immutable data structures. The emphasis on 
stateless objects permits flexible optimization. Python offers tuples and namedtuples 
as complex but immutable objects. We can leverage these structures to adapt some 
design practices from other functional programming languages.

Many functional languages emphasize recursion but exploit Tail-Call Optimization 
(TCO). Python tends to limit recursion to a relatively small number of stack frames.  
In many cases, we can think of a recursion as a generator function. We can then simply 
rewrite it to use a yield from statement, doing the tail-call optimization ourselves.

We'll look at the core features of functional programming from a Python point of view. 
Our objective is to borrow good ideas from functional programming languages, and 
use these ideas to create expressive and succinct applications in Python.

What this book covers
Chapter 1, Introducing Functional Programming, introduces some of the techniques  
that characterize functional programming. We'll identify some of the ways to map 
these features to Python, and finally, we'll also address some ways that the benefits 
of functional programming accrue when we use these design patterns to build 
Python applications.

Chapter 2, Introducing Some Functional Features, will delve into six central features  
of the functional programming paradigm. We'll look at each in some detail to  
see how they're implemented in Python. We'll also point out some features of 
functional languages that don't apply well to Python. In particular, many functional 
languages have complex type-matching rules required to support compilation  
and optimization.

Chapter 3, Functions, Iterators, and Generators, will show how to leverage immutable 
Python objects and generator expressions, and adapt functional programming 
concepts to the Python language. We'll look at some of the built-in Python  
collection and how we can leverage them without departing too far from  
functional programming concepts.

Chapter 4, Working with Collections, shows how we can use a number of built-in 
Python functions to operate on collections of data. This section will focus on a 
number of relatively simple functions such as any() and all(), which will  
reduce a collection of values to a single result.
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Chapter 5, Higher-order Functions, examines the commonly used higher order 
functions such as map() and filter(). The chapter also includes a number of other 
functions that are also higher-order functions, as well as how we can create our own 
higher-order functions.

Chapter 6, Recursions and Reductions, shows how we can design an algorithm using 
recursion and then optimize it into a high performance for loop. We'll also look at 
some other reductions that are widely used, including the collections.Counter() 
function. 

Chapter 7, Additional Tuple Techniques, shows a number of ways in which we can use 
immutable tuples and namedtuples instead of stateful objects. Immutable objects 
have a much simpler interface: we never have to worry about abusing an attribute 
and setting an object into some inconsistent or invalid state.

Chapter 8, The Itertools Module, examines a number of functions in the standard 
library module. This collection of functions simplifies writing programs that deal 
with collections or generator functions.

Chapter 9, More Itertools Techniques, covers the combinatoric functions in the itertools 
module. These functions are somewhat less useful. This chapter includes some 
examples that illustrate ill-considered uses of these functions and the consequences 
of combinatoric explosion.

Chapter 10, The Functools Module, will show how to use some of the functions in  
this module for functional programming. A few of the functions in this module  
are more appropriate for building decorators, and are left for the next chapter.  
The other functions, however, provide several more ways to design and  
implement function programs.

Chapter 11, Decorator Design Techniques, shows how we can look at a decorator as  
a way to build a composite function. While there is considerable flexibility here,  
there are also some conceptual limitations: we'll look at ways in which overly 
complex decorators can become confusing rather than helpful.

Chapter 12, The Multiprocessing and Threading Modules, points out an important 
consequence of good functional design: we can distribute the processing workload. 
Using immutable objects means that we can't corrupt an object because of poorly 
synchronized write operations.

Chapter 13, Conditional Expressions and the Operator Module, will show some ways in 
which we can break out of Python's strict order of evaluation. There are limitations to 
what we can achieve here. We'll also look at the operator module and how the operator 
module can lead to some slight clarification of some simple kinds of processing.
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Chapter 14, The PyMonad Library, examines some of the features of the PyMonad 
library. This provides some additional functional programming features. This 
also provides a way to learn more about monads. In some functional languages, 
monads are an important way to force a particular order for operations that might 
get optimized into an undesirable order. Since Python already has strict ordering of 
expressions and statements, the monad feature is more instructive than practical.

Chapter 15, A Functional Approach to Web Services, shows how we can think of web 
services as a nested collection of functions that transform a request into a reply.  
We'll see ways in which we can leverage functional programming concepts for 
building responsive, dynamic web content.

Chapter 16, Optimizations and Improvements, includes some additional tips on 
performance and optimization. We'll emphasize techniques like memoization 
because they're easy to implement and can—in the right context—yield dramatic 
performance improvements.

What you need for this book
This book presumes some familiarity with Python 3 and general concepts of 
application development. We won't look deeply at subtle or complex features  
of Python; we'll avoid much consideration of the internals of the language.

We'll presume some familiarity with functional programming. Since Python is not 
a functional programming language, we can't dig deeply into functional concepts. 
We'll pick and choose the aspects of functional programming that fit well with 
Python and leverage just those that seem useful.

Some of the examples use Exploratory Data Analysis (EDA) as a problem domain to 
show the value of functional programming. Some familiarity with basic probability 
and statistics will help with this. There are only a few examples that move into more 
serious data science.

You'll need to have Python 3.3 or 3.4 installed and running. For more information  
on Python, visit http://www.python.org/.

 In Chapter 14, The PyMonad Library, we'll look at installing this additional library.  
If you have Python 3.4 ,which includes pip and Easy Install, this will be very easy. 
If you have Python 3.3, you might have already installed pip or Easy Install or both. 
Once you have an installer, you can add PyMonad. Visit https://pypi.python.
org/pypi/PyMonad/ for more details.

http://www.python.org/
https://pypi.python.org/pypi/PyMonad/
https://pypi.python.org/pypi/PyMonad/
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Who this book is for
This book is for programmers who want to create succinct, expressive Python 
programs by borrowing techniques and design patterns from functional programming 
languages. Some algorithms can be expressed elegantly in a functional style; we can—
and should—adapt this to make Python programs more readable and maintainable.

In some cases, a functional approach to a problem will also lead to extremely high 
performance algorithms. Python makes it too easy to create large intermediate data 
structures, tying up memory and processor time. With functional programming 
design patterns, we can often replace large lists with generator expressions that are 
equally expressive, but take up much less memory and run much more quickly.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "We can create a Pool object of  
concurrent worker processes, assign tasks to them, and expect the tasks to  
be executed concurrently."

A block of code is set as follows:

GIMP Palette
Name: Crayola
Columns: 16
#

Any command-line input or output is written as follows:

def max(a, b):

    f = {a >= b: lambda: a, b >= a: lambda: b}[True]

    return f()

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded to our website, or added to any list 
of existing errata, under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.





Introducing Functional 
Programming

Functional programming defines a computation using expressions and  
evaluation—often encapsulated in function definitions. It de-emphasizes or avoids 
the complexity of state change and mutable objects. This tends to create programs 
that are more succinct and expressive. In this chapter, we'll introduce some of the 
techniques that characterize functional programming. We'll identify some of the 
ways to map these features to Python. Finally, we'll also address some ways in 
which the benefits of functional programming accrue when we use these design 
patterns to build Python applications.

Python has numerous functional programming features. It is not a purely functional 
programming language. It offers enough of the right kinds of features that it confers 
to the benefits of functional programming. It also retains all optimization power 
available from an imperative programming language.

We'll also look at a problem domain that we'll use for many of the examples in  
this book. We'll try to stick closely to Exploratory Data Analysis (EDA) because its 
algorithms are often good examples of functional programming. Furthermore, the 
benefits of functional programming accrue rapidly in this problem domain.

Our goal is to establish some essential principles of functional programming. The  
more serious Python code will begin in Chapter 2, Introducing Some Functional Features.

We'll focus on Python 3 features in this book. However, some of the 
examples might also work in Python 2.
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Identifying a paradigm
It's difficult to be definitive on what fills the universe of programming paradigms. 
For our purposes, we will distinguish between just two of the many programming 
paradigms: Functional programming and Imperative programming. One important 
distinguishing feature between these two is the concept of state.

In an imperative language, like Python, the state of the computation is reflected by 
the values of the variables in the various namespaces. The values of the variables 
establish the state of a computation; each kind of statement makes a well-defined 
change to the state by adding or changing (or even removing) a variable. A language 
is imperative because each statement is a command, which changes the state in  
some way.

Our general focus is on the assignment statement and how it changes state. Python 
has other statements, such as global or nonlocal, which modify the rules for 
variables in a particular namespace. Statements like def, class, and import change 
the processing context. Other statements like try, except, if, elif, and else act 
as guards to modify how a collection of statements will change the computation's 
state. Statements like for and while, similarly, wrap a block of statements so that the 
statements can make repeated changes to the state of the computation. The focus of 
all these various statement types, however, is on changing the state of the variables.

Ideally, each statement advances the state of the computation from an initial 
condition toward the desired final outcome. This "advances the computation" 
assertion can be challenging to prove. One approach is to define the final state, 
identify a statement that will establish this final state, and then deduce the 
precondition required for this final statement to work. This design process can be 
iterated until an acceptable initial state is derived.

In a functional language, we replace state—the changing values of variables—with 
a simpler notion of evaluating functions. Each function evaluation creates a new 
object or objects from existing objects. Since a functional program is a composition 
of a function, we can design lower-level functions that are easy to understand, and 
we will design higher-level compositions that can also be easier to visualize than a 
complex sequence of statements.

Function evaluation more closely parallels mathematical formalisms. Because of 
this, we can often use simple algebra to design an algorithm, which clearly handles 
the edge cases and boundary conditions. This makes us more confident that the 
functions work. It also makes it easy to locate test cases for formal unit testing.
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It's important to note that functional programs tend to be relatively succinct, 
expressive, and efficient when compared to imperative (object-oriented or procedural) 
programs. The benefit isn't automatic; it requires a careful design. This design effort is 
often easier than functionally similar procedural programming.

Subdividing the procedural paradigm
We can subdivide imperative languages into a number of discrete categories.  
In this section, we'll glance quickly at the procedural versus object-oriented 
distinction. What's important here is to see how object-oriented programming 
is a subset of imperative programming. The distinction between procedural and 
object-orientation doesn't reflect the kind of fundamental difference that functional 
programming represents.

We'll use code examples to illustrate the concepts. For some, this will feel like 
reinventing a wheel. For others, it provides a concrete expression of abstract concepts.

For some kinds of computations, we can ignore Python's object-oriented features and 
write simple numeric algorithms. For example, we might write something like the 
following to get the range of numbers:

s = 0
for n in range(1, 10):
    if n % 3 == 0 or n % 5 == 0:
        s += n
print(s)

We've made this program strictly procedural, avoiding any explicit use of Python's 
object features. The program's state is defined by the values of the variables s and n. 
The variable, n, takes on values such that 1 ≤ n < 10. As the loop involves an ordered 
exploration of values of n, we can prove that it will terminate when n == 10. Similar 
code would work in C or Java using their primitive (non-object) data types.

We can exploit Python's Object-Oriented Programming (OOP) features and create  
a similar program:

m = list()
for n in range(1, 10):
    if n % 3 == 0 or n % 5 == 0:
        m.append(n)
print(sum(m))

This program produces the same result but it accumulates a stateful collection  
object, m, as it proceeds. The state of the computation is defined by the values  
of the variables m and n.
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The syntax of m.append(n) and sum(m) can be confusing. It causes some 
programmers to insist (wrongly) that Python is somehow not purely Object-oriented 
because it has a mixture of the function()and object.method() syntax. Rest 
assured, Python is purely Object-oriented. Some languages, like C++, allow the use 
of primitive data type such as int, float, and long, which are not objects. Python 
doesn't have these primitive types. The presence of prefix syntax doesn't change the 
nature of the language.

To be pedantic, we could fully embrace the object model, the subclass, the list class, 
and add a sum method:

class SummableList(list):
    def sum( self ):
        s= 0
        for v in self.__iter__():
            s += v
        return s

If we initialize the variable, m, with the SummableList() class instead of the  
list() method, we can use the m.sum() method instead of the sum(m) method.  
This kind of change can help to clarify the idea that Python is truly and completely 
object-oriented. The use of prefix function notation is purely syntactic sugar.

All three of these examples rely on variables to explicitly show the state of the 
program. They rely on the assignment statements to change the values of the 
variables and advance the computation toward completion. We can insert the 
assert statements throughout these examples to demonstrate that the expected  
state changes are implemented properly.

The point is not that imperative programming is broken in some way. The point is 
that functional programming leads to a change in viewpoint, which can, in many 
cases, be very helpful. We'll show a function view of the same algorithm. Functional 
programming doesn't make this example dramatically shorter or faster.

Using the functional paradigm
In a functional sense, the sum of the multiples of 3 and 5 can be defined in two parts:

• The sum of a sequence of numbers
• A sequence of values that pass a simple test condition, for example, being 

multiples of three and five
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The sum of a sequence has a simple, recursive definition:

def sum(seq):
    if len(seq) == 0: return 0
    return seq[0] + sum(seq[1:])

We've defined the sum of a sequence in two cases: the base case states that the 
sum of a zero length sequence is 0, while the recursive case states that the sum 
of a sequence is the first value plus the sum of the rest of the sequence. Since the 
recursive definition depends on a shorter sequence, we can be sure that it will 
(eventually) devolve to the base case.

The + operator on the last line of the preceding example and the initial value of 0 in 
the base case characterize the equation as a sum. If we change the operator to * and 
the initial value to 1, it would just as easily compute a product. We'll return to this 
simple idea of generalization in the following chapters.

Similarly, a sequence of values can have a simple, recursive definition, as follows:

def until(n, filter_func, v):
    if v == n: return []
    if filter_func(v): return [v] + until( n, filter_func, v+1 )
    else: return until(n, filter_func, v+1)

In this function, we've compared a given value, v, against the upper bound, n.  
If v reaches the upper bound, the resulting list must be empty. This is the base  
case for the given recursion.

There are two more cases defined by the given filter_func() function. If the value 
of v is passed by the filter_func() function, we'll create a very small list, containing 
one element, and append the remaining values of the until() function to this list. If 
the value of v is rejected by the filter_func() function, this value is ignored and the 
result is simply defined by the remaining values of the until() function.

We can see that the value of v will increase from an initial value until it reaches n, 
assuring us that we'll reach the base case soon.

Here's how we can use the until() function to generate the multiples of 3 or 5.  
First, we'll define a handy lambda object to filter values:

mult_3_5= lambda x: x%3==0 or x%5==0

(We will use lambdas to emphasize succinct definitions of simple functions. 
Anything more complex than a one-line expression requires the def statement.)
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We can see how this lambda works from the command prompt in the  
following example:

>>> mult_3_5(3)

True

>>> mult_3_5(4)

False

>>> mult_3_5(5)

True

This function can be used with the until() function to generate a sequence  
of values, which are multiples of 3 or 5.

The until() function for generating a sequence of values works as follows:

>>> until(10, lambda x: x%3==0 or x%5==0, 0)

[0, 3, 5, 6, 9]

We can use our recursive sum() function to compute the sum of this sequence of 
values. The various functions, such as sum(), until(), and mult_3_5() are defined 
as simple recursive functions. The values are computed without restoring to use 
intermediate variables to store state.

We'll return to the ideas behind this purely functional recursive function definition 
in several places. It's important to note here that many functional programming 
language compilers can optimize these kinds of simple recursive functions. Python 
can't do the same optimizations.

Using a functional hybrid
We'll continue this example with a mostly functional version of the previous example 
to compute the sum of the multiples of 3 and 5. Our hybrid functional version might 
look like the following:

print( sum(n for n in range(1, 10) if n%3==0 or n%5==0) )

We've used nested generator expressions to iterate through a collection of values 
and compute the sum of these values. The range(1, 10) method is an iterable 
and, consequently, a kind of generator expression; it generates a sequence of 
values { }|1 10n n≤ < . The more complex expression, n for n in range(1, 10) 
if n%3==0 or n%5==0, is also an iterable expression. It produces a set of values 

( ){ }|1 10 mod3 0 mod5 0n n n n≤ < ∧ = ∨ = . A variable, n, is bound to each value, more as 
a way of expressing the contents of the set than as an indicator of the state of the 
computation. The sum() function consumes the iterable expression, creating a final 
object, 23.
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The bound variable doesn't change once a value is bound to 
it. The variable, n, in the loop is essentially a shorthand for the 
values available from the range() function.

The if clause of the expression can be extracted into a separate function, allowing us 
to easily repurpose this with other rules. We could also use a higher-order function 
named filter() instead of the if clause of the generator expression. We'll save this 
for Chapter 5, Higher-order Functions.

As we work with generator expressions, we'll see that the bound variable is at the 
blurry edge of defining the state of the computation. The variable, n, in this example 
isn't directly comparable to the variable, n, in the first two imperative examples. 
The for statement creates a proper variable in the local namespace. The generator 
expression does not create a variable in the same way as a for statement does:

>>> sum( n for n in range(1, 10) if n%3==0 or n%5==0 )

23

>>> n

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

NameError: name 'n' is not defined

Because of the way Python uses namespaces, it might be possible to write a function 
that can observe the n variable in a generator expression. However, we won't. Our 
objective is to exploit the functional features of Python, not to detect how those 
features have an object-oriented implementation under the hood.

Looking at object creation
In some cases, it might help to look at intermediate objects as a history of the 
computation. What's important is that the history of a computation is not fixed. 
When functions are commutative or associative, then changes to the order 
of evaluation might lead to different objects being created. This might have 
performance improvements with no changes to the correctness of the results.

Consider this expression:

>>> 1+2+3+4

10

We are looking at a variety of potential computation histories with the same result. 
Because the + operator is commutative and associative, there are a large number of 
candidate histories that lead to the same result.
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Of the candidate sequences, there are two important alternatives, which are  
as follows:

>>> ((1+2)+3)+4

10

>>> 1+(2+(3+4))

10

In the first case, we fold in values working from left to right. This is the way Python 
works implicitly. Intermediate objects 3 and 6 are created as part of this evaluation.

In the second case, we fold from right-to-left. In this case, intermediate objects 7 and 
9 are created. In the case of simple integer arithmetic, the two results have identical 
performance; there's no optimization benefit. 

When we work with something like the list append, we might see some 
optimization improvements when we change the association rules.

Here's a simple example:

>>> import timeit

>>> timeit.timeit("((([]+[1])+[2])+[3])+[4]")

0.8846941249794327

>>> timeit.timeit("[]+([1]+([2]+([3]+[4])))")

1.0207440659869462

In this case, there's some benefit in working from left to right. 

What's important for functional design is the idea that the + operator (or add() 
function) can be used in any order to produce the same results. The + operator  
has no hidden side effects that restrict the way this operator can be used. 

The stack of turtles
When we use Python for functional programming, we embark down a path that  
will involve a hybrid that's not strictly functional. Python is not Haskell, OCaml,  
or Erlang. For that matter, our underlying processor hardware is not functional;  
it's not even strictly object-oriented—CPUs are generally procedural.
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All programming languages rest on abstractions, libraries, frameworks and virtual 
machines. These abstractions, in turn, may rely on other abstractions, libraries, 
frameworks and virtual machines. The most apt metaphor is this: the world is 
carried on the back of a giant turtle. The turtle stands on the back of another giant 
turtle. And that turtle, in turn, is standing on the back of yet another turtle.

It's turtles all the way down.
                                                                                                             – Anonymous 

There's no practical end to the layers of abstractions.

More importantly, the presence of abstractions and virtual machines doesn't 
materially change our approach to designing software to exploit the functional 
programming features of Python.

Even within the functional programming community, there are more pure and less 
pure functional programming languages. Some languages make extensive use of 
monads to handle stateful things like filesystem input and output. Other languages 
rely on a hybridized environment that's similar to the way we use Python. We write 
software that's generally functional with carefully chosen procedural exceptions.

Our functional Python programs will rely on the following three stacks  
of abstractions:

• Our applications will be functions—all the way down—until we hit  
the objects

• The underlying Python runtime environment that supports our functional 
programming is objects—all the way down—until we hit the turtles

• The libraries that support Python are a turtle on which Python stands

The operating system and hardware form their own stack of turtles. These details 
aren't relevant to the problems we're going to solve.

A classic example of functional 
programming
As part of our introduction, we'll look at a classic example of functional programming. 
This is based on the classic paper Why Functional Programming Matters by John Hughes. 
The article appeared in a paper called Research Topics in Functional Programming, edited 
by D. Turner, published by Addison-Wesley in 1990.
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Here's a link to the paper Research Topics in Functional Programming:

http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

This discussion of functional programming in general is profound. There are several 
examples given in the paper. We'll look at just one: the Newton-Raphson algorithm 
for locating the roots of a function. In this case, the function is the square root.

It's important because many versions of this algorithm rely on the explicit state 
managed via loops. Indeed, the Hughes paper provides a snippet of the Fortran 
code that emphasizes stateful, imperative processing.

The backbone of this approximation is the calculation of the next approximation 
from the current approximation. The next_() function takes x, an approximation  
to the sqrt(n) method and calculates a next value that brackets the proper root. 
Take a look at the following example:

def next_(n, x):

    return (x+n/x)/2

This function computes a series of values ( )1 / / 2i i ia a n a+ = + . The distance between the 
values is halved each time, so they'll quickly get to converge on the value such that

/a n a= , which means a n= . We don't want to call the method next() because this 
name would collide with a built-in function. We call it the next_() method so that 
we can follow the original presentation as closely as possible.

Here's how the function looks when used in the command prompt:

>>> n= 2
>>> f= lambda x: next_(n, x)
>>> a0= 1.0
>>> [ round(x,4) for x in (a0, f(a0), f(f(a0)), f(f(f(a0))),) ]
[1.0, 1.5, 1.4167, 1.4142]

We've defined the f() method as a lambda that will converge on 2 . We started with 
1.0 as the initial value for 0a . Then we evaluated a sequence of recursive evaluations: 

( )1 0a f a= , ( )( )2 0a f f a=  and so on. We evaluated these functions using a generator 
expression so that we could round off each value. This makes the output easier to read 
and easier to use with doctest. The sequence appears to converge rapidly on 2 .

We can write a function, which will (in principle) generate an infinite sequence of ia
values converging on the proper square root:

def repeat(f, a):
    yield a
    for v in repeat(f, f(a)):
        yield v

http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
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This function will generate approximations using a function, f(), and an initial 
value, a. If we provide the next_() function defined earlier, we'll get a sequence of 
approximations to the square root of the n argument.

The repeat() function expects the f() function to have a single 
argument, however, our next_() function has two arguments. We can 
use a lambda object, lambda x: next_(n, x), to create a partial 
version of the next_() function with one of two variables bound.
The Python generator functions can't be trivially recursive, they must 
explicitly iterate over the recursive results, yielding them individually. 
Attempting to use a simple return repeat(f, f(a)) will end 
the iteration, returning a generator expression instead of yielding the 
sequence of values.

We have two ways to return all the values instead of returning a generator 
expression, which are as follows:

• We can write an explicit for loop as follows:
for x in some_iter: yield x.

• We can use the yield from statement as follows:
yield from some_iter.

Both techniques of yielding the values of a recursive generator function are 
equivalent. We'll try to emphasize yield from. In some cases, however, the yield 
with a complex expression will be more clear than the equivalent mapping or 
generator expression.

Of course, we don't want the entire infinite sequence. We will stop generating values 
when two values are so close to each other that we can call either one the square root 
we're looking for. The common symbol for the value, which is close enough, is the 
Greek letter Epsilon, ε, which can be thought of as the largest error we will tolerate.

In Python, we'll have to be a little clever about taking items from an infinite sequence 
one at a time. It works out well to use a simple interface function that wraps a 
slightly more complex recursion. Take a look at the following code snippet:

def within(ε, iterable):

    def head_tail(ε, a, iterable):

        b= next(iterable)

        if abs(a-b) <= ε: return b

        return head_tail(ε, b, iterable)

    return head_tail(ε, next(iterable), iterable)
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We've defined an internal function, head_tail(), which accepts the tolerance, ε, an 
item from the iterable sequence, a, and the rest of the iterable sequence, iterable. 
The next item from the iterable bound to a name b. If a b ε− ≤ , then the two values 
that are close enough together that we've found the square root. Otherwise, we use 
the b value in a recursive invocation of the head_tail() function to examine the 
next pair of values.

Our within() function merely seeks to properly initialize the internal head_tail() 
function with the first value from the iterable parameter.

Some functional programming languages offer a technique that will put a value back 
into an iterable sequence. In Python, this might be a kind of unget() or previous() 
method that pushes a value back into the iterator. Python iterables don't offer this kind 
of rich functionality.

We can use the three functions next_(), repeat(), and within() to create a square 
root function, as follows:

def sqrt(a0, ε, n):

    return within(ε, repeat(lambda x: next_(n,x), a0))

We've used the repeat() function to generate a (potentially) infinite sequence 
of values based on the next_(n,x) function. Our within() function will stop 
generating values in the sequence when it locates two values with a difference  
less than ε.

When we use this version of the sqrt() method, we need to provide an initial seed 
value, a0, and an ε value. An expression like sqrt(1.0, .0001, 3) will start with 
an approximation of 1.0 and compute the value of 3 to within 0.0001. For most 
applications, the initial a0 value can be 1.0. However, the closer it is to the actual 
square root, the more rapidly this method converges.

The original example of this approximation algorithm was shown in the Miranda 
language. It's easy to see that there are few profound differences between Miranda 
and Python. The biggest difference is Miranda's ability to construct cons, a value 
back into an iterable, doing a kind of unget. This parallelism between Miranda 
and Python gives us confidence that many kinds of functional programming can be 
easily done in Python.

Exploratory Data Analysis
Later in this book, we'll use the field of EDA as a source for concrete examples 
of functional programming. This field is rich with algorithms and approaches to 
working with complex datasets; functional programming is often a very good fit 
between the problem domain and automated solutions.
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While details vary from author to author, there are several widely accepted stages of 
EDA. These include the following:

• Data preparation: This might involve extraction and transformation for 
source applications. It might involve parsing a source data format and doing 
some kinds of data scrubbing to remove unusable or invalid data. This is an 
excellent application of functional design techniques.

• Data exploration: This is a description of the available data. This usually 
involves the essential statistical functions. This is another excellent place to 
explore functional programming. We can describe our focus as univariate 
and bivariate statistics but that sounds too daunting and complex. What this 
really means is that we'll focus on mean, median, mode, and other related 
descriptive statistics. Data exploration may also involve data visualization. 
We'll skirt this issue because it doesn't involve very much functional 
programming. I'll suggest that you use a toolkit like SciPy.
Visit the following link to get more information how SciPY works  
and its usage:
https://www.packtpub.com/big-data-and-business-intelligence/
learning-scipy-numerical-and-scientific-computing or https://
www.packtpub.com/big-data-and-business-intelligence/learning-
python-data-visualization

• Data modeling and machine learning: This tends to be proscriptive  
as it involves extending a model to new data. We're going to skirt  
this because some of the models can become mathematically complex.  
If we spend too much time on these topics, we won't be able to focus on 
functional programming.

• Evaluation and comparison: When there are alternative models, each must 
be evaluated to determine which is a better fit for the available data. This 
can involve ordinary descriptive statistics of model outputs. This can benefit 
from functional design techniques.

The goal of EDA is often to create a model that can be deployed as a decision support 
application. In many cases, a model might be a simple function. A simple functional 
programming approach can apply the model to new data and display results for 
human consumption.

https://www.packtpub.com/big-data-and-business-intelligence/learning-scipy-numerical-and-scientific-computing
https://www.packtpub.com/big-data-and-business-intelligence/learning-scipy-numerical-and-scientific-computing
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization
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Summary
We've looked at programming paradigms with an eye toward distinguishing the 
functional paradigm from two common imperative paradigms. Our objective in 
this book is to explore the functional programming features of Python. We've noted 
that some parts of Python don't allow purely functional programming; we'll be 
using some hybrid techniques that meld the good features of succinct, expressive 
functional programming with some high-performance optimizations in Python.

In the next chapter, we'll look at five specific functional programming techniques 
in detail. These techniques will form the essential foundation for our hybridized 
functional programming in Python.



Introducing Some Functional 
Features

Most of the features of functional programming are already first-class parts of Python. 
Our goal in writing functional Python is to shift our focus away from imperative 
(procedural or object-oriented) techniques to the maximum extent possible.

We'll look at each of the following functional programming topics:

• First-class and higher-order functions, which are also known as  
pure functions.

• Immutable Data.
• Strict and non-strict evaluation. We can also call this eager vs.  

lazy evaluation.
• Recursion instead of an explicit loop state.
• Functional type systems.

This should reiterate some concepts from the first chapter. Firstly, that purely 
functional programming avoids the complexities of explicit state maintained via 
variable assignment. Secondly, that Python is not a purely functional language.

We don't offer a rigorous definition of functional programming. Instead, we'll 
locate some common features that are indisputably important. We'll steer clear  
of the blurry edges.



Introducing Some Functional Features

[ 24 ]

First-class functions
Functional programming is often succinct and expressive. One way to achieve  
this is by providing functions as arguments and return values for other functions. 
We'll look at numerous examples of manipulating functions.

For this to work, functions must be first-class objects in the runtime environment. 
In programming languages such as C, a function is not a runtime object. In Python, 
however, functions are objects that are created (usually) by the def statements  
and can be manipulated by other Python functions. We can also create a function  
as a callable object or by assigning lambda to a variable.

Here's how a function definition creates an object with attributes:

>>> def example(a, b, **kw):

...    return a*b

...

>>> type(example)

<class 'function'>

>>> example.__code__.co_varnames

('a', 'b', 'kw')

>>> example.__code__.co_argcount

2

We've created an object, example, that is of class function(). This object has 
numerous attributes. The __code__ object associated with the function object has 
attributes of its own. The implementation details aren't important. What is important 
is that functions are first-class objects, and can be manipulated just like all other 
objects. We previously displayed the values of two of the many attributes of a 
function object.

Pure functions
To be expressive, a function used in a functional programming design will be free 
from the confusion created by side effects. Using pure functions can also allow some 
optimizations by changing evaluation order. The big win, however, stems from pure 
functions being conceptually simpler and much easier to test.

To write a pure function in Python, we have to write local-only code. This means 
we have to avoid the global statements. We need to look closely at any use of 
nonlocal; while it is a side effect in another scope, it's confined to a nested function 
definition. This is an easy standard to meet. Pure functions are a common feature of 
Python programs.
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There isn't a trivial way to guarantee a Python function is free from side effects. It is 
easy to carelessly break the pure function rule. If we ever want to worry about our 
ability to follow this rule, we could write a function that uses the dis module to scan 
a given function's __code__.co_code compiled code for global references. It could 
report on use of internal closures, and the __code__.co_freevars tuple method as 
well. This is a rather complex solution to a rare problem; we won't pursue it further.

A Python lambda is a pure function. While this isn't a highly recommended style,  
it's certainly possible to create pure functions via lambda values.

Here's a function created by assigning lambda to a variable:

>>> mersenne = lambda x: 2**x-1

>>> mersenne(17)

131071

We created a pure function using lambda and assigned this to the variable mersenne. 
This is a callable object with a single argument value that returns a single value. 
Because lambda's can't have assignment statements, they're always pure functions 
and suitable for functional programming.

Higher-order functions
We can achieve expressive, succinct programs using higher-order functions.  
These are functions that accept a function as an argument or return a function as 
a value. We can use higher-order functions as a way to create composite functions 
from simpler functions. 

Consider the Python max() function. We can provide a function as an argument  
and modify how the max() function behaves.

Here's some data we might want to process:

>>> year_cheese = [(2000, 29.87), (2001, 30.12), (2002, 30.6), (2003,  
30.66),(2004, 31.33), (2005, 32.62), (2006, 32.73), (2007, 33.5),  
(2008, 32.84), (2009, 33.02), (2010, 32.92)]

We can apply the max() function as follows: 

>>> max(year_cheese)

(2010, 32.92)

The default behavior is to simply compare each tuple in the sequence. This will 
return the tuple with the largest value on position 0.
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Since the max() function is a higher-order function, we can provide another function 
as an argument. In this case, we'll use lambda as the function; this is used by the 
max() function, as follows:

>>> max(year_cheese, key=lambda yc: yc[1])

(2007, 33.5)

In this example, the max() function applies the supplied lambda and returns the 
tuple with the largest value in position 1.

Python provides a rich collection of higher-order functions. We'll see examples  
of each of Python's higher-order functions in later chapters, primarily in Chapter 5, 
Higher-order Functions. We'll also see how we can easily write our own higher-order 
functions. 

Immutable data
Since we're not using variables to track the state of a computation, our focus needs to 
stay on immutable objects. We can make extensive use of tuples and namedtuples 
to provide more complex data structures that are immutable.

The idea of immutable objects is not foreign to Python. There can be a performance 
advantage to using immutable tuples instead of more complex mutable objects.  
In some cases, the benefits come from rethinking the algorithm to avoid the costs  
of object mutation. 

We will avoid class definitions (almost) entirely. It can seem like it's anathema to 
avoid objects in an Object-Oriented Programming (OOP) language. Functional 
programming simply doesn't need stateful objects. We'll see this throughout this book. 
There are reasons for defining callable objects; it is a tidy way to provide namespace 
for closely-related functions, and it supports a pleasant level of configurability.

We'll look at a common design pattern that works well with immutable objects: the 
wrapper() function. A list of tuples is a fairly common data structure. We will often 
process this list of tuples in one of the two following ways:

• Using Higher-order Functions: As shown earlier, we provided lambda as 
an argument to the max() function: max(year_cheese, key=lambda yc: 
yc[1])

• Using the Wrap-Process-Unwrap pattern: In a functional context, we should 
call this the unwrap(process(wrap(structure))) pattern
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For example, look at the following command snippet:

>>> max(map(lambda yc: (yc[1],yc), year_cheese))

(33.5, (2007, 33.5))

>>> _[1]

(2007, 33.5)

This fits the three-part pattern, although it might not be obvious how well it fits.

First, we wrap, using map(lambda yc: (yc[1],yc), year_cheese). This will 
transform each item into a two tuple with a key followed by the original item.  
In this example, the comparison key is merely yc[1].

Second, do the processing using the max() function. Since each piece of data has 
been simplified to a two tuple with position zero used for comparison, we don't 
really need the higher-order function feature of the max() function. The default 
behavior of the max() function is exactly what we require.

Finally, we unwrap using the subscript [1]. This will pick the second element  
of the two tuple selected by the max() function.

This kind of wrap and unwrap is so common that some languages have special 
functions with names like fst() and snd() that we can use as a function prefix 
instead of a syntactic suffix of [0] or [1]. We can use this idea to modify our  
wrap-process-unwrap example, as follows:

snd= lambda x: x[1]

snd( max(map(lambda yc: (yc[1],yc), year_cheese)))

We defined a snd() function to pick the second item from a tuple. This provides 
us with an easier-to-read version of unwrap(process(wrap())). We used 
map(lambda... , year_cheese) to wrap our raw data items. We used max() 
function as the processing and, finally, the snd() function to extract the second  
item from the tuple.

In Chapter 13, Conditional Expressions and the Operator Module, we'll look at some 
alternatives to lambda functions like fst() and snd().

Strict and non-strict evaluation
Functional programming's efficiency stems, in part, from being able to defer a 
computation until it's required. The idea of lazy or non-strict evaluation is very 
helpful. It's so helpful that Python already offers this feature.
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In Python, the logical expression operators and, or, and if-then-else are all  
non-strict. We sometimes call them short-circuit operators because they don't need  
to evaluate all arguments to determine the resulting value.

The following command snippet shows the and operator's non-strict feature:

>>> 0 and print("right")

0

>>> True and print("right")

right

When we execute the preceding command snippet, the left-hand side of the and 
operator is equivalent to False; the right-hand side is not evaluated. When the  
left-hand side is equivalent to True, the right-hand side is evaluated.

Other parts of Python are strict. Outside the logical operators, an expression is 
evaluated eagerly from left-to-right. A sequence of statement lines is also evaluated 
strictly in order. Literal lists and tuples require eager evaluation. 

When a class is created, the method functions are defined in a strict order. In the case 
of a class definition, the method functions are collected into a dictionary (by default) 
and order is not maintained after they're created. If we provide two methods with 
the same name, the second one is retained because of the strict evaluation order.

Python's generator expressions and generator functions, however, are lazy. These 
expressions don't create all possible results immediately. It's difficult to see this 
without explicitly logging the details of a calculation. Here is an example of the 
version of the range() function that has the side effect of showing the numbers  
it creates:

>>> def numbers():

...    for i in range(1024):

...        print( "=", i )

...        yield i

If this function were eager, it would create all 1,024 numbers. Since it's lazy, it only 
creates numbers as requested.

The older Python 2 range() function was eager and created an 
actual list of object with all of the requested numbers. Python 2 has 
an xrange() function that is lazy and matches the semantics of the 
Python 3 range() function.
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We can use this noisy numbers() function in a way that will show lazy evaluation. 
We'll write a function that evaluates some, but  not all, of the values from this iterator:

>>> def sum_to(n):

...    sum= 0

...    for i in numbers():

...        if i == n: break

...        sum += i

...    return sum

The sum_to() function will not evaluate the entire result of the numbers() function. 
It will break after only consuming a few values from the numbers() function. We can 
see this consumption of values in the following log:

>>> sum_to(5)

= 0

= 1

= 2

= 3

= 4

= 5

10

As we'll see later, Python generator functions have some properties that make them 
a little awkward for simple functional programming. Specifically, a generator can 
only be used once in Python. We have to be cautious how we use the lazy Python 
generator expressions.

Recursion instead of a explicit loop state
Functional programs don't rely on loops and the associated overhead of tracking the 
state of loops. Instead, functional programs try to rely on the much simpler approach 
of recursive functions. In some languages, the programs are written as recursions, but 
Tail-Call Optimization (TCO) by the compiler changes them to loops. We'll introduce 
some recursion here and examine it closely in Chapter 6, Recursions and Reductions.
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We'll look at a simple iteration to test a number for being prime. A prime number  
is a natural number, evenly divisible by only 1 and itself. We can create a naïve and 
poorly performing algorithm to determine if a number has any factors between two 
and the number. This algorithm has the advantage of simplicity; it works acceptably 
for solving Project Euler problems. Read up on Miller-Rabin primality tests for a 
much better algorithm.

We'll use the term coprime to mean that two numbers have only 1 as their common 
factor. The numbers 2 and 3, for example, are coprime. The numbers 6 and 9, 
however, are not coprime because they have 3 as a common factor.

If we want to know if a number, n, is prime, we actually ask this: is the number n 
coprime to all prime numbers, p, such that 2p n< . We can simplify this using all 
integers, p, such that 22 p n≤ < .

Sometimes, it helps to formalize this as follows:

( ) ( ) ( )( )2 1 mod 0prime n x x n and n x = ∀ ≤ < + ≠ 

The expression could look as follows in Python:

not any(n%p==0 for p in range(2,int(math.sqrt(n))+1))

A more direct conversion from mathematical formalism to Python would use  
all(n%p != 0... ) but that requires strict evaluation of all values of p. The not  
any version can terminate early if a True value is found.

This simple expression has a for loop inside it: it's not a pure example of stateless 
functional programming. We can reframe this into a function that works with a 
collection of values. We can ask whether the number, n, is coprime within any 
value in the range )2,1 n + ?". This uses the symbols, [), to show a half-open interval: 
the lower values are included, and the upper value is not included. This is typical 
behavior of the Python range() function. We will also restrict ourselves to the 
domain of natural numbers. The square root values, for example, are implicitly 
truncated to integers.

We can think of the definition of prime as the following:

( ) )( )prime coprime , 2,1n n n= ¬ + , given n > 1.

When defining a recursive function over a simple range of values, the base case can 
be an empty range. A nonempty range is handled recursively by processing one value 
combined with a range that's narrower by one value. We might formalize it as follows:
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[ )( ) ( ) [ )( )
True

coprime , ,
mod 0 coprime , 1,

a b
n a b

n a n a b a b
 ==  ≠ ∧ + <

if
if

This version is relatively easy to confirm by examining the two cases, which are 
given as follows:

• If the range is empty, a b= , we evaluate something like:
[ )( )coprime 131071, 363,363 . The range contains no values, so the return is  

a trivial True. 

• If the range is not empty, we ask something like [ )( )coprime 131071, 2,363 .  
This decomposes into ( ) [ )( )131071 mod 2 0 coprime 131071, 3,363≠ ∧ . For this 
example, we can see that the first clause is True, and we'll evaluate the 
second clause recursively.

As an exercise for the reader: this recursion can be redefined to count down instead 
of up, using [a,b-1) in the second case.

As a side note, some folks like to think of the empty interval as a ≥ b, not a=b.  
This is needless, since a is incremented by 1 and we can easily guarantee that  
a≤b, initially. There's no way for a to somehow leap past b by some error in the 
function; we don't need to over-specify the rules for an empty interval.

Here is a Python code snippet that implements this definition of prime:

def isprimer(n):
    def isprime(k, coprime):
        """Is k relatively prime to the value coprime?"""
        if k < coprime*coprime: return True
        if k % coprime == 0: return False
        return isprime(k, coprime+2)
    if n < 2: return False
    if n == 2: return True
    if n % 2 == 0: return False
    return isprime(n, 3)

This shows a recursive definition of an isprime() function. The half-open  
interval )2,1 n +  is reduced to just the low-end argument, a, which is renamed 
coprime in this function to clarify its purpose. The base case is implemented as  
n < coprime*coprime; the range of values from coprime to 1+math.sqrt(n) 
would be empty. 
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The non-strict and operation is implemented by splitting it out into a separate if 
statement, if n % coprime == 0. The return statement is the recursive call with  
a different coprime test value.

Because the recursion is the tail end of the function, this is an example of  
Tail recursion.

This function is embedded in a function that establishes the boundary condition  
that n is an odd number greater than 2. There's no point in testing any even number 
for being prime, since 2 is the only even prime.

What's important in this example is that the two cases of this recursive function  
are quite simple to design. Making the range of values an explicit argument to  
the internal isprime() function allows us to call the function recursively with 
argument values that reflect a steadily shrinking interval.

While this is often extremely succinct and very expressive, we have to be a little 
cautious about using recursion in Python. There are two problems that arise.  
They are stated as follows:

• Python imposes a recursion limit to detect recursive functions with 
improperly defined base cases

• Python does have a compiler to do Tail-Call Optimization (TCO)

The default recursion limit is 1,000, which is adequate for many algorithms.  
It's possible to change this with the sys.setrecursionlimit() function.  
It's not wise to raise this arbitrarily since it might lead to exceeding the OS  
memory limitations and crashing the Python interpreter.

If we try a recursive isprimer() function on a number over 1,000,000, we'll run foul 
of the recursion limit. If we used a somehow smarter isprimer() function that only 
checked prime factors instead of all factors, we'd be stopped at the 1,000th prime 
number, 7,919, limiting our prime testing to numbers below 62,710,561.

Some functional programming languages can optimize simple recursive functions 
such as our isprimer() function. An optimizing compiler can transform the 
recursive evaluation of the isprimer(n, coprime+1) method into a low-overhead 
loop. The optimization tends to make a hash of call stacks; debugging optimized 
programs becomes difficult. Python doesn't perform this optimization. Performance 
and memory are sacrificed for clarity and simplicity.

In Python, when we use a generator expression instead of a recursive function,  
we essentially do the tail-call optimization manually. We don't rely on a compiler  
for some functional language to do this optimization.
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Here is TCO done as a generator expression:

def isprime(p):
    if p < 2: return False
    if p == 2: return True
    if p % 2 == 0: return False
    return not any(p==0 for p in range(3,int(math.sqrt(n))+1,2))

This function includes many of the functional programming principles, but it uses  
a generator expression instead of a pure recursion. 

We'll often optimize a purely recursive function to use 
an explicit for loop in a generator expression.

This algorithm is slow for large primes. For composite numbers, the function often 
returns a value quickly. If used on a value such as 61

61 2 1M = − , it will take a few 
minutes to show that this is prime. Clearly, the slowness comes from checking 
1,518,500,249 individual candidate factors.

Functional type systems
Some functional programming languages such as Haskell and Scala are statically 
compiled, and depend on declared types for functions and their arguments.  
In order to provide the kind of flexibility Python already has, these languages  
have sophisticated type matching rules so that a generic function can be written, 
which works for a variety of related types.

In Object-Oriented Python, we often use the class inheritance hierarchy instead of 
sophisticated function type matching. We rely on Python to dispatch an operator  
to a proper method based on simple name matching rules.

Since Python already has the desired levels of flexibility, the type matching rules  
for a compiled functional language aren't relevant. Indeed, we could argue that  
the sophisticated type matching is a workaround imposed by static compilation. 
Python doesn't need this workaround because it's a dynamic language.

In some cases, we might have to resort to using isinstance(a, tuple) to detect if 
an argument value is  tuple or an individual value. This will be as rare in functional 
programs as it is in Object-Oriented Programs.
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Familiar territory
One of the ideas that emerge from the previous list of topics is that most functional 
programming is already present in Python. Indeed, most functional programming is 
already a very typical and common part of Object-Oriented Programming.

As a very specific example, a fluent Application Program Interface (API) is a very 
clear example of functional programming. If we take time to create a class with 
return self() in each method function, we can use it as follows:

some_object.foo().bar().yet_more()

We can just as easily write several closely-related functions that work as follows:

yet_more(bar(foo(some_object)))

We've switched the syntax from traditional object-oriented suffix notation to a more 
functional prefix notation. Python uses both notations freely, often using a prefix 
version of a special method name. For example, the len() function is generally 
implemented by the class.__len__() special method.

Of course, the implementation of the class shown above might involve a highly 
stateful object. Even then, a small change in viewpoint might reveal a functional 
approach that can lead to more succinct or more expressive programming.

The point is not that imperative programming is broken in some way, or that 
functional programming offers such a vastly superior technology. The point is  
that functional programming leads to a change in viewpoint that can—in many 
cases—be very helpful.

Saving some advanced concepts
We will set some more advanced concepts aside for consideration in later chapters. 
These concepts are part of the implementation of a purely functional language. 
Since Python isn't purely functional, our hybrid approach won't require deep 
consideration of these topics.

We will identify these up-front for the benefit of folks who already know a functional 
language such as Haskell and are learning Python. The underlying concerns are 
present in all programming languages but we'll tackle them differently in Python.  
In many cases, we can and will drop into imperative programming rather than use  
a strictly functional approach.
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The topics are as follows:

• Referential transparency: When looking at lazy evaluation and the various 
kinds of optimization that are possible in a compiled language, the idea 
of multiple routes to the same object is important. In Python, this isn't as 
important because there aren't any relevant compile-time optimizations.

• Currying: The type systems will employ currying to reduce multiple-argument 
functions to single-argument functions. We'll look at currying in some depth in 
Chapter 11, Decorator Design Techniques.

• Monads: These are purely functional constructs that allow us to structure a 
sequential pipeline of processing in a flexible way. In some cases, we'll resort 
to imperative Python to achieve the same end. We'll also leverage the elegant 
PyMonad library for this. We'll defer this to Chapter 14, The PyMonad Library.

Summary
In this chapter, we've identified a number of features that characterize the functional 
programming paradigm. We started with first-class and higher-order functions.  
The idea is that a function can be an argument to a function or the result of a 
function. When functions become the object of additional programming,  
we can write some extremely flexible and generic algorithms.

The idea of immutable data is sometimes odd in an imperative and object-oriented 
programming language such as Python. When we start to focus on functional 
programming, however, we see a number of ways that state changes can be 
confusing or unhelpful. Using immutable objects can be a helpful simplification.

Python focuses on strict evaluation: all sub-expressions are evaluated from  
left-to-right through the statement. Python, however, does perform some  
non-strict evaluation. The or, and, and if-else logical operators are non-strict:  
all subexpressions are not necessarily evaluated. Similarly, a generator function is 
also non-strict. We can also call this eager vs. lazy. Python is generally eager but we 
can leverage generator functions to create lazy evaluation.

While functional programming relies on recursion instead of explicit loop state, 
Python imposes some limitations here. Because of the stack limitation and the lack  
of an optimizing compiler, we're forced to manually optimize recursive functions. 
We'll return to this topic in Chapter 6, Recursions and Reductions.
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Although many functional languages have sophisticated type systems, we'll rely  
on Python's dynamic type resolution. In some cases, it means we'll have to write 
manual coercion among types. It might also mean that we'll have to create class 
definitions to handle very complex situations. For the most part, however,  
Python's built-in rules will work very elegantly.

In the next chapter, we'll look at the core concepts of pure functions and how  
these fit with Python's built-in data structures. Given this foundation, we can  
look at higher-order functions available in Python and how we can define our  
own higher-order functions.



Functions, Iterators,  
and Generators

The core of functional programming is the use of pure functions to map values from 
the input domain to the output range. A pure function has no side effects, a relatively 
easy threshold for us to achieve in Python.

Avoiding side effects also means reducing our dependence on variable assignment 
to maintain the state of our computations. We can't purge the assignment statement 
from the Python language, but we can reduce our dependence on stateful objects. 
This means we need to choose among the available Python built-in data structures  
to select those that don't require stateful operations.

This chapter will present several Python features from a functional viewpoint,  
as follows:

• Pure Functions, free of side effects
• Functions as objects that can be passed as arguments or returned as results
• The use of Python strings using object-oriented suffix notation and  

prefix notation
• Using tuples and namedtuples as a way to create stateless objects
• Using iterable collections as our primary design tool for  

functional programming

We'll look at generators and generator expressions, since these are ways to work with 
collections of objects. As we noted in Chapter 2, Introducing Some Functional Features, 
there are some boundary issues while trying to replace all generator expressions with 
recursions. Python imposes a recursion limit, and doesn't automatically handle TCO: 
we must optimize recursions manually using a generator expression.
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We'll write generator expressions that will perform the following tasks:

• Conversions
• Restructuring
• Complex calculations

We'll make a quick survey of many of the built-in Python collections, and how we 
can work with collections while pursuing a functional paradigm. This might change 
our approach to working with lists, dicts, and sets. Writing functional Python 
encourages us to focus on tuples and immutable collections. In the next chapter,  
we'll emphasize more functional ways to work with specific kinds of collections.

Writing pure functions
A pure function has no side effects: there are no global changes to variables. If we 
avoid the global statement, we will almost meet this threshold. We also need to 
avoid changing the state mutable objects. We'll look at a number of ways of ensuring 
these two aspects of pure functions. A reference to a value in the Python global using 
a free variable is something we can rework into a proper parameter. In most cases, 
it's quite easy.

Here is an example where the usage of the global statement is explained:

    def some_function(a, b, t):
        return a+b*t+global_adjustment

We can refactor this function to make the global_adjustment variable into a proper 
parameter. We would need to change each reference to this function, which might 
have a large ripple effect through a complex application. A global reference will be 
visible as a free variable in the body of a function. There will be neither a parameter 
nor an assignment for this variable, making it reasonably clear that it's global. 

There are many internal Python objects, which are stateful. Instances of the file 
class, and all file-like objects, are examples of stateful objects in common use. We 
observe that the most commonly used stateful objects in Python generally behave  
as context managers. Not all developers make use of the available context managers 
but many objects implement the required interface. In a few cases, stateful objects 
don't completely implement the context manager interface; in these cases, there's 
often a close() method. We can use the contextlib.closing() function to 
provide these objects with the proper context manager interface.
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We can't easily eliminate all stateful Python objects, except from small programs. 
Therefore, we must manage state while still exploiting the strengths of functional 
design. Toward this end, we should always use the with statement to encapsulate 
stateful file objects into a well-defined scope.

Always use file objects in a with context.

We should always avoid global file objects, global database connections, and the 
associated state issues. The global file object is a very common pattern for handling 
open files. We might have a function as shown in the following command snippet:

def open(iname, oname):
    global ifile, ofile
    ifile= open(iname, "r")
    ofile= open(oname, "w")

Given this context, numerous other functions can use the ifile and ofile variables, 
hoping they properly refer to the global files, which are left open for the application 
to use.

This is not a very good design, and we need to avoid it. The files should be proper 
parameters to functions, and the open files should be nested in a with statement to 
assure that their stateful behavior is handled properly.

This design pattern also applies to databases. A database connection object can 
generally be provided as a formal argument to the application's functions. This 
is contrary to the way some popular web frameworks work that rely on a global 
database connection in an effort to make the database a transparent feature of the 
application. Additionally, a multithreaded web server might not benefit from sharing 
a single database connection. This suggests that there are some benefits of a hybrid 
approach that uses functional design with a few isolated stateful features.

Functions as first-class objects
It shouldn't come as a surprise that Python functions are first-class objects. In Python, 
functions are objects with a number of attributes. The reference manual lists a 
number of special member names that apply to functions. Since functions are objects 
with attributes, we can extract the docstring function or the name of a function, 
using special attributes such as __doc__ or __name__. We can also extract the body 
of the function via the __code__ attribute. In compiled languages, this introspection 
is relatively complex because of the source information that needs to be retained. In 
Python, it's quite simple.
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We can assign functions to variables, pass functions as arguments, and return functions 
as values. We can easily use these techniques to write higher-order functions.

Since functions are objects, Python already has many features required to be a 
functional programming language.

Additionally, a callable object also helps us to create functions, which are first-class 
objects. We can even consider the callable class definition as a higher-order function. 
We do need to be judicious in how we use the __init__() method of a callable object; 
we should avoid setting stateful class variables. One common application is to use an 
__init__() method to create objects that fit the Strategy design pattern.

A class following the Strategy design pattern depends on another object to provide 
an algorithm or parts of an algorithm. This allows us to inject algorithmic details at 
runtime, rather than compiling the details into the class.

Here is an example of a callable object with an embedded Strategy object:

import collections
class Mersenne1(collections.Callable):
    def __init__(self, algorithm):
        self.pow2= algorithm
    def __call__(self, arg):
        return self.pow2(arg)-1

This class uses __init__() to save a reference to another function. We're not 
creating any stateful instance variables.

The function given as a Strategy object must raise 2 to the given power. The three 
candidate objects that we can plug into this class are as follows:

def shifty(b):
    return 1 << b
def multy(b):
    if b == 0: return 1
    return 2*multy(b-1)
def faster(b):
    if b == 0: return 1
    if b%2 == 1: return 2*faster(b-1)
    t= faster(b//2)
    return t*t

The shifty() function raises 2 to the desired power using a left shift of the bits.  
The multy() function uses a naive recursive multiplication. The faster() function 
uses a divide and conquer strategy that will perform ( )2log b  multiplications instead 
of b multiplications.
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We can create instances of our Mersenne1 class with an embedded strategy 
algorithm, as follows:

m1s= Mersenne1(shifty)
m1m= Mersenne1(multy)
m1f= Mersenne1(faster)

This shows how we can define alternative functions that produce the same result but 
use different algorithms.

Python allows us to compute 89
89 2 1M = − , since this 

doesn't even come close to the recursion limits in Python. 
This is quite a large prime number, with 27 digits.

Using strings
Since Python strings are immutable, they're an excellent example of functional 
programming objects. A Python string module has a number of methods, all of 
which produce a new string as the result. These methods are pure functions with  
no side effects.

The syntax for string method functions is postfix, where most functions are  
prefix. This means that complex string operations can be hard to read when  
they're commingled with conventional functions.

When scraping data from a web page, we might have a cleaner function that applies 
a number of transformations to a string to clean up the punctuation and return a 
Decimal object for use by the rest of the application. This will involve a mixture of 
prefix and postfix syntax.

It might look like the following command snippet:

from decimal import *
def clean_decimal(text):
    if text is None: return text
    try:
        return Decimal(text.replace("$", "").replace(",", ""))
    except InvalidOperation:
        return text

This function does two replacements on the string to remove $ and , string values. 
The resulting string is used as an argument to the Decimal class constructor, which 
returns the desired object.
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To make this more consistent, we can consider defining our own prefix functions for 
the string method functions, as follows:

def replace(data, a, b):
    return data.replace(a,b)

This can allow us to use Decimal(replace(replace(text, "$", ""), ",", "")) 
with consistent-looking prefix syntax. In this case, we simply rearrange the existing 
argument values, allowing us an additional technique. We can do this for trivial 
cases, such as the follows:

>>> replace=str.replace
>>> replace("$12.45","$","")

12.45 

It's not clear if this kind of consistency is a significant improvement over the mixed 
prefix and postfix notation. The issue with functions of multiple arguments is that 
the arguments wind up in various places in the expression.

A slightly better approach might be to define a more meaningful prefix function to 
strip punctuation, such as the following command snippet:

def remove( str, chars ):
    if chars: return remove( str.replace(chars[0], ""), chars[1:] )
    return str

This function will recursively remove each of the characters from the char variable. 
We can use it as Decimal(remove(text, "$,")) to make the intent of our string 
cleanup more clear.

Using tuples and namedtuples
Since Python tuples are immutable objects, they're another excellent example  
of objects suitable for functional programming. A Python tuple has very few 
method functions, so almost everything is done through functions using prefix 
syntax. There are a number of use cases for tuples, particularly when working  
with list-of-tuple, tuple-of-tuple and generator-of-tuple constructs.

Of course, namedtuples add an essential feature to a tuple: a name that we can use 
instead of an index. We can exploit namedtuples to create objects that are accretions 
of data. This allows us to write pure functions based on stateless objects, yet keep 
data bound into tidy object-like packages.
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We'll almost always use tuples (and namedtuples) in the context of a collection of 
values. If we're working with single values, or a tidy group of exactly two values, we'll 
usually use named parameters to a function. When working with collections, however, 
we might need to have iterable-of-tuples or iterable-of-namedtuple constructs.

The decision to use a tuple or namedtuple object is entirely a matter of convenience. 
We might be working with a sequence of values as a three tuple of the form (number, 
number, number) assuming that the triple is in red, green, and blue order.

We can use functions to pick a three-tuple apart, as shown in the following  
command snippet:

red = lambda color: color[0]
green = lambda color: color[1]
blue = lambda color: color[2]

Or, we might introduce the following command line:

Color = namedtuple("Color", ("red", "green", "blue", "name"))

This allows us to use item.red instead of red(item).

The functional programming application of tuples centers on the iterable-of-tuple 
design pattern. We'll look closely at a few iterable-of-tuple techniques. We'll look  
at the namedtuple techniques in Chapter 7, Additional Tuple Techniques.

Using generator expressions
We've shown some examples of generator expressions already. We'll show many 
more later in the chapter. We'll introduce some more sophisticated generator 
techniques in this section.

We need to mention a small bit of Python syntax here. It's common to see generator 
expressions used to create the list or dict literals via a list comprehension or a 
dict comprehension. For our purposes, a list display (or comprehension) is  just one 
use of generator expressions. We can try to make a distinction between generator 
expressions outside a display and generator expressions inside a display, but 
there's nothing to be gained by this. The syntax is the same except for the enclosing 
punctuation and the semantics are indistinguishable.



Functions, Iterators, and Generators

[ 44 ]

A display includes the enclosing literal syntax: [x**2 for x in range(10)]; this 
example is a list comprehension, which creates a list object from the enclosed generator 
expression. In this section, we're going to focus on the generator expression. We'll 
occasionally create a display as part of demonstrating how the generator works. 
Displays have the disadvantage of creating (potentially large) collection objects.  
A generator expression is lazy and creates objects only as required.

We have to provide two important caveats on generator expressions, as follows:

• Generators appear to be sequence-like except for a function such as the len() 
function that needs to know the size of the collection. 

• Generators can be used only once. After that, they appear empty.

Here is a generator function that we'll use for some examples:

def pfactorsl(x):
    if x % 2 == 0:
        yield 2
        if x//2 > 1:
            yield from pfactorsl(x//2)
        return
    for i in range(3,int(math.sqrt(x)+.5)+1,2):
        if x % i == 0:
            yield i
            if x//i > 1:
                yield from pfactorsl(x//i)
            return
    yield x

We're locating the prime factors of a number. If the number, x, is even, we'll yield 2 
and then recursively yield all factors of x÷2.

For odd numbers, we'll step through odd values greater than or equal to 3, to locate  
a candidate factor of the number. When we locate a factor, we'll yield that factor, i, 
and then recursively yield all factors of x÷i. 

In the event that we can't locate a factor, the number must be prime, so we can  
yield that.

We handle 2 as a special case to cut the number of iterations in half. All prime numbers, 
except 2, are odd.
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We've used one important for loop in addition to recursion. This allows us to easily 
handle numbers that have as many as 1,000 factors. This number is at least as large 
as 1,0002 , a number with 300 digits. Since the for variable, i, is not used outside 
the indented body of the loop, the stateful nature of the i variable won't lead to 
confusion if we make any changes to the body of the loop.

In effect, we've done tail-call optimization, the recursive calls that count from 3 to x .  
The for loop saves us from deeply recursive calls that test every single number in  
the range.

The other two for loops exist merely to consume the results of a recursive function 
that is iterable.

In a recursive generator function, be careful of the return statement.
Do not use the following command line:
return recursive_iter(args)

It returns only a generator object; it doesn't evaluate the function to 
return the generated values. Use either of the following:
for result in recursive_iter(args):  
yield result

OR yield from recursive_iter(args)

As an alternative, the following command is a more purely recursive version:

def pfactorsr(x):
    def factor_n(x, n):
        if n*n > x:
            yield x
            return
        if x % n == 0:
            yield n
            if x//n > 1:
                yield from factor_n(x//n, n)
        else:
            yield from factor_n(x, n+2)
    if x % 2 == 0:
        yield 2
        if x//2 > 1:
            yield from pfactorsr(x//2)
        return
    yield from factor_n(x, 3)
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We defined an internal recursive function, factor_n(), to test factors, n, in the range 
3 n x≤ ≤ . If the candidate factor, n, is outside the range, then x is prime. Otherwise, 
we'll see if n is a factor of x. If so, we'll yield n and all factors of 

x
n . If n is not a factor, 

we'll evaluate the function recursively using n+2. This recursion to test each value 
of ( )2, 2 2, 2 2 2,...n n n+ + + + + +  can be optimized into a for loop, as shown in the 
previous example.

The outer function handles some edge cases. As with other prime-related processing, 
we handle 2 as a special case. For even numbers, we'll yield 2 and then evaluate 
pfactorsr() recursively for x÷2. All other prime factors must be odd numbers greater 
than or equal to 3. We'll evaluate the factors_n() function starting with 3 to test these 
other candidate prime factors.

The purely recursive function can only locate prime 
factors of numbers up to about 4,000,000. Above this, 
Python's recursion limit will be reached.

Exploring the limitations of generators
We noted that there are some limitations of generator expressions and  
generator functions. The limitations can be observed by executing the  
following command snippet:

>>> from ch02_ex4 import *
>>> pfactorsl( 1560 )
<generator object pfactorsl at 0x1007b74b0>
>>> list(pfactorsl(1560))
[2, 2, 2, 3, 5, 13]
>>> len(pfactorsl(1560))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: object of type 'generator' has no len()

In the first example, we saw that generator functions are not strict. They're lazy,  
and don't have a proper value until we consume the generator functions. This isn't a 
limitation, per se; this is the whole reason that generator expressions fit with functional 
programming in Python.

In the second example, we materialized a list object from the generator function.  
This is handy for seeing the output and writing unit test cases.

In the third example, we saw one limitation of generator functions: there's no len().
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The other limitation of generator functions is that they can only be used once.  
For example, look at the following command snippet:

>>> result= pfactorsl(1560)
>>> sum(result)
27
>>> sum(result)
0

The first evaluation of the sum() method performed evaluation of the generator.  
The second evaluation of the sum() method found that the generator was now 
empty. We can only consume the values once.

Generators have a stateful life in Python. While they're very nice for some aspects  
of functional programming, they're not quite perfect.

We can try to use the itertools.tee() method to overcome the once-only limitation. 
We'll look at this in depth in Chapter 8, The Itertools Module. Here is a quick example of 
its usage:

import itertools
def limits(iterable):
    max_tee, min_tee = itertools.tee(iterable, 2)
    return max(max_tee), min(min_tee)

We created two clones of the parameter generator expression, max_tee() and  
min_tee(). This leaves the original iterator untouched, a pleasant feature that allows 
us to do very flexible combinations of functions. We can consume these two clones to 
get maxima and minima from the iterable. 

While appealing, we'll see that this doesn't work out well in the long run. Once 
consumed, an iterable will not provide any more values. When we want to compute 
multiple kinds of reductions—for example, sums, counts, minimums, maximums—we 
need to design with this one-pass-only limitation in mind.

Combining generator expressions
The essence of functional programming comes from the ways we can easily combine 
generator expressions and generator functions to create very sophisticated composite 
processing sequences. When working with generator expressions, we can combine 
generators in several ways.

One common way to combine generator functions is when we create a composite 
function. We might have a generator that computes (f(x) for x in range()).  
If we want to compute g(f(x)), we have several ways to combine two generators.
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We can tweak the original generator expression as follows:

g_f_x = (g(f(x)) for x in range())

While technically correct, this defeats any idea of reuse. Rather than reusing an 
expression, we rewrite it.

We can also substitute one expression within another expression, as follows:

g_f_x = (g(y) for y in (f(x) for x in range()))

This has the advantage of allowing us to use simple substitution. We can revise  
this slightly to emphasize reuse, using the following commands:

f_x= (f(x) for x in range())
g_f_x= (g(y) for y in f_x)

This has the advantage of leaving the initial expression, (f(x) for x in range()), 
essentially untouched. All we did was assign the expression to a variable.

The resulting composite function is also a generator expression, which is also lazy. 
This means that extracting the next value from g_f_x will extract one value from 
f_x, which will extract one value from the source range() function.

Cleaning raw data with generator 
functions
One of the tasks that arise in exploratory data analysis is cleaning up raw source 
data. This is often done as a composite operation applying several scalar functions  
to each piece of input data to create a usable data set.

Let's look at a simplified set of data. This data is commonly used to show techniques 
in exploratory data analysis. It's called Anscombe's Quartet, and it comes from  
the article, Graphs in Statistical Analysis, by F. J. Anscombe that appeared in 
American Statistician in 1973. Following are the first few rows of a downloaded  
file with this dataset:

Anscombe's quartet
I  II  III  IV
x  y  x  y  x  y  x  y
10.0  8.04  10.0  9.14   10.0  7.46  8.0  6.58
8.0 6.95  8.0  8.14  8.0  6.77  8.0  5.76
13.0  7.58  13.0  8.74  13.0  12.74  8.0  7.71
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Sadly, we can't trivially process this with the csv module. We have to do a little bit 
of parsing to extract the useful information from this file. Since the data is properly 
tab-delimited, we can use the csv.reader() function to iterate through the various 
rows. We can define a data iterator as follows:

import csv
def row_iter(source):
    return csv.reader(source, delimiter="\t")

We simply wrapped a file in a csv.reader function to create an iterator over rows. 
We can use this iterator in the following context:

with open("Anscombe.txt") as source:
    print( list(row_iter(source)) )

The problem with this is that the first three items in the resulting iterable aren't data. 
The Anacombe's quartet file looks as follows when opened:

[["Anscombe's quartet"], ['I', 'II', 'III', 'IV'],  
['x', 'y', 'x', 'y', 'x', 'y', 'x', 'y'], 

We need to filter these rows from the iterable. Here is a function that will neatly 
excise three expected title rows, and return an iterator over the remaining rows:

def head_split_fixed(row_iter):
    title= next(row_iter)
    assert len(title) == 1 and title[0] == "Anscombe's quartet"
    heading= next(row_iter)
    assert len(heading) == 4 and heading == ['I', 'II', 'III', 'IV']
    columns= next(row_iter)
    assert len(columns) == 8 and columns == ['x', 'y', 'x', 'y', 'x',  
    'y', 'x', 'y']
    return row_iter

This function plucks three rows from the iterable. It asserts that each row has  
an expected value. If the file doesn't meet these basic expectations, it's a symptom 
that the file was damaged or perhaps our analysis is focused on the wrong file.

Since both the row_iter() and the head_split_fixed() functions expect an 
iterable as an argument value, they can be trivially combined as follows:

with open("Anscombe.txt") as source:
    print( list(head_split_fixed(row_iter(source))))

We've simply applied one iterator to the results of another iterator. In effect, this 
defines a composite function. We're not done, of course; we still need to convert the 
strings values to the float values and we also need to pick apart the four parallel 
series of data in each row.
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The final conversions and data extractions are more easily done with higher-order 
functions such as map() and filter(). We'll return to those in Chapter 5,  
Higher-order Functions.

Using lists, dicts, and sets
A Python sequence object, like a list, is iterable. However, it has some additional 
features. We'll think of it as a materialized iterable. We've used the tuple() function 
in several examples to collect the output of a generator expression or generator 
function into a single tuple object. We can also materialize a sequence to create  
a list object.

In Python, a list display offers simple syntax to materialize a generator: we just add the 
[] brackets. This is ubiquitous to the point where the distinction between generator 
expression and list comprehension is a subtlety of little practical importance.

The following is an example to enumerate the cases:

>>> range(10)
range(0, 10)
>>> [range(10)]
[range(0, 10)]
>>> [x for x in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The first example is a generator function.

The range(10) function is lazy; it won't produce the 10 values 
until evaluated in a context that iterates through the values.

The second example shows a list composed of a single generator function.  
To evaluate this, we'll have to use nested loops. Something like this [x for  
gen in [range(10)] for x in gen].

The third example shows a list comprehension built from a generator expression 
that includes a generator function. The function, range(10), is evaluated by a 
generator expression, x for x in range(10). The resulting values are collected 
into a list object.

We can also use the list() function to build a list from an iterable or a generator 
expression. This also works for set(), tuple(), and dict().
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The list(range(10)) function evaluated the generator expression. 
The [range(10)] list literal does not evaluate the generator function.

While there's shorthand syntax for list, dict, and set using [] and {},there's 
no shorthand syntax for a tuple. To materialize a tuple, we must use the tuple() 
function. For this reason, it often seems most consistent to use the list(), tuple(), 
and set() functions as the preferred syntax.

In the data cleansing example, we used a composite function to create a list of four 
tuples. The function looked as follows:

with open("Anscombe.txt") as source:
    data = head_split_fixed(row_iter(source))
    print(list(data))

We assigned the results of the composite function to a name, data. The data looks  
as follows:

[['10.0', '8.04', '10.0', '9.14', '10.0', '7.46', '8.0', '6.58'], 
['8.0', '6.95', '8.0', '8.14', '8.0', '6.77', '8.0', '5.76'], ...
['5.0', '5.68', '5.0', '4.74', '5.0', '5.73', '8.0', '6.89']]

We need to do a little bit more processing to make this useful. First, we need to pick 
pairs of columns from the eight tuple. We can select pair of columns with a function, 
as shown in the following command snippet:

from collections import namedtuple
Pair = namedtuple("Pair", ("x", "y"))
def series(n, row_iter):
    for row in row_iter:
        yield Pair(*row[n*2:n*2+2])

This function picks two adjacent columns based on a number between 0 and 3.  
It creates a namedtuple object from those two columns. This allows us to pick  
the x or y value from each row.

We can now create a tuple-of-tuples collection as follows:

with open("Anscombe.txt") as source:
    data = tuple(head_split_fixed(row_iter(source)))
    sample_I= tuple(series(0,data))
    sample_II= tuple(series(1,data))
    sample_III= tuple(series(2,data))
    sample_IV= tuple(series(3,data))
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We applied the tuple() function to a composite function based on the head_split_
fixed() and row_iter() methods. This will create an object that we can reuse in 
several other functions. If we don't materialize a tuple object, only the first sample 
will have any data. After that, the source iterator will be exhausted and all other 
attempts to access it would yield empty sequestionsnces.

The series() function will pick pairs of items to create the Pair objects. Again, we 
applied an overall tuple() function to materialize the resulting tuple-of-namedtuple 
sequences so that we can do further processing on each one.

The sample_I sequence looks like the following command snippet:

(Pair(x='10.0', y='8.04'), Pair(x='8.0', y='6.95'), 
Pair(x='13.0', y='7.58'), Pair(x='9.0', y='8.81'), 
Etc. 
Pair(x='5.0', y='5.68'))

The other three sequences are similar in structure. The values, however,  
are quite different.

The final thing we'll need to do is create proper numeric values from the strings  
that we've accumulated so that we can compute some statistical summary values. 
We can apply the float() function conversion as the last step. There are many 
alternative places to apply the float() function, and we'll look at some choices  
in Chapter 5, Higher-order Functions.

Here is an example describing the usage of float() function:

    mean = sum(float(pair.y) for pair in sample_I)/len(sample_I)

This will provide the mean of the y value in each Pair object. We can gather a 
number of statistics as follows:

for subset in sample_I, sample_II, sample_III, sample_III:
    mean = sum(float(pair.y) for pair in subset)/len(subset)
    print(mean)

We computed a mean for the y values in each pair built from the source database. 
We created a common tuple-of-namedtuple structure so that we can have reasonably 
clear references to members of the source dataset. Using pair.y is a bit less obscure 
than pair[1].
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To reduce memory use—and increase performance—we prefer to use generator 
expressions and functions as much as possible. These iterate through collections in a 
lazy (or non-strict) manner, computing values only when required. Since iterators can 
only be used once, we're sometimes forced to materialize a collection as a tuple (or 
list) object. Materializing a collection costs memory and time, so we do it reluctantly.

Programmers familiar with Clojure can match Python's lazy generators with the 
lazy-seq and lazy-cat functions. The idea is that we can specify a potentially 
infinite sequence, but only take values from it as needed.

Using stateful mappings
Python offers several stateful collections; the various mappings include the dict class 
and a number of related mappings defined in the collections module. We need to 
emphasize the stateful nature of these mappings and use them carefully.

For our purposes in learning functional programming techniques in Python, there 
are two use cases for mapping: a stateful dictionary that accumulates a mapping 
and a frozen dictionary. In the first example of this chapter, we showed a frozen 
dictionary that was used by the ElementTree.findall() method. Python doesn't 
provide an easy-to-use definition of an immutable mapping. The collections.abc.
Mapping abstract class is immutable but it's not something we can use trivially.  
We'll dive into details in Chapter 6, Recursions and Reductions.

Instead of the formality of using the collections.abc.Mapping abstract class, we 
can fall back on confirming that the variable ns_map appears exactly once on the left 
side of an assignment statement, methods such as ns_map.update() or ns_map.
pop() are never used, and the del statement isn't used with map items.

The stateful dictionary can be further decomposed into two typical use cases; they 
are as follows:

• A dictionary built once and never updated. In this case, we will exploit  
the hashed keys feature of the dict class to optimize performance. We can 
create a dictionary from any iterable sequence of (key, value) two tuples  
via dict( sequence ). 

• A dictionary built incrementally. This is an optimization we can use to 
avoid materializing and sorting a list object. We'll look at this in Chapter 6, 
Recursions and Reductions. We'll look at the collections.Counter class  
as a sophisticated reduction. Incremental building is particularly helpful  
for memoization. We'll defer memoization until Chapter 16, Optimizations  
and Improvements.
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The first example, building a dictionary once, stems from an application with three 
operating phases: gather some input, create a dict object, and then process input 
based on the mappings in the dictionary. As an example of this kind of application, 
we might be doing some image processing and have a specific palette of colors, 
represented by names and (R, G, B) tuples. If we use the GNU Image Manipulation 
Program (GIMP) GNU General Public License (GPL) file format, the color palette 
might look like the following command snippet:

    GIMP Palette
    Name: Small
    Columns: 3
    #
      0  0  0    Black
    255 255 255    White
    238  32  77    Red
    28 172 120      Green
    31 117 254      Blue

The details of parsing this file are the subject of Chapter 6, Recursions and Reductions. 
What's important is the results of the parsing.

First, we'll assume that we're using the following Color namedtuple:

from collections import namedtuple
Color = namedtuple("Color", ("red", "green", "blue", "name"))

Second, we'll assume that we have a parser that produces an iterable of Color 
objects. If we materialize it as a tuple, it would look like the following:

(Color(red=239, green=222, blue=205, name='Almond'),  
Color(red=205, green=149, blue=117, name='Antique Brass'),  
Color(red=253, green=217, blue=181, name='Apricot'),  
Color(red=197, green=227, blue=132, name='Yellow Green'),  
Color(red=255, green=174, blue=66, name='Yellow Orange'))

In order to locate a given color name quickly, we will create a frozen dictionary  
from this sequence. This is not the only way to get fast lookups of a color by name. 
We'll look at another option later.

To create a mapping from a tuple, we will use the process(wrap(iterable)) 
design pattern. The following command shows how we can create the color  
name mapping:

name_map= dict( (c.name, c) for c in sequence )
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Where the sequence variable is the iterable of the Color objects shown previously, 
the wrap() element of the design pattern simply transforms each Color object , c, 
into the two tuple (c.name, c). The process() element of the design uses dict() 
initialization to create a mapping from name to Color. The resulting dictionary looks 
as follows:

{'Caribbean Green': Color(red=28, green=211, blue=162,  
name='Caribbean Green'), 
'Peach': Color(red=255, green=207, blue=171, name='Peach'),  
'Blizzard Blue': Color(red=172, green=229, blue=238, name='Blizzard  
Blue'),

The order is not guaranteed, so you may not see Caribbean Green first.

Now that we've materialized the mapping, we can use this dict() object in some 
later processing for repeated transformations from color name to (R, G, B) color 
numbers. The lookup will be blazingly fast because a dictionary does a rapid 
transformation from key to hash value followed by lookup in the dictionary.

Using the bisect module to create a mapping
In the previous example, we created a dict mapping to achieve a fast mapping from 
a color name to a Color object. This isn't the only choice; we can use the bisect 
module instead. Using the bisect module means that we have to create a sorted 
object, which we can then search. To be perfectly compatible with the dict mapping, 
we can use collections.abc.Mapping as the base class.

The dict mapping uses a hash to locate items almost immediately. However,  
this requires allocating a fairly large block of memory. The bisect mapping does a 
search, which doesn't require as much memory, but performance can be described  
as immediate.

A static mapping class looks like the following command snippet:

import bisect
from collections.abc import Mapping
class StaticMapping(Mapping):
    def __init__( self, iterable ):
        self._data = tuple(iterable)
        self._keys = tuple(sorted(key for key, _ in self._data))
  
    def __getitem__(self, key):
        ix= bisect.bisect_left(self._keys, key)
        if ix != len(self._keys) and self._keys[ix] == key:
            return self._data[ix][1]
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        raise ValueError("{0!r} not found".format(key))
    def __iter__(self):
        return iter(self._keys)
    def __len__(self):
        return len(self._keys)

This class extends the abstract superclass collections.abc.Mapping. It provides 
an initialization and implementations for three functions missing from the abstract 
definition. The __getitem__() method uses the bisect.bisect_left() function to 
search the collection of keys. If the key is found, the appropriate value is returned. The 
__iter__() method returns an iterator, as required by the superclass. The __len__() 
method, similarly, provides the required length of the collection.

Another option is to start with the source code for the collections.OrderedDict 
class, change the superclass to Mapping instead of MutableMapping, and remove all 
of the methods that implement mutability. For more details on which methods to 
keep and which to discard, refer to the Python Standard Library, section 8.4.1.

Visit the following link for more details:

https://docs.python.org/3.3/library/collections.abc.html#collections-
abstract-base-classes

This class might not seem to embody too many functional programming principles. 
Our goal here is to support a larger application that minimizes the use of stateful 
variables. This class saves a static collection of key-value pairs. As an optimization,  
it materializes two objects.

An application that creates an instance of this class is using a materialized object to 
perform rapid lookups of the keys. The superclass does not support updates to the 
object. The collection, as a whole, is stateless. It's not as fast as the built-in dict class, 
but it uses less memory and, through the formality of being a subclass of Mapping,  
we can be assured that this object is not used to contain a processing state.

Using stateful sets
Python offers several stateful collections, including the set collection. For our 
purposes, there are two use cases for a set: a stateful set that accumulates items,  
and a frozenset that is used to optimize searches for an item.

We can create a frozenset from an iterable in the same way as we create a tuple 
object from an iterable fronzenset(some_iterable) method; this will create a 
structure that has the advantage of a very fast in operator. This can be used in  
an application that gatheres data, creates a set, and then uses that frozenset to 
process some other data items.

https://docs.python.org/3.3/library/collections.abc.html#collections-abstract-base-classes 
https://docs.python.org/3.3/library/collections.abc.html#collections-abstract-base-classes 
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We might have a set of colors that we will use as a kind of chroma-key: we will use 
this color to create a mask that will be used to combine two images. Pragmatically,  
a single color isn't appropriate but a small set of very similar colors works best.  
In this case, we'll examine each pixel of an image file to see if the pixel is in the 
chroma-key set or not. For this kind of processing, the chroma-key colors are loaded 
into a frozenset before processing the target images. For more information, read 
about chroma-key processing from the following link:

http://en.wikipedia.org/wiki/Chroma_key

As with mappings—specifically the Counter class—there are some algorithms that 
can benefit from a memoized set of values. Some functions benefit from memoization 
because a function is a mapping between domain values and range values, a job 
for which a mapping works nicely. A few algorithms benefit from a memoized set, 
which is stateful and grows as data is processed.

We'll return to memoization in Chapter 16, Optimizations and Improvements.

Summary
In this chapter, we looked closely at writing pure functions: free of side effects.  
The bar is low here, since Python forces us to use the global statement to write 
impure functions. We looked at generator functions and how we can use these  
as the backbone of functional programming.

We also examined the built-in collection classes to show how they're used in the 
functional paradigm. While the general ideal behind functional programming is  
to limit the use of stateful variables, the collection objects are generally stateful  
and, for many algorithms, also essential. Our goal is to be judicious in our use of 
Python's nonfunctional features.

In the next two chapters, we'll look at higher-order functions: functions that  
accept functions as arguments as well as returning functions. We'll start with  
an exploration of the built-in higher-order functions. In later chapters, we'll look  
at techniques for defining our own higher-order functions. We'll also look at  
the itertools and functools modules and their higher-order functions in  
later chapters.

http://en.wikipedia.org/wiki/Chroma_key 




Working with Collections
Python offers a number of functions that process whole collections. They can  
be applied to sequences (lists or tuples), sets, mappings, and iterable results  
of generator expressions. We'll look at some of Python's collection-processing 
functions from a functional programming viewpoint.

We'll start out by looking at iterables and some simple functions that work with 
iterables. We'll look at some additional design patterns to handle iterables and 
sequences with recursion as well as explicit for loops. We'll look at how we can 
apply a scalar() function to a collection of data with a generator expression.

In this chapter, we'll show examples of how to use the following functions to  
work with collections:

• any() and all()
• len() and sum() and some higher-order statistical processing related  

to these functions
• zip() and some related techniques to structure and flatten lists of data
• reversed()

• enumerate()

The first four functions can all be called reductions; they reduce a collection to  
a single value. The other three functions (zip(), reversed(), and enumerate())  
are mappings; they produce a new collection from an existing collection(s). In the 
next chapter, we'll look at some mapping() and reduction() functions that use  
an additional function as an argument to customize their processing.

In this chapter, we'll start out by looking at ways to process data using generator 
expressions. Then, we'll apply different kinds of collection-level functions to show 
how they can simplify the syntax of iterative processing. We'll also look at some 
different ways of restructuring data.
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In the next chapter, we'll focus on using higher-order collection functions to do 
similar kinds of processing.

An overview of function varieties
We need to distinguish between two broad species of functions, as follows:

• Scalar functions apply to individual values and compute an individual result. 
Functions such as abs(), pow(), and the entire math module are examples of 
scalar functions.

• Collection() functions work with iterable collections.

We can further subdivide the collection functions into three subspecies:

• Reduction: This uses a function that is used to fold values in the collection 
together, resulting in a single final value. We can call this an aggregate 
function, as it produces a single aggregate value for an input collection.

• Mapping: This applies a function to all items of a collection; the result is  
a collection of the same size.

• Filter: This applies a function to all items of a collection that rejects some 
items and passes others. The result is a subset of the input. A filter might do 
nothing, which means that the output matches the input; this is an improper 
subset, but it still fits the broader definition of subset.

We'll use this conceptual framework to characterize ways in which we use the  
built-in collection functions.

Working with iterables
As we noted in the previous chapters, we'll often use Python's for loop to work 
with collections. When working with materialized collections such as tuples, lists, 
maps, and sets, the for loop involves an explicit management of state. While this 
strays from purely functional programming, it reflects a necessary optimization for 
Python. If we assure that state management is localized to an iterator object that's 
created as part of the for statement evaluation, we can leverage this feature without 
straying too far from pure, functional programming. For example, if we use the for 
loop variable outside the indented body of loop, we've strayed too far from purely 
functional programming.

We'll return to this in Chapter 6, Recursion and Reduction. It's an important topic, and 
we'll just scratch the surface here with a quick example of working with generators.
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One common application of for loop iterable processing is the 
unwrap(process(wrap(iterable))) design pattern. A wrap() function will first 
transform each item of an iterable into a two tuples with a derived sort key or other 
value and then the original immutable item. We can then process these two tuples 
based on the wrapped value. Finally, we'll use an unwrap() function to discard the 
value used to wrap, which recovers the original item.

This happens so often in a functional context that we have two functions that are 
used heavily for this; they are as follows:

fst = lambda x: x[0]
snd = lambda x: x[1]

These two functions pick the first and second values from a tuple, and both are 
handy for the process() and unwrap() functions.

Another common pattern is wrap(wrap(wrap())). In this case, we're starting 
with simple tuples and then wrapping them with additional results to build 
up larger and more complex tuples. A common variation on this theme is 
extend(extend(extend())) where the additional values build new, more  
complex namedtuple instances without actually wrapping the original tuples.  
We can summarize both of these as the Accretion design pattern.

We'll apply the Accretion design to work with a simple sequence of latitude and 
longitude values. The first step will convert the simple points (lat, lon) on a path 
into pairs of legs (begin, end). Each pair in the result will be ((lat, lon), (lat, lon)).

In the next sections, we'll show how to create a generator function that will iterate over 
the content of a file. This iterable will contain the raw input data that we will process.

Once we have the data, later sections will show how to decorate each leg with the 
haversine distance along the leg. The final result of the wrap(wrap(iterable()))) 
processing will be a sequence of three tuples: ((lat, lon), (lat, lon), distance). We 
can then analyze the results for the longest, shortest distance, bounding rectangle, 
and other summaries of the data.

Parsing an XML file
We'll start by parsing an XML (short for Extensible Markup Language) file to get  
the raw latitude and longitude pairs. This will show how we can encapsulate some 
not-quite functional features of Python to create an iterable sequence of values.  
We'll make use of the xml.etree module. After parsing, the resulting ElementTree 
object has a findall() method that will iterate through the available values.



Working with Collections

[ 62 ]

We'll be looking for constructs such as the following code snippet: 

<Placemark><Point>
<coordinates>-76.33029518659048,37.54901619777347,0</coordinates>
</Point></Placemark>

The file will have a number of <Placemark> tags, each of which has a point and 
coordinate structure within it. This is typical of Keyhole Markup Language (KML) 
files that contain geographic information.

Parsing an XML file can be approached at two levels of abstraction. At the lower 
level, we need to locate the various tags, attribute values, and content within the 
XML file. At a higher level, we want to make useful objects out of the text and 
attribute values.

The lower-level processing can be approached in the following way:

import xml.etree.ElementTree as XML
def row_iter_kml(file_obj):
    ns_map= {
        "ns0": "http://www.opengis.net/kml/2.2",
        "ns1": "http://www.google.com/kml/ext/2.2"}
    doc= XML.parse(file_obj)
    return (comma_split(coordinates.text)
            for coordinates in  
            doc.findall("./ns0:Document/ns0:Folder/ns0:Placemark/ 
            ns0:Point/ns0:coordinates", ns_map))

This function requires a file that was already opened, usually via a with statement. 
However, it can also be any of the file-like objects that the XML parser can handle.  
The function includes a simple static dict object, ns_map, that provides the namespace 
mapping information for the XML tags we'll be searching. This dictionary will be used 
by the XML ElementTree.findall() method.

The essence of the parsing is a generator function that uses the sequence of tags 
located by doc.findall(). This sequence of tags is then processed by a comma_
split() function to tease the text value into its comma-separated components.

The comma_split() function is the functional version of the split() method  
of a string, which is as follows:

def comma_split(text):
    return text.split(",")

We've used the functional wrapper to emphasize a slightly more uniform syntax.
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The result of this function is an iterable sequence of rows of data. Each row will be a 
tuple composed of three strings: latitude, longitude, and altitude of a waypoint 
along this path. This isn't directly useful yet. We'll need to do some more processing 
to get latitude and longitude as well as converting these two numbers into useful 
floating-point values.

This idea of an iterable sequence of tuples as results of lower-level parsing allows 
us to process some kinds of data files in a simple and uniform way. In Chapter 3, 
Functions, Iterators, and Generators, we looked at how Comma Separated Values 
(CSV) files are easily handled as rows of tuples. In Chapter 6, Recursions and 
Reductions, we'll revisit the parsing idea to compare these various examples.

The output from the preceding function looks like the following code snippet:

[['-76.33029518659048', '37.54901619777347', '0'],  
['-76.27383399999999', '37.840832', '0'],  
['-76.459503', '38.331501', '0'],  
and so on  
['-76.47350299999999', '38.976334', '0']]

Each row is the source text of the <ns0:coordinates> tag split using , that's part  
of the text content. The values are the East-West longitude, North-South latitude,  
and altitude. We'll apply some additional functions to the output of this function  
to create a usable set of data.

Parsing a file at a higher level
Once we've parsed the low-level syntax, we can restructure the raw data into 
something usable in our Python program. This kind of structuring applies to XML, 
JavaScript Object Notation (JSON), CSV, and any of the wide variety of physical 
formats in which data is serialized.

We'll aim to write a small suite of generator functions that transforms the parsed 
data into a form our application can use. The generator functions include some 
simple transformations on the text that's found by the row_iter_kml() function, 
which are as follows:

• Discarding altitude, or perhaps keeping only latitude and longitude
• Changing the order from (longitude, latitude) to (latitude, longitude)

We can make these two transformations have more syntactic uniformity by defining 
a utility function as follows:

def pick_lat_lon(lon, lat, alt):
    return lat, lon
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We can use this function as follows:

def lat_lon_kml(row_iter):
    return (pick_lat_lon(*row) for row in row_iter)

This function will apply the pick_lat_lon() function to each row. We've used  
*row to assign each element of the row three tuple to separate parameters of the 
pick_lat_lon() function. The function can then extract and reorder the two 
relevant values from each three tuple.

It's important to note that a good functional design allows us to freely replace any 
function with its equivalent, which makes refactoring quite simple. We've tried 
to achieve this goal when we provide alternative implementations of the various 
functions. In principle, a clever functional language compiler might do some 
replacements as part of an optimization pass.

We'll use the following kind of processing to parse the file and build a structure  
we can use, such as the following code snippet:

with urllib.request.urlopen("file:./Winter%202012-2013.kml") as  
source:
    v1= tuple(lat_lon_kml(row_iter_kml(source)))
print(v1)

We've used the urllib command to open a source. In this case, it's a local file. 
However, we can also open a KML file on a remote server. Our objective with  
using this kind of file opening is to assure that our processing is uniform no  
matter what the source of the data is.

We've shown the two functions that do low-level parsing of the KML source.  
The row_iter_kml(source) expression produces a sequence of text columns.  
The lat_lon_kml() function will extract and reorder the latitude and longitude 
values. This creates an intermediate result that sets the stage for further processing. 
The subsequent processing is independent of the original format.

When we run this, we see results like the following:

(('37.54901619777347', '-76.33029518659048'),  
('37.840832', '-76.27383399999999'), ('38.331501', '-76.459503'),  
('38.330166', '-76.458504'), ('38.976334', '-76.47350299999999'))

We've extracted just the latitude and longitude values from a complex XML 
file using an almost purely functional approach. As the result is an iterable, we can 
continue to use functional programming techniques to process each point that we 
retrieve from the file.
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We've explicitly separated low-level XML parsing from higher-level reorganization 
of the data. The XML parsing produced a generic tuple of string structure. This 
is compatible with the output from the CSV parser. When working with SQL 
databases, we'll have a similar iterable of tuple structures. This allows us to write  
code for higher-level processing that can work with data from a variety of sources.

We'll show a series of transformations to rearrange this data from a collection of 
strings to a collection of waypoints along a route. This will involve a number of 
transformations. We'll need to restructure the data as well as convert from strings 
to floating-point values. We'll also look at a few ways to simplify and clarify the 
subsequent processing steps. We'll use this data set in later chapters because it's 
reasonably complex.

Pairing up items from a sequence
A common restructuring requirement is to make start-stop pairs out of points in 
a sequence. Given a sequence, { }0 1 2, , ,..., nS s s s s= , we want to create a paired 
sequence ( ) ( ) ( ){ }0 1 1 2 1

ˆ , , , ,..., ,n nS s s s s s s−= . When doing time-series analysis, we might 
be combining more widely separated values. In this example, it's adjacent values.

A paired sequence will allow us to use each pair to compute distances from point to 
point using a trivial application of a haversine function. This technique is also used 
to convert a path of points into a series of line segments in a graphics application.

Why pair up items? Why not do something like this?

begin= next(iterable)
for end in iterable:
    compute_something(begin, end)
    begin = end

This, clearly, will process each leg of the data as a begin-end pair. However,  
the processing function and the loop that restructures the data are tightly bound, 
making reuse more complex than necessary. The algorithm for pairing is hard to  
test in isolation because it's bound to the compute_something() function.

This combined function also limits our ability to reconfigure the application. There's 
no easy way to inject an alternative implementation of the compute_something() 
function. Additionally, we've got a piece of explicit state, the begin variable, which 
makes life potentially complex. If we try to add features to the body of loop, we can 
easily fail to set the begin variable correctly if a point is dropped from consideration. 
A filter() function introduces an if statement that can lead to an error in 
updating the begin variable.
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We achieve better reuse by separating this simple pairing function. This, in the  
long run, is one of our goals. If we build up a library of helpful primitives such  
as this pairing function, we can tackle problems more quickly and confidently.

There are many ways to pair up the points along the route to create start and  
stop information for each leg. We'll look at a few here and then revisit this in  
Chapter 5, Higher-order Functions and again in Chapter 8, The Itertools Module.

Creating pairs can be done in a purely functional way using a recursion.  
The following is one version of a function to pair up the points along a route:

def pairs(iterable):
    def pair_from( head, iterable_tail ):
        nxt= next(iterable_tail)
        yield head, nxt
        yield from pair_from( nxt, iterable_tail )
    try:
        return pair_from( next(iterable), iterable )
    except StopIteration:
        return

The essential function is the internal pair_from() function. This works with the  
item at the head of an iterable plus the iterable itself. It yields the first pair, pops  
the next item from the iterable, and then invokes itself recursively to yield any 
additional pairs.

We've invoked this function from the pairs() function. The pairs() function 
ensures that the initialization is handled properly and the terminating exception  
is silenced properly.

Python iterable recursion involves a for loop to properly consume 
and yield the results from the recursion. If we try to use a simpler-
looking return pair_from(nxt, iterable_tail) method, 
we'll see that it does not properly consume the iterable and yield 
all of the values.
Recursion in a generator function requires yield from a statement 
to consume the resulting iterable. For this, use yield from 
recursive_iter(args).
Something like return recursive_iter(args) will return 
only a generator object; it doesn't evaluate the function to return 
the generated values.
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Our strategy for performing tail-call optimization is to replace the recursion with a 
generator expression. We can clearly optimize this recursion into a simple for loop. 
The following is another version of a function to pair up the points along a route:

def legs(lat_lon_iter):

    begin= next(lat_lon_iter)

    for end in lat_lon_iter:

        yield begin, end

        begin= end

The version is quite fast and free from stack limits. It's independent of any  
particular type of sequence, as it will pair up anything emitted by a sequence 
generator. As there's no processing function inside loop, we can reuse the  
legs() function as needed.

We can think of this function as one that yields the following kind of sequence  
of pairs:

list[0:1], list[1:2], list[2:3], ..., list[-2:]

Another view of this function is as follows:

zip(list, list[1:])

While informative, these other two formulations only work for sequence objects.  
The legs() and pairs() functions work for any iterable, including sequence objects.

Using the iter() function explicitly
The purely functional viewpoint is that all of our iterables can be processed with 
recursive functions, where the state is merely the recursive call stack. Pragmatically, 
Python iterables will often involve evaluation of other for loops. There are two 
common situations: collections and iterables. When working with a collection,  
an iterator object is created by the for statement. When working with a generator 
function, the generator function is the iterator and maintains its own internal state. 
Often, these are equivalent from a Python programming perspective. In rare cases, 
generally those situations where we have to use an explicit next() function, the two 
won't be precisely equivalent.

Our legs() function shown previously has an explicit next() function call to get the 
first value from the iterable. This works wonderfully well with generator functions, 
expressions, and other iterables. It doesn't work with sequence objects such as tuples 
or lists.
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The following are three examples to clarify the use of the next() and iter() 
functions:

>>> list(legs(x for x in range(3)))
[(0, 1), (1, 2)]
>>> list(legs([0,1,2]))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in legs
TypeError: 'list' object is not an iterator
>>> list(legs( iter([0,1,2])))
[(0, 1), (1, 2)]

In the first case, we applied the legs() function to an iterable. In this case, the 
iterable was a generator expression. This is the expected behavior based on our 
previous examples in this chapter. The items are properly paired up to create two 
legs from three waypoints.

In the second case, we tried to apply the legs() function to a sequence. This resulted 
in an error. While a list object and an iterable are equivalent when used in a for 
statement, they aren't equivalent everywhere. A sequence isn't an iterator; it doesn't 
implement the next() function. The for statement handles this gracefully, however, 
by creating an iterator from a sequence automatically.

To make the second case work, we need to explicitly create an iterator from a list 
object. This permits the legs() function to get the first item from the iterator over 
the list items.

Extending a simple loop 
We have two kinds of extensions we might factor into a simple loop. We'll look 
first at a filter extension. In this case, we might be rejecting values from further 
consideration. They might be data outliers, or perhaps source data that's improperly 
formatted. Then, we'll look at mapping source data by performing a simple 
transformation to create new objects from the original objects. In our case, we'll be 
transforming strings to floating-point numbers. The idea of extending a simple 
loop with a mapping, however, applies to situations. We'll look at refactoring the 
above pairs() function. What if we need to adjust the sequence of points to discard 
a value? This will introduce a filter extension that rejects some data values.

As the loop we're designing simply returns pairs without performing any additional 
application-related processing, the complexity is minimal. Simplicity means we're 
somewhat less likely to confuse the processing state.
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Adding a filter extension to this design might look something like the following 
code snippet:

def legs_filter(lat_lon_iter):
    begin= next(lat_lon_iter)
    for end in lat_lon_iter:
        if #some rule for rejecting:
            continue
        yield begin, end
        begin= end

We have plugged in a processing rule to reject certain values. As the loop remains 
succinct and expressive, we are confident that the processing will be done properly. 
Also, we can easily write a test for this function, as the results work for any iterable, 
irrespective of the long-term destination of the pairs.

The next refactoring will introduce additional mapping to a loop. Adding mappings 
is common when a design is evolving. In our case, we have a sequence of string 
values. We need to convert these to floating-point values for later use. This is a 
relatively simple mapping that shows the design pattern.

The following is one way to handle this data mapping, through a generator 
expression that wraps a generator function:

print(tuple(legs((float(lat), float(lon))  
for lat,lon in lat_lon_kml())))

We've applied the legs() function to a generator expression that creates float 
values from the output of the lat_lon_kml() function. We can read this in the 
opposite order as well. The lat_lon_kml() function's output is transformed  
into a pair of float values, which is then transformed into a sequence of legs.

This is starting to get complex. We've got a large number of nested functions here. 
We're applying float(), legs(), and tuple() to a data generator. One common 
refactoring of complex expressions is to separate the generator expression from  
any materialized collection. We can do the following to simplify the expression:

flt= ((float(lat), float(lon)) for lat,lon in lat_lon_kml())
print(tuple(legs(flt)))

We've assigned the generator function to a variable named flt. This variable  
isn't a collection object; we're not using a list comprehension to create an object. 
We've merely assigned the generator expression to a variable name. We've then  
used the flt variable in another expression.
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The evaluation of the tuple() method actually leads to a proper object being built so 
that we can print the output. The flt variable's objects are created only as needed.

There are other refactoring's we might like to do. In general, the source of the data is 
something we often want to change. In our example, the lat_lon_kml() function is 
tightly bound in the rest of the expression. This makes reuse difficult when we have 
a different data source.

In the case where the float() operation is something we'd like to parameterize 
so that we can reuse it, we can define a function around the generator expression. 
We'll extract some of the processing into a separate function merely to group the 
operations. In our case, the string-pair to float-pair is unique to a particular source 
data. We can rewrite a complex float-from-string expression into a simpler function 
such as follows:

def float_from_pair( lat_lon_iter ):
    return ((float(lat), float(lon)) for lat,lon in lat_lon_iter)

The float_from_pair() function applies the float() function to the first and 
second values of each item in the iterable, yielding a two tuple of floats created from 
an input value. We've relied on Python's for statement to decompose the two tuple.

We can use this function in the following context:

legs( float_from_pair(lat_lon_kml()))

We're going to create legs that are built from float values that come from a KML 
file. It's fairly easy to visualize the processing, as each stage in the process is a simple 
prefix function.

When parsing, we often have sequences of string values. For numeric applications, 
we'll need to convert strings to float, int, or Decimal values. This often involves 
inserting a function such as the float_from_pair() function into a sequence of 
expressions that clean up the source data.

Our previous output was all strings; it looked like the following code snippet:

(('37.54901619777347', '-76.33029518659048'),  
('37.840832', '-76.27383399999999'), ...  
('38.976334', '-76.47350299999999'))

We'll want data like the following code snippet, where we have floats:

(((37.54901619777347, -76.33029518659048),  
(37.840832, -76.273834)), ((37.840832, -76.273834), …  
((38.330166, -76.458504), (38.976334, -76.473503)))
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We'll need to create a pipeline of simpler transformation functions. Above, we arrived 
at flt= ((float(lat), float(lon)) for lat,lon in lat_lon_kml()). We can 
exploit the substitution rule for functions and replace a complex expression such as 
(float(lat), float(lon)) for lat,lon in lat_lon_kml()) with a function 
that has the same value, in this case, float_from_pair(lat_lon_kml()). This kind 
of refactoring allows us to be sure that a simplification has the same effect as a more 
complex expression.

There are some simplifications that we'll look at in Chapter 5, Higher-order Functions. 
We will revisit this in Chapter 6, Recursions and Reductions to see how to apply these 
simplifications to the file-parsing problem.

Applying generator expressions to scalar 
functions
We'll look cat a more complex kind of generator expression to map data values from 
one kind of data to another. In this case, we'll apply a fairly complex function to 
individual data values created by a generator.

We'll call these non-generator functions scalar, as they work with simple scalar 
values. To work with collections of data, a scalar function will be embedded in a 
generator expression.

To continue the example started earlier, we'll provide a haversine function and then 
use a generator expression to apply a scalar haversine() function to a sequence of 
pairs from our KML file. 

The haversine() function looks like following:

from math import radians, sin, cos, sqrt, asin

MI= 3959
NM= 3440
KM= 6371

def haversine( point1, point2, R=NM ):
    lat_1, lon_1= point1
    lat_2, lon_2= point2

    Δ_lat = radians(lat_2 - lat_1)
    Δ_lon = radians(lon_2 - lon_1)
    lat_1 = radians(lat_1)
    lat_2 = radians(lat_2)
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    a = sin(Δ_lat/2)**2 + cos(lat_1)*cos(lat_2)*sin(Δ_lon/2)**2
    c = 2*asin(sqrt(a))

    return R * c

This is a relatively simple implementation copied from the World Wide Web.

The following is how we might use our collection of functions to examine some KML 
data and produce a sequence of distances:

    trip= ((start, end, round(haversine(start, end),4))
        for start,end in legs(float_from_pair(lat_lon_kml())))
    for start, end, dist in trip:
        print(start, end, dist)

The essence of the processing is the generator expression assigned to the trip 
variable. We've assembled three tuples with a start, end, and the distance from start 
to end. The start and end pairs come from the legs() function. The legs() function 
works with floating-point data built from the latitude-longitude pairs 
extracted from a KML file.

The output looks like the following command snippet:

(37.54901619777347, -76.33029518659048) (37.840832, -76.273834)  
17.7246
(37.840832, -76.273834) (38.331501, -76.459503) 30.7382
(38.331501, -76.459503) (38.845501, -76.537331) 31.0756
(36.843334, -76.298668) (37.549, -76.331169) 42.3962
(37.549, -76.331169) (38.330166, -76.458504) 47.2866
(38.330166, -76.458504) (38.976334, -76.473503) 38.8019

Each individual processing step has been defined succinctly. The overview, similarly, 
can be expressed succinctly as a composition of functions and generator expressions.

Clearly, there are several further processing steps we might like to apply to  
this data. First, of course, is to use the format() method of a string to produce  
better-looking output.

More importantly, there are a number of aggregate values we'd like to extract from 
this data. We'll call these values reductions of the available data. We'd like to reduce 
the data to get the maximum and minimum latitude—for example, to show the 
extreme North and South ends of this route. We'd like to reduce the data to get  
the maximum distance in one leg as well as the total distance for all legs.
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The problem we'll have using Python is that the output generator in the trip 
variable can only be used once. We can't easily perform several reductions of this 
detailed data. We can use itertools.tee() to work with the iterable several times. 
It seems wasteful, however, to read and parse the KML file for each reduction.

We can make our processing more efficient by materializing intermediate results. 
We'll look at this in the next section. Then, we can see how to compute multiple 
reductions of the available data.

Using any() and all() as reductions
The any() and all() functions provide boolean reduction capabilities. Both functions 
reduce a collection of values to a single True or False. The all() function assures that 
all values are True. The any() function assures that at least one value is True.

These functions are closely related to a universal quantifier and an existential 
quantifier used to express mathematical logic. We might, for example, want to assert 
that all elements in a given collection have some property. One formalism for this 
might look like following:

( ) ( )Primex SomeSet x∀ ∈

We'd read this as: for all x in SomeSet, the function ( )Prime x  is true. We've put a 
quantifier in front of the logical expression.

In Python, we switch the order of the items slightly to transcribe the logic expression 
as follows:

all(isprime(x) for x in someset)

This will evaluate each argument value (isprime(x)) and reduce the collection  
of values to a single True or False.

The any() function is related to the existential quantifier. If we want to assert that 
no value in a collection is prime, we might have something like one of the two 
equivalent expressions:

( ) ( ) ( ) ( )Prime Primex SomeSet x x SomeSet x¬ ∀ ∈ ≡ ∃ ∈ ¬

The first states that it is not the case that all elements in SomeSet are prime. The second 
version asserts that there exists one element in SomeSet that is not prime. These two are 
equivalent—that is, if not all elements are prime, then one element must be non-prime.
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In Python, we can switch the order of the terms and transcribe these to working code 
as follows:

not all(isprime(x) for x in someset)
any(not isprime(x) for x in someset)

As they're equivalent, there are two reasons for preferring one over the other: 
performance and clarity. The performance is nearly identical, so it boils down  
to clarity. Which of these states the condition the most clearly?

The all() function can be described as an and reduction of a set of values.  
The result is similar to folding the and operator between the given sequence  
of values. The any() function, similarly, can be described as an or reduction.  
We'll return to this kind of general-purpose reduce when we look at the reduce() 
function in Chapter 10, The Functools Module.

We also need to look at the degenerate case of these functions. What if the sequence 
has 0 elements? What are the values of all(()) or all([])?

If we ask, "Are all elements in an empty set prime?", then what's the answer?  
As there are no elements, the question is a bit difficult to answer.

If we ask "Are all elements in an empty set prime and all elements in SomeSet 
prime?", we have a hint as to how we have to proceed. We're performing an and 
reduction of an empty set and an and reduction of SomeSet.

( ) ( ) ( ) ( )Prime Primex x x SomeSet x∀ ∈∅ ∧ ∀ ∈

It turns out that the and operator can be distributed freely. We can rewrite this to a 
union of the two sets, which is then evaluated for being prime:

( ) ( )Primex SomeSet x∀ ∈∅∪

Clearly, S S∪∅ ≡ . If we union an empty set, we get the original set. The empty set 
can be called the union identify element. This parallels the way 0 is the additive 
identity element: 0a a+ = .

Similarly, any(()) must be the or identity element, which is False. If we think of 
the multiplicative identify element, 1, where 1b b× = , then all(()) must be True.
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We can demonstrate that Python follows these rules:

>>> all(())
True
>>> any(())
False

Python gives us some very nice tools to perform processing that involves logic.  
We have the built-in and, or, and not operators. However, we also have these 
collection-oriented any() and all() functions.

Using len() and sum()
The len() and sum() functions provide two simple reductions: a count of the 
elements and the sum of the elements in a sequence. These two functions are 
mathematically similar, but their Python implementation is quite different.

Mathematically, we can observe this cool parallelism. The len() function returns  
the sum of 1's for each value in a collection, X: 01

x X x X
x

∈ ∈
=∑ ∑ .

The sum() function returns the sum of x for each value in a collection, X:
1

x X x X
x x

∈ ∈
=∑ ∑ .

The sum() function works for any iterable. The len() function doesn't apply to 
iterables; it only applies to sequences. This little asymmetry in the implementation  
of these functions is a little awkward around the edges of statistical algorithms.

For empty sequences, both of these functions return a proper additive identity 
element of 0.

>>> sum(())
0

Of course, sum(()) returns an integer 0. When other numeric types are used,  
the integer 0 will be coerced to the proper type for the available data.
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Using sums and counts for statistics
The definitions of the arithmetic mean have an appealingly trivial definition based  
on sum() and len(), which is as follows:

def mean( iterable ):
    return sum(iterable)/len(iterable)

While elegant, this doesn't actually work for iterables. This definition only works  
for sequences.

Indeed, we have a hard time performing a simple computation of mean or standard 
deviation based on iterables. In Python, we must either materialize a sequence object, 
or resort to somewhat more complex operations.

We have a fairly elegant expression of mean and standard deviation in the  
following definitions:

import math
s0= len(data) # sum(1 for x in data) # x**0
s1= sum(data) # sum(x for x in data) # x**1
s2= sum(x*x for x in data)

mean= s1/s0
stdev= math.sqrt(s2/s0 - (s1/s0)**2)

These three sums, s0, s1, and s2, have a tidy, parallel structure. We can easily 
compute the mean from two of the sums. The standard deviation is a bit more 
complex, but it's still based on the three sums.

This kind of pleasant symmetry also works for more complex statistical functions 
such as correlation and even least-squares linear regression.

The moment of correlation between two sets of samples can be computed from their 
standardized value. The following is a function to compute the standardized value:

def z( x, μ_x, σ_x ):
    return (x-μ_x)/σ_x

The calculation is simply to subtract the mean, μ_x, from each sample, x, and divide 
by the standard deviation, σ_x. This gives as a value measured in units of sigma, σ. 
A value ±1 σ is expected about two-thirds of the time. Larger values should be less 
common. A value outside ±3 σ should happen less than 1 percent of the time.
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We can use this scalar function as follows:

>>> d = [2, 4, 4, 4, 5, 5, 7, 9]
>>> list(z(x, mean(d), stdev(d)) for x in d)
[-1.5, -0.5, -0.5, -0.5, 0.0, 0.0, 1.0, 2.0]

We've materialized list that consists of normalized scores based on some raw  
data in the variable, d. We used a generator expression to apply the scalar function, 
z(), to the sequence object.

The mean() and stdev() functions are simply based on the examples shown above:

def mean(x): 
    return s1(x)/s0(x)
def stdev(x):
    return math.sqrt(s2(x)/s0(x) - (s1(x)/s0(x))**2)

The three sum functions, similarly, are based on the examples above:

def s0(data):
    return sum(1 for x in data) # or len(data)
def s1(data): 
    return sum(x for x in data) # or sum(data)
def s2(data): 
    return sum(x*x for x in data)

While this is very expressive and succinct, it's a little frustrating because we can't 
simply use an iterable here. We're computing a mean, which requires a sum of the 
iterable, plus a count. We're also computing a standard deviation that requires two 
sums and a count from the iterable. For this kind of statistical processing, we must 
materialize a sequence object so that we can examine the data multiple times.

The following is how we can compute the correlation between two sets of samples:

def corr( sample1, sample2 ):
    μ_1, σ_1 = mean(sample1), stdev(sample1)
    μ_2, σ_2 = mean(sample2), stdev(sample2)
    z_1 = (z(x, μ_1, σ_1) for x in sample1)
    z_2 = (z(x, μ_2, σ_2) for x in sample2)
    r = sum(zx1*zx2 for zx1, zx2 in zip(z_1, z_2) )/s0(sample1)
    return r
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This correlation function gathers basic statistical summaries of the two sets of samples: 
the mean and standard deviation. Given these summaries, we defined two generator 
functions that will create normalized values for each set of samples. We can then use 
the zip() function (see the next example) to pair up items from the two sequences  
of normalized values and compute the product of those two normalized values.  
The average of the product of the normalized scores is the correlation.

The following is an example of gathering the correlation between two sets of samples:

    >>> xi= [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 
    ...    1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83,] #  Height (m)
    >>> yi= [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 
    ...    63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46,] #  
    ...    Mass (kg)
    >>> round(corr( xi, yi ), 5)
    0.99458

We've shown two sequences of data points, xi and yi. The correlation is over .99, 
which shows a very strong relationship between the two sequences.

This shows one of the strengths of functional programming. We've created a handy 
statistical module using a half-dozen functions with definitions that are single 
expressions. The counterexample is the corr() function that can be reduced to a 
single very long expression. Each internal variable in this function is used just once; 
a local variable can be replaced with a copy-and-paste of the expression that created 
it. This shows us that the corr() function has a functional design even though it's 
written out in six separate lines of Python.

Using zip() to structure and flatten 
sequences
The zip() function interleaves values from several iterators or sequences. It will 
create n tuples from the values in each of the n input iterables or sequences. We used 
it in the previous section to interleave data points from two sets of samples, creating 
two tuples.

The zip() function is a generator. It does not materialize 
a resulting collection.
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The following is an example that shows what the zip() function does:

>>> xi= [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 
... 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83,] 
>>> yi= [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 
... 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46,] 
>>> zip( xi, yi )
<zip object at 0x101d62ab8>
>>> list(zip( xi, yi ))
[(1.47, 52.21), (1.5, 53.12), (1.52, 54.48), (1.55, 55.84),  
(1.57, 57.2), (1.6, 58.57), (1.63, 59.93), (1.65, 61.29),  
(1.68, 63.11), (1.7, 64.47), (1.73, 66.28), (1.75, 68.1),  
(1.78, 69.92), (1.8, 72.19), (1.83, 74.46)]

There are a number of edge cases for the zip() function. We must ask the following 
questions about its behavior:

• What happens where then are no arguments at all?
• What happens where there's only one argument?
• What happens when the sequences are different lengths?

For reductions (any(), all(), len(), sum()), we want an identity element from 
reducing an empty sequence.

Clearly, each of these edge cases must produce some kind of iterable output.  
Here are some examples to clarify the behaviors. First, the empty argument list:

>>> zip()
<zip object at 0x101d62ab8>
>>> list(_)
[]

We can see that the zip() function with no arguments is a generator function,  
but there won't be any items. This fits the requirement that the output is iterable.

Next, we'll try a single iterable:

>>> zip( (1,2,3) )
<zip object at 0x101d62ab8>
>>> list(_)
[(1,), (2,), (3,)]

In this case, the zip() function emitted one tuple from each input value. This too 
makes considerable sense.
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Finally, we'll look at the different-length list approach used by the zip() function:

>>> list(zip((1, 2, 3), ('a', 'b')))
[(1, 'a'), (2, 'b')]

This result is debatable. Why truncate? Why not pad the shorter list with None values? 
This alternate definition of zip() function is available in the itertools module as the 
zip_longest() function. We'll look at this in Chapter 8, The Itertools Module.

Unzipping a zipped sequence
zip() mapping can be inverted. We'll look at several ways to unzip a collection  
of tuples.

We can't fully unzip an iterable of tuples, since we might 
want to make multiple passes over the data. Depending 
on our needs, we might need to materialize the iterable 
to extract multiple values.

The first way is something we've seen many times; we can use a generator function 
to unzip a sequence of tuples. For example, assume that the following pairs are a 
sequence object with two tuples:

p0= (x[0] for x in pairs)
p1= (x[1] for x in pairs)

This will create two sequences. The p0 sequence has the first element of each two 
tuple; the p1 sequence has the second element of each two tuple.

Under some circumstances, we can use the multiple ssignment of a for loop to 
decompose the tuples. The following is an example that computes the sum of 
products:

sum(p0*p1 for for p0, p1 in pairs)

We used the for statement to decompose each two tuple into p0 and p1.

Flattening sequences
Sometimes, we'll have zipped data that needs to be flattened. For example, our input 
might be a file that looks like this:

      2      3      5      7     11     13     17     19     23     29
     31     37     41     43     47     53     59     61     67     71
  ...
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We can easily use ((line.split() for line in file) to create a sequence of  
ten tuples.

We might heave data in blocks that looks as follows:

blocked = [['2', '3', '5', '7', '11', '13', '17', '19', '23',  
'29'], ['31', '37', '41', '43', '47', '53', '59', '61', '67',  
'71'], 
...

This isn't really what we want, though. We want to get the numbers into a single, 
flat sequence. Each item in the input is a ten tuple; we'd rather not wrangle with 
decomposing this one item at a time.

We can use a two-level generator expression, as shown in the following code snippet, 
for this kind of flattening:

>>> (x for line in blocked for x in line)
<generator object <genexpr> at 0x101cead70>
>>> list(_)
['2', '3', '5', '7', '11', '13', '17', '19', '23', '29', '31',  
'37', '41', '43', '47', '53', '59', '61', '67', '71', … ]

The two-level generator is confusing at first. We can understand this through  
a simple rewrite as follows:

for line in data:
    for x in line:
        yield x

This transformation shows us how the generator expression works. The first for 
clause (for line in data) steps through each ten tuple in the data. The second  
for clause (for x in line) steps through each item in the first for clause.

This expression flattens a sequence-of-sequence structure into a single sequence.

Structuring flat sequences
Sometimes, we'll have raw data that is a flat list of values that we'd like to bunch 
up into subgroups. This is a bit more complex. We can use the itertools module's 
groupby() function to implement this. This will have to wait until Chapter 8, The 
Iterools Module.

Let's say we have a simple flat list as follows:

flat= ['2', '3', '5', '7', '11', '13', '17', '19', '23', '29',  
'31', '37', '41', '43', '47', '53', '59', '61', '67', '71', ... ]
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We can write nested generator functions to build a sequence-of-sequence structure 
from flat data. In order to do this, we'll need a single iterator that we can use multiple 
times. The expression looks like the following code snippet:

>>> flat_iter=iter(flat)
>>> (tuple(next(flat_iter) for i in range(5)) for row in 
range(len(flat)//5))
<generator object <genexpr> at 0x101cead70>
>>> list(_)
[('2', '3', '5', '7', '11'), ('13', '17', '19', '23', '29'),  
('31', '37', '41', '43', '47'), ('53', '59', '61', '67', '71'),  
('73', '79', '83', '89', '97'), ('101', '103', '107', '109',  
'113'), ('127', '131', '137', '139', '149'), ('151', '157', '163',  
'167', '173'), ('179', '181', '191', '193', '197'), ('199', '211',  
'223', '227', '229')]

First, we created an iterator that exists outside either of the two loops that we'll use to 
create our sequence-of-sequences. The generator expression uses tuple(next(flat_
iter) for i in range(5)) to create five tuples from the iterable values in the 
flat_iter variable. This expression is nested inside another generator that repeats 
the inner loop the proper number of times to create the required sequence of values.

This works only when the flat list is divided evenly. If the last row has partial 
elements, we'll need to process them separately.

We can use this kind of function to group data into same-sized tuples, with an odd 
sized tuple at the end using the following definitions:

def group_by_seq(n, sequence):
    flat_iter=iter(sequence)
    full_sized_items = list( tuple(next(flat_iter) 
        for i in range(n))
            for row in range(len(sequence)//n))
    trailer = tuple(flat_iter)
    if trailer:
        return full_sized_items + [trailer]
    else:
        return full_sized_items

We've created an initial list where each tuple is of the size n. If there are leftovers, 
we'll have a trailer tuple with a non-zero length that we can append to the list of 
full-sized items. If the trailer tuple is of the length 0, we'll ignore it.
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This isn't as delightfully simple and functional-looking as other algorithms  
we've looked at. We can rework this into a pleasant-enough generator function.  
The following code uses a while loop as part of tail-recursion optimization:

def group_by_iter( n, iterable ):   
    row= tuple(next(iterable) for i in range(n))
    while row:
        yield row
        row= tuple(next(iterable) for i in range(n))

We've created a row of the required length from the input iterable. When we get 
to the end of the input iterable, the value of tuple(next(iterable) for i in 
range(n)) will be a zero-length tuple. This is the base case of a recursion, which 
we've written as the terminating condition for a while loop.

Structuring flat sequences—an alternative 
approach
Let's say we have a simple, flat list and we want to create pairs from this list.  
The following is the required data:

flat= ['2', '3', '5', '7', '11', '13', '17', '19', '23', '29',  
'31', '37', '41', '43', '47', '53', '59', '61', '67', '71',... ]

We can create pairs using list slices as follows:

zip(flat[0::2], flat[1::2])

The slice flat[0::2] is all of the even positions. The slice flat[1::2] is all of the 
odd positions. If we zip these together, we get a two tuple of (0), the value from the 
first even position, and (1), the value from the first odd position. If the number of 
elements is even, this will produce pairs nicely.

This has the advantage of being quite short. The functions shown in the previous 
section are longer ways to solve the same problem.

This approach can be generalized. We can use the *(args) approach to generate  
a sequence-of-sequences that must be zipped together. It looks like the following:

zip(*(flat[i::n] for i in range(n)))

This will generate n slices: flat[0::n], flat[1::n], flat[2::n], …, flat[n-1::n]. 
This collection of slices becomes the arguments to zip(), which then interleaves values 
from each slice.
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Recall that zip() truncates the sequence at the shortest list. This means that, if the 
list is not an even multiple of the grouping factor n, (len(flat)%n != 0), which 
is the final slice, won't be the same length as the others and the others will all be 
truncated. This is rarely what we want.

If we use the itertools.zip_longest() method, then we'll see that the final tuple 
will be padded with enough None values to make it have a length of n. In some cases, 
this padding is acceptable. In other cases, the extra values are undesirable.

The list slicing approach to grouping data is another way to approach the problem 
of structuring a flat sequence of data into blocks. As it is a general solution, it doesn't 
seem to offer too many advantages over the functions in the previous section. As a 
solution specialized for making two tuples from a flat last, it's elegantly simple.

Using reversed() to change the order
There are times when we need a sequence reversed. Python offers us two approaches 
to this: the reversed() function and slices with reversed indices.

For an example, consider performing a base conversion to hexadecimal or binary. 
The following is a simple conversion function:

def digits(x, b):
    if x == 0: return
    yield x % b
    for d in to_base(x//b, b):
        yield d

This function uses a recursion to yield the digits from the least significant to the most 
significant. The value of x%b will be the least significant digits of x in the base b.

We can formalize it as following:

( ) ( )

[]
0

digits ,
mod digits , 0

x
x b xx b b x

b


==   +  >    

if
if

In many cases, we'd prefer the digits to be yielded in the reverse order. We can wrap 
this function with the reversed() function to swap the order of the digits:

def to_base(x, b):

    return reversed(tuple(digits(x, b)))



Chapter 4

[ 85 ]

The reversed() function produces an iterable, but the 
argument value must be a sequence object. The function 
then yields the items from that object in the reverse order.

We can do a similar kind of thing also with a slice such as tuple(digits(x, b))
[::-1]. The slice, however, is not an iterator. A slice is a materialized object built 
from another materialized object. In this case, for such small collections of values, 
the distinction is minor. As the reversed() function uses less memory, it might be 
advantageous for larger collections.

Using enumerate() to include a sequence 
number
Python offers the enumerate() function to apply index information to values in a 
sequence or iterable. It performs a specialized kind of wrap that can be used as part 
of an unwrap(process(wrap(data))) design pattern.

It looks like the following code snippet:

>>> xi
[1.47, 1.5, 1.52, 1.55, 1.57, 1.6, 1.63, 1.65, 1.68, 1.7, 1.73,  
1.75, 1.78, 1.8, 1.83]
>>> list(enumerate(xi))
[(0, 1.47), (1, 1.5), (2, 1.52), (3, 1.55), (4, 1.57), (5, 1.6),  
(6, 1.63), (7, 1.65), (8, 1.68), (9, 1.7), (10, 1.73), (11, 1.75),  
(12, 1.78), (13, 1.8), (14, 1.83)]

The enumerate() function transformed each input item into a pair with a sequence 
number and the original item. It's vaguely similar to something as follows:

zip(range(len(source)), source)

An important feature of enumerate() is that the result is an iterable and it works 
with any iterable input.

When looking at statistical processing, for example, the enumerate() function comes 
in handy to transform a single sequence of values into a more proper time series by 
prefixing each sample with a number.
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Summary
In this chapter, we saw detailed ways to use a number of built-in reductions.

We've used any() and all() to do essential logic processing. These are tidy 
examples of reductions using a simple operator such as or or and.

We've also looked at numeric reductions such as len() and sum(). We've applied 
these functions to create some higher-order statistical processing. We'll return to 
these reductions in Chapter 6, Recursions and Reductions.

We've also looked at some of the built-in mappings.

The zip() function merges multiple sequences. This leads us to look at using this  
in the context of structuring and flattening more complex data structures. As we'll 
see in examples in later chapters, nested data is helpful in some situations and flat 
data is helpful in others.

The enumerate() function maps an iterable to a sequence of two tuples. Each two 
tuple has (0) as the sequence number and (1) as the original item.

The reversed() function iterates over the items in a sequence object with their 
original order reversed. Some algorithms are more efficient at producing results  
in one order, but we'd like to present these results in the opposite order.

In the next chapter, we'll look at the mapping and reduction functions that use an 
additional function as an argument to customize their processing. Functions that 
accept a function as an argument are our first examples of higher-order functions. 
We'll also touch on functions that return functions as a result.



Higher-order Functions
A very important feature of the functional programming paradigm is higher-order 
functions. These are functions that accept functions as arguments or return functions 
as results. Python offers several of these kinds of functions. We'll look at them and 
some logical extensions.

As we can see, there are three varieties of higher-order functions, which are  
as follows:

• Functions that accept a function as one of its arguments
• Functions that return a function
• Functions that accept a function and return a function

Python offers several higher-order functions of the first variety. We'll look at these 
built-in higher-order functions in this chapter. We'll look at a few of the library 
modules that offer higher-order functions in later chapters.

The idea of a function that emits functions can seem a bit odd. However, when we 
look at a Callable class object, we see a function that returns a Callable object. This is 
one example of a function that creates another function.

Functions that accept functions and create functions include complex Callable classes 
as well as function decorators. We'll introduce decorators in this chapter, but defer 
deeper consideration of decorators until Chapter 11, Decorator Design Techniques.

Sometimes we wish that Python had higher-order versions of the collection functions 
from the previous chapter. In this chapter, we'll show the reduce(extract()) 
design pattern to perform a reduction on specific fields extracted from a larger tuple. 
We'll also look at defining our own version of these common collection-processing 
functions.
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In this chapter, we'll look at the following functions:

• max() and min()
• Lambda forms that we can use to simplify using higher-order functions
• map()

• filter()

• iter()

• sorted()

There are a number of higher-order functions in the itertools module. We'll look at 
this module in Chapter 8, The Itertools Module and Chapter 9, More Itertools Techniques.

Additionally, the functools module provides a general-purpose reduce() function. 
We'll look at this in Chapter 10, The Functools Module. We'll defer this because it's not 
as generally applicable as the other higher-order functions in this chapter.

The max() and min() functions are reductions; they create a single value from  
a collection. The other functions are mappings. They don't reduce the input to a 
single value.

The max(), min(), and sorted() functions have a default 
behavior as well as a higher-order function behavior. The function 
is provided via the key= argument. The map() and filter() 
functions take the function as the first positional argument.

Using max() and min() to find extrema
The max() and min() functions have a dual life. They are simple functions that apply 
to collections. They are also higher-order functions. We can see their default behavior 
as follows:

>>> max(1, 2, 3)

3

>>> max((1,2,3,4))

4

Both functions will accept an indefinite number of arguments. The functions are 
designed to also accept a sequence or an iterable as the only argument and locate  
the max (or min) of that iterable.
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They also do something more sophisticated. Let's say we have our trip data from the 
examples in Chapter 4, Working with Collections. We have a function that will generate 
a sequence of tuples that looks as follows:

(((37.54901619777347, -76.33029518659048), (37.840832, -76.273834),  
17.7246), ((37.840832, -76.273834), (38.331501, -76.459503),  
30.7382), ((38.331501, -76.459503), (38.845501, -76.537331),  
31.0756), ((36.843334, -76.298668), (37.549, -76.331169), 42.3962),  
((37.549, -76.331169), (38.330166, -76.458504), 47.2866),  
((38.330166, -76.458504), (38.976334, -76.473503), 38.8019))

Each tuple has three values: a starting location, an ending location, and a distance. 
The locations are given in latitude and longitude pairs. The East latitude is positive, 
so these are points along the US East Coast, about 76° West. The distances are in 
nautical miles.

We have three ways of getting the maximum and minimum distances from this 
sequence of values. They are as follows:

• Extract the distance with a generator function. This will give us only the 
distances, as we've discarded the other two attributes of each leg. This won't 
work out well if we have any additional processing requirements.

• Use the unwrap(process(wrap())) pattern. This will give us the legs 
with the longest and shortest distances. From these, we can extract just the 
distance, if that's all that's needed. The other two will give us the leg that 
contains the maximum and minimum distances.

• Use the max() and min() functions as higher-order functions.

To provide context, we'll show the first two solutions. The following is a script  
that builds the trip and then uses the first two approaches to locate the longest  
and shortest distances traveled:

from ch02_ex3 import float_from_pair, lat_lon_kml, limits,  
haversine, legs

path= float_from_pair(lat_lon_kml())

trip= tuple((start, end, round(haversine(start, end),4)) 
 for start,end in legs(iter(path)))

This section creates the trip object as a tuple based on haversine distances of each 
leg built from a path read from a KML file.

Once we have the trip object, we can extract distances and compute the maximum 
and minimum of those distances. The code looks as follows:

long, short = max(dist for start,end,dist in trip),  
min(dist for start,end,dist in trip)

print(long, short)
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We've used a generator function to extract the relevant item from each leg of the 
trip tuple. We've had to repeat the generator function because each generator 
expression can be consumed only once.

The following are the results:

129.7748 0.1731

The following is a version with the unwrap(process(wrap())) pattern. We've 
actually declared functions with the names wrap() and unwrap() to make it clear 
how this pattern works:

def wrap(leg_iter):

    return ((leg[2],leg) for leg in leg_iter)

    

def unwrap(dist_leg):

    distance, leg = dist_leg

    return leg

long, short = unwrap(max(wrap(trip))), unwrap(min(wrap(trip)))

print(long, short)

Unlike the previous version, this locates all attributes of the legs with the longest 
and shortest distances. Rather than simply extracting the distances, we put the 
distances first in each wrapped tuple. We can then use the default forms of the min() 
and max() functions to process the two tuples that contain the distance and leg 
details. After processing, we can strip the first element, leaving just the leg details.

The results look as follows:

((27.154167, -80.195663), (29.195168, -81.002998), 129.7748)

((35.505665, -76.653664), (35.508335, -76.654999), 0.1731)

The final and most important form uses the higher-order function feature of the 
max() and min() functions. We'll define a helper function first and then use it to 
reduce the collection of legs to the desired summaries by executing the following 
code snippet:

def by_dist(leg):

    lat, lon, dist= leg

    return dist

long, short = max(trip, key=by_dist), min(trip, key=by_dist)

print(long, short)
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The by_dist() function picks apart the three items in each leg tuple and returns the 
distance item. We'll use this with the max() and min() functions.

The max() and min() functions both accept an iterable and a function as arguments. 
The keyword parameter key= is used by all of Python's higher-order functions to 
provide a function that will be used to extract the necessary key value.

We can use the following to help conceptualize how the max() function uses  
the key function:

wrap= ((key(leg),leg) for leg in trip)

return max(wrap)[1]

The max() and min() functions behave as if the given key function is being used 
to wrap each item in the sequence into a two tuple, process the two tuple, and then 
decompose the two tuple to return the original value.

Using Python lambda forms
In many cases, the definition of a helper function requires too much code. Often, 
we can digest the key function to a single expression. It can seem wasteful to have to 
write both def and return statements to wrap a single expression.

Python offers the lambda form as a way to simplify using higher-order functions.  
A lambda form allows us to define a small, anonymous function. The function's body 
is limited to a single expression.

The following is an example of using a simple lambda expression as the key:

long, short = max(trip, key=lambda leg: leg[2]),  
min(trip, key=lambda leg: leg[2])

print(long, short)

The lambda we've used will be given an item from the sequence; in this case, each 
leg three tuple will be given to the lambda. The lambda argument variable, leg, is 
assigned and the expression, leg[2], is evaluated, plucking the distance from the 
three tuple.

In the rare case that a lambda is never reused, this form is ideal. It's common, 
however, to need to reuse the lambda objects. Since copy-and-paste is such  
a bad idea, what's the alternative?

We can always define a function.
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We can also assign lambdas to variables, by doing something like this:

start= lambda x: x[0]

end = lambda x: x[1]

dist = lambda x: x[2]

A lambda is a callable object and can be used like a function. The following is an 
example at the interactive prompt:

>>> leg = ((27.154167, -80.195663), (29.195168, -81.002998),  
129.7748)

>>> start= lambda x: x[0]

>>> end  = lambda x: x[1]

>>> dist = lambda x: x[2]

>>> dist(leg)

129.7748

Python offers us two ways to assign meaningful names to elements of tuples: 
namedtuples and a collection of lambdas. Both are equivalent.

To extend this example, we'll look at how we get the latitude or longitude value 
of the starting or ending point. This is done by defining some additional lambdas.

The following is a continuation of the interactive session:

>>> start(leg)

(27.154167, -80.195663)

>>> 

>>> lat = lambda x: x[0]

>>> lon = lambda x: x[1]

>>> lat(start(leg))

27.154167

There's no clear advantage to lambdas over namedtuples. A set of lambdas to extract 
fields requires more lines of code to define than a namedtuple. On the other hand, 
we can use a prefix function notation, which might be easier to read in a functional 
programing context. More importantly, as we'll see in the sorted() example later, 
the lambdas can be used more effectively than namedtuple attribute names by 
sorted(), min(), and max().
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Lambdas and the lambda calculus
In a book on a purely functional programming language, it would be necessary to 
explain lambda calculus, and the technique invented by Haskell Curry that we call 
currying. Python, however, doesn't stick closely to this kind of lambda calculus. 
Functions are not curried to reduce them to single-argument lambda forms.

We can, using the functools.partial function, implement currying. We'll save this 
for Chapter 10, The Functools Module.

Using the map() function to apply a 
function to a collection
A scalar function maps values from a domain to a range. When we look at the math.
sqrt() function, as an example, we're looking at a mapping from the float value, x, 
to another float value, y = sqrt(x) such that 2y x= . The domain is limited to positive 
values. The mapping can be done via a calculation or table interpolation.

The map() function expresses a similar concept; it maps one collection to another 
collection. It assures that a given function is used to map each individual item from 
the domain collection to the range collection—the ideal way to apply a built-in 
function to a collection of data.

Our first example involves parsing a block of text to get the sequence of numbers. 
Let's say we have the following chunk of text:

>>> text= """\

...       2      3      5      7     11     13     17     19     23      
29 

...      31     37     41     43     47     53     59     61     67      
71 

...      73     79     83     89     97    101    103    107    109     
113 

...     127    131    137    139    149    151    157    163    167     
173 

...     179    181    191    193    197    199    211    223    227     
229 

... """

We can restructure this text using the following generator function:

>>> data= list(v for line in text.splitlines() for v in line.split())
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This will split the text into lines. For each line, it will split the line into space-delimited 
words and iterate through each of the resulting strings. The results look as follows:

['2', '3', '5', '7', '11', '13', '17', '19', '23', '29',  
'31', '37', '41', '43', '47', '53', '59', '61', '67', '71',  
'73', '79', '83', '89', '97', '101', '103', '107', '109', '113',  
'127', '131', '137', '139', '149', '151', '157', '163', '167',  
'173', '179', '181', '191', '193', '197', '199', '211', '223',  
'227', '229']

We still need to apply the int() function to each of the string values. This is where 
the map() function excels. Take a look at the following code snippet:

>>> list(map(int,data))

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,  
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131,  
137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,  
199, 211, 223, 227, 229]

The map() function applied the int() function to each value in the collection.  
The result is a sequence of numbers instead of a sequence of strings.

The map() function's results are iterable. The map() function can process any type  
of iterable.

The idea here is that any Python function can be applied to the items of a collection 
using the map() function. There are a lot of built-in functions that can be used in this 
map-processing context.

Working with lambda forms and map()
Let's say we want to convert our trip distances from nautical miles to statute miles. 
We want to multiply each leg's distance by 6076.12/5280, which is 1.150780.

We can do this calculation with the map() function as follows:

map(lambda x: (start(x),end(x),dist(x)*6076.12/5280), trip)

We've defined a lambda that will be applied to each leg in the trip by the map() 
function. The lambda will use other lambdas to separate the start, end, and distance 
values from each leg. It will compute a revised distance and assemble a new leg 
tuple from the start, end, and statute mile distance.

This is precisely like the following generator expression:

((start(x),end(x),dist(x)*6076.12/5280) for x in trip)
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We've done the same processing on each item in the generator expression.

The important difference between the map() function and a generator expression is 
that the map() function tends to be faster than the generator expression. The speedup 
is in the order of 20 percent less time.

Using map() with multiple sequences
Sometimes, we'll have two collections of data that need to parallel each other. In 
Chapter 4, Working with Collections, we saw how the zip() function can interleave 
two sequences to create a sequence of pairs. In many cases, we're really trying to do 
something like this: 

map(function, zip(one_iterable, another_iterable))

We're creating argument tuples from two (or more) parallel iterables and applying a 
function to the argument tuple. We can also look at it like this:

(function(x,y) for x,y in zip(one_iterable, another_iterable))

Here, we've replaced the map() function with an equivalent generator expression.

We might have the idea of generalizing the whole thing to this:

def star_map(function, *iterables)

    return (function(*args) for args in zip(*iterables))

There is a better approach that is already available to us. We don't actually need 
these techniques. Let's look at a concrete example of the alternate approach.

In Chapter 4, Working with Collections, we looked at trip data that we extracted from 
an XML file as a series of waypoints. We needed to create legs from this list of 
waypoints that show the start and end of each leg.

The following is a simplified version that uses the zip() function applied to a special 
kind of iterable:

>>> waypoints= range(4)

>>> zip(waypoints, waypoints[1:])

<zip object at 0x101a38c20>

>>> list(_)

[(0, 1), (1, 2), (2, 3)]
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We've created a sequence of pairs drawn from a single flat list. Each pair will have 
two adjacent values. The zip() function properly stops when the shorter list is 
exhausted. This zip( x, x[1:]) pattern only works for materialized sequences and 
the iterable created by the range() function.

We created pairs so that we can apply the haversine() function to each pair to 
compute the distance between the two points on the path. The following is how it 
looks in one sequence of steps:

from ch02_ex3 import lat_lon_kml, float_from_pair, haversine

path= tuple(float_from_pair(lat_lon_kml()))

distances1= map( lambda s_e: (s_e[0], s_e[1], haversine(*s_e)),  
    zip(path, path[1:]))

We've loaded the essential sequence of waypoints into the path variable. This is an 
ordered sequence of latitude-longitude pairs. As we're going to use the zip(path, 
path[1:]) design pattern, we must have a materialized sequence and not a simple 
iterable.

The results of the zip() function will be pairs that have a start and end. We want our 
output to be a triple with the start, end, and distance. The lambda we're using will 
decompose the original two tuple and create a new three tuple from the start, end, 
and distance.

As noted previously, we can simplify this by using a clever feature of the map() 
function, which is as follows:

distances2= map(lambda s, e: (s, e, haversine(s, e)), path, path[1:])

Note that we've provided a function and two iterables to the map() function. The 
map() function will take the next item from each iterable and apply those two values 
as the arguments to the given function. In this case, the given function is a lambda 
that creates the desired three tuple from the start, end, and distance.

The formal definition for the map() function states that it will do star-map processing 
with an indefinite number of iterables. It will take items from each iterable to create a 
tuple of argument values for the given function.

Using the filter() function to pass  
or reject data
The job of the filter() function is to use and apply a decision function called a 
predicate to each value in a collection. A decision of True means that the value 
is passed; otherwise, the value is rejected. The itertools module includes 
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filterfalse() as variations on this theme. Refer to Chapter 8, The Itertools Module to 
understand the usage of the itertools module's filterfalse() function.

We might apply this to our trip data to create a subset of legs that are over 50 
nautical miles long, as follows:

long= list(filter(lambda leg: dist(leg) >= 50, trip)))

The predicate lambda will be True for long legs, which will be passed. Short legs will 
be rejected. The output is the 14 legs that pass this distance test.

This kind of processing clearly segregates the filter rule (lambda leg: dist(leg) 
>= 50) from any other processing that creates the trip object or analyzes the  
long legs.

For another simple example, look at the following code snippet:

>>> filter(lambda x: x%3==0 or x%5==0, range(10))

<filter object at 0x101d5de50>

>>> sum(_)

23

We've defined a simple lambda to check whether a number is a multiple of three or a 
multiple of five. We've applied that function to an iterable, range(10). The result is 
an iterable sequence of numbers that are passed by the decision rule.

The numbers for which the lambda is True are [0, 3, 5, 6, 9], so these values are 
passed. As the lambda is False for all other numbers, they are rejected.

This can also be done with a generator expression by executing the following code:

>>> list(x for x in range(10) if x%3==0 or x%5==0)

[0, 3, 5, 6, 9]

We can formalize this using the following set comprehension notation:

( ) ( )( ){ }| 0 10 mod3 0 mod5 0x x x x≤ < ∧ = ∨ =

This says that we're building a collection of x values such that x is in range(10) and 
x%3==0 or x%5==0. There's a very elegant symmetry between the filter() function 
and formal mathematical set comprehensions.
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We often want to use the filter() function with defined functions instead of 
lambda forms. The following is an example of reusing a predicate defined earlier:

>>> from ch01_ex1 import isprimeg

>>> list(filter(isprimeg, range(100)))

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,  
67, 71, 73, 79, 83, 89, 97]

In this example, we imported a function from another module called isprimeg(). 
We then applied this function to a collection of values to pass the prime numbers  
and reject any non-prime numbers from the collection.

This can be a remarkably inefficient way to generate a table of prime numbers. The 
superficial simplicity of this is the kind of thing lawyers call an attractive nuisance. 
It looks like it might be fun, but it doesn't scale well at all. A better algorithm is the 
Sieve of Eratosthenes; this algorithm retains the previously located prime numbers 
and uses them to prevent a lot of inefficient recalculation.

Using filter() to identify outliers
In the previous chapter, we defined some useful statistical functions to compute 
mean and standard deviation and normalize a value. We can use these functions to 
locate outliers in our trip data. What we can do is apply the mean() and stdev() 
functions to the distance value in each leg of a trip to get the population mean and 
standard deviation.

We can then use the z() function to compute a normalized value for each leg. If the 
normalized value is more than 3, the data is extremely far from the mean. If we reject 
this outliers, we have a more uniform set of data that's less likely to harbor reporting 
or measurement errors.

The following is how we can tackle this:

from stats import mean, stdev, z

dist_data = list(map(dist, trip))

μ_d = mean(dist_data)

σ_d = stdev(dist_data)

outlier = lambda leg: z(dist(leg),μ_d,σ_d) > 3

print("Outliers", list(filter(outlier, trip)))

We've mapped the distance function to each leg in the trip collection. As we'll do 
several things with the result, we must materialize a list object. We can't rely on 
the iterator as the first function will consume it. We can then use this extraction to 
compute population statistics μ_d and σ_d with the mean and standard deviation.
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Given the statistics, we used the outlier lambda to filter our data. If the normalized 
value is too large, the data is an outlier.

The result of list(filter(outlier, trip)) is a list of two legs that are quite long 
compared to the rest of the legs in the population. The average distance is about  
34 nm, with a standard deviation of 24 nm. No trip can have a normalized distance 
of less than -1.407.

We're able to decompose a fairly complex problem into a number 
of independent functions, each one of which can be easily tested in 
isolation. Our processing is a composition of simpler functions. This 
can lead to succinct, expressive functional programming.

The iter() function with a sentinel value
The built-in iter() function creates an iterator over a collection object. We can use 
this to wrap an iterator object around a collection. In many cases, we'll allow the 
for statement to handle this implicitly. In a few cases, we might want to create an 
iterator explicitly so that we can separate the head from the tail of a collection. This 
function can also iterate through the values created by a callable or function until a 
sentinel value is found. This feature is sometimes used with the read() function 
of a file to consume rows until some sentinel value is found. In this case, the given 
function might be some file's readline() method. Providing a callable function to 
iter() is a bit hard for us because this function must maintain state internally. This 
hidden state is a feature of an open file, for example, each read() or readline() 
function advances some internal state to the next character or next line.

Another example of this is the way that a mutable collection object's pop()  
method makes a stateful change in the object. The following is an example  
of using the pop() method:

>>> tail= iter([1, 2, 3, None, 4, 5, 6].pop, None)

>>> list(tail)

[6, 5, 4]

The tail variable was set to an iterator over the list [1, 2, 3, None, 4, 5, 6] 
that will be traversed by the pop() function. The default behavior of pop() is pop 
(-1), that is, the elements are popped in the reverse order. When the sentinel  
value is found, the iterator stops returning values.

This kind of internal state is something we'd like to avoid as much as possible. 
Consequently, we won't try to contrive a use for this feature.
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Using sorted() to put data in order
When we need to produce results in a defined order, Python gives us two choices. 
We can create a list object and use the list.sort() method to put items in an 
order. An alternative is to use the sorted() function. This function works with any 
iterable, but it creates a final list object as part of the sorting operation.

The sorted() function can be used in two ways. It can be simply applied to 
collections. It can also be used as a higher-order function using the key= argument.

Let's say we have our trip data from the examples in Chapter 4, Working with Collections. 
We have a function that will generate a sequence of tuples with start, end, and distance 
for each leg of a trip. The data looks as follows:

(((37.54901619777347, -76.33029518659048), (37.840832, -76.273834),  
17.7246), ((37.840832, -76.273834), (38.331501, -76.459503),  
30.7382), ((38.331501, -76.459503), (38.845501, -76.537331),  
31.0756), ((36.843334, -76.298668), (37.549, -76.331169), 42.3962),  
((37.549, -76.331169), (38.330166, -76.458504), 47.2866),  
((38.330166, -76.458504), (38.976334, -76.473503), 38.8019))

We can see the default behavior of the sorted() function using the following 
interaction:

>>> sorted(dist(x) for x in trip)

[0.1731, 0.1898, 1.4235, 4.3155, ... 86.2095, 115.1751, 129.7748]

We used a generator expression (dist(x) for x in trip) to extract the distances 
from our trip data. We then sorted this iterable collection of numbers to get the 
distances from 0.17 nm to 129.77 nm.

If we want to keep the legs and distances together in their original three tuples, we 
can have the sorted() function apply a key() function to determine how to sort the 
tuples, as shown in the following code snippet:

>>> sorted(trip, key=dist)

[((35.505665, -76.653664), (35.508335, -76.654999), 0.1731),  
((35.028175, -76.682495), (35.031334, -76.682663), 0.1898),  
((27.154167, -80.195663), (29.195168, -81.002998), 129.7748)]

We've sorted the trip data, using a dist lambda to extract the distance from each 
tuple. The dist function is simply as follows:

dist = lambda leg: leg[2]

This shows the power of using simple lambda to decompose a complex tuple into 
constituent elements.
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Writing higher-order functions
We can identify three varieties of higher-order functions; they are as follows:

• Functions that accept a function as one of its arguments.
• Functions that return a function. A Callable class is a common example of 

this. A function that returns a generator expression can be thought of as a 
higher-order function.

• Functions that accept and return a function. The functools.partial() 
function is a common example of this. We'll save this for Chapter 10, The 
Functools Module. A decorator is different; we'll save this for Chapter 11, 
Decorator Design Techinques.

We'll expand on these simple patterns using a higher-order function to also 
transform the structure of the data. We can do several common transformations  
such as the following:

• Wrap objects to create more complex objects
• Unwrap complex objects into their components
• Flatten a structure
• Structure a flat sequence

A Callable class object is a commonly used example of a function that returns a 
callable object. We'll look at this as a way to write flexible functions into which 
configuration parameters can be injected.

We'll also introduce simple decorators in this chapter. We'll defer deeper 
consideration of decorators until Chapter 11, Decorator Design Techniques.

Writing higher-order mappings and filters
Python's two built-in higher-order functions, map() and filter(), generally handle 
almost everything we might want to throw at them. It's difficult to optimize them in 
a general way to achieve higher performance. We'll look at functions of Python 3.4, 
such as imap(), ifilter(), and ifilterfalse(), in Chapter 8, The Itertools Module.

We have three largely equivalent ways to express a mapping. Assume that we 
have some function, f(x), and some collection of objects, C. We have three entirely 
equivalent ways to express a mapping; they are as follows:

• The map() function:
map(f, C)
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• The generator expression:
(f(x) for x in C)

• The generator function:

def mymap(f, C):
    for x in C:
        yield f(x)
mymap(f, C)

Similarly, we have three ways to apply a filter function to a collection,  
all of which are equivalent:

• The filter() function:
filter(f, C)

• The generator expression:
(x for x in C if f(x))

• The generator function:
def myfilter(f, C):
    for x in C:
        if f(x):
            yield x
myfilter(f, C)

There are some performance differences; the map() and filter() functions are 
fastest. More importantly, there are different kinds of extensions that fit these 
mapping and filtering designs, which are as follows:

• We can create a more sophisticated function, g(x), that is applied to each 
element, or we can apply a function to the collection, C, prior to processing. 
This is the most general approach and applies to all three designs. This is 
where the bulk of our functional design energy is invested.

• We can tweak the for loop. One obvious tweak is to combine mapping and 
filtering into a single operation by extending the generator expression with 
an if clause. We can also merge the mymap() and myfilter() functions to 
combine mapping and filtering.

The profound change we can make is to alter the structure of the data handled by  
the loop. We have a number of design patterns, including wrapping, unwrapping  
(or extracting), flattening, and structuring. We've looked at a few of these techniques 
in previous chapters.
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We need to exercise some caution when designing mappings that combine too 
many transformations in a single function. As far as possible, we want to avoid 
creating functions that fail to be succinct or expressive of a single idea. As Python 
doesn't have an optimizing compiler, we might be forced to manually optimize 
slow applications by combining functions. We need to do this kind of optimization 
reluctantly, only after profiling a poorly performing program.

Unwrapping data while mapping
When we use a construct such as (f(x) for x, y in C), we've used multiple 
assignment in the for statement to unwrap a multi-valued tuple and then apply a 
function. The whole expression is a mapping. This is a common Python optimization 
to change the structure and apply a function.

We'll use our trip data from Chapter 4, Working with Collections. The following is a 
concrete example of unwrapping while mapping:

def convert(conversion, trip):

    return (conversion(distance) for start, end, distance in trip)

This higher-order function would be supported by conversion functions that we can 
apply to our raw data as follows: 

to_miles = lambda nm: nm*5280/6076.12

to_km = lambda nm: nm*1.852

to_nm = lambda nm: nm

This function would then be used as follows to extract distance and apply a 
conversion function:

convert(to_miles, trip)

As we're unwrapping, the result will be a sequence of floating-point values.  
The results are as follows:

[20.397120559090908, 35.37291511060606, ..., 44.652462240151515]

This convert() function is highly specific to our start-end-distance trip data 
structure, as the for loop decomposes that three tuple.

We can build a more general solution for this kind of unwrapping while  
mapping a design pattern. It suffers from being a bit more complex. First, we  
need general-purpose decomposition functions like the following code snippet:

fst= lambda x: x[0]

snd= lambda x: x[1]

sel2= lambda x: x[2]
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We'd like to be able to express f(sel2(s_e_d)) for s_e_d in trip. This involves 
functional composition; we're combining a function like to_miles() and a selector 
like sel2(). We can express functional composition in Python using yet another 
lambda, as follows:

to_miles= lambda s_e_d: to_miles(sel2(s_e_d))

This gives us a longer but more general version of unwrapping, as follows:

to_miles(s_e_d) for s_e_d in trip

While this second version is somewhat more general, it doesn't seem wonderfully 
helpful. When used with particularly complex tuples, however, it can be handy.

What's important to note about our higher-order convert() function is that we're 
accepting a function as an argument and returning a function as a result. The 
convert() function is not a generator function; it doesn't yield anything. The 
result of the convert() function is a generator expression that must be evaluated to 
accumulate the individual values.

The same design principle works to create hybrid filters instead of mappings.  
We'd apply the filter in an if clause of the generator expression that was returned.

Of course, we can combine mapping and filtering to create yet more complex 
functions. It might seem like a good idea to create more complex functions to limit 
the amount of processing. This isn't always true; a complex function might not beat 
the performance of a nested use of simple map() and filter() functions. Generally, 
we only want to create a more complex function if it encapsulates a concept and 
makes the software easier to understand.

Wrapping additional data while mapping
When we use a construct such as ((f(x), x) for x in C), we've done a wrapping 
to create a multi-valued tuple while also applying a mapping. This is a common 
technique to save derived results to create constructs that have the benefits of 
avoiding recalculation without the liability of complex state-changing objects.

This is part of the example shown in Chapter 4, Working with Collections, to create the 
trip data from the path of points. The code looks like this:

from ch02_ex3 import float_from_pair, lat_lon_kml, limits, haversine,  
legs

path= float_from_pair(lat_lon_kml())

trip= tuple((start, end, round(haversine(start, end),4)) for  
start,end in legs(iter(path)))
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We can revise this slightly to create a higher-order function that separates the 
wrapping from the other functions. We can define a function like this:

def cons_distance(distance, legs_iter):

    return ((start, end, round(distance(start,end),4)) for start,  
    end in legs_iter)

This function will decompose each leg into two variables, start and end. These will 
be used with the given distance() function to compute the distance between the 
points. The result will build a more complex three tuple that includes the original 
two legs and also the calculated result.

We can then rewrite our trip assignment to apply the haversine() function to 
compute distances as follows:

path= float_from_pair(lat_lon_kml())

trip2= tuple(cons_distance(haversine, legs(iter(path))))

We've replaced a generator expression with a higher-order function, cons_
distance(). The function not only accepts a function as an argument, but it also 
returns a generator expression.

A slightly different formulation of this is as follows:

def cons_distance3(distance, legs_iter):

    return ( leg+(round(distance(*leg),4),) for leg in legs_iter)

This version makes the construction of a new object built up from an old object a bit 
clearer. We're iterating through legs of a trip. We're computing the distance along a 
leg. We're building new structures with the leg and the distance concatenated.

As both of these cons_distance() functions accept a function as an argument, we 
can use this feature to provide an alternative distance formula. For example, we can 
use the math.hypot(lat(start)-lat(end), lon(start)-lon(end)) method to 
compute a less-correct plane distance along each leg.

In Chapter 10, The Functools Module, we'll show how to use the partial() function to 
set a value for the R parameter of the haversine() function, which changes the units 
in which the distance is calculated.
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Flattening data while mapping
In Chapter 4, Working with Collections, we looked at algorithms that flattened a nested 
tuple-of-tuples structure into single iterable. Our goal at the time was simply to 
restructure some data, without doing any real processing. We can create hybrid 
solutions that combine a function with a flattening operation.

Let's assume that we have a block of text that we want to convert to a flat sequence  
of numbers. The text looks as follows:

text= """\

      2      3      5      7     11     13     17     19     23      
29

      31     37     41     43     47     53     59     61     67      
71

      73     79     83     89     97    101    103    107    109     
113

    127    131    137    139    149    151    157    163    167     
173

    179    181    191    193    197    199    211    223    227     
229

"""

Each line is a block of 10 numbers. We need to unblock the rows to create a flat 
sequence of numbers.

This is done with a two part generator function as follows:

data= list(v for line in text.splitlines() for v in line.split())

This will split the text into lines and iterate through each line. It will split each line 
into words and iterate through each word. The output from this is a list of strings,  
as follows:

['2', '3', '5', '7', '11', '13', '17', '19', '23', '29', '31', '37',  
'41', '43', '47', '53', '59', '61', '67', '71', '73', '79', '83',  
'89', '97', '101', '103', '107', '109', '113', '127', '131', '137',  
'139', '149', '151', '157', '163', '167', '173', '179', '181', '191',  
'193', '197', '199', '211', '223', '227', '229']

To convert the strings to numbers, we must apply a conversion function as well  
as unwind the blocked structure from its original format, using the following  
code snippet:
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def numbers_from_rows(conversion, text):

    return (conversion(v) for line in text.splitlines() for v in  
    line.split())

This function has a conversion argument, which is a function that is applied to each 
value that will be emitted. The values are created by flattening using the algorithm 
shown above.

We can use this numbers_from_rows() function in the following kind of expression:

print(list(numbers_from_rows(float, text)))

Here we've used the built-in float() to create a list of floating-point values from 
the block of text.

We have many alternatives using mixtures of higher-order functions and generator 
expressions. For example, we might express this as follows:

map(float, v for line in text.splitlines() for v in line.split())

This might be helpful if it helps us understand the overall structure of the algorithm. 
The principle is called chunking; the details of a function with a meaningful name 
can be abstracted and we can work with the function in a new context. While we 
often use higher-order functions, there are times when a generator expression can be 
more clear.

Structuring data while filtering
The previous three examples combined additional processing with mapping. 
Combining processing with filtering doesn't seem to be quite as expressive as 
combining with mapping. We'll look at an example in detail to show that, although  
it is useful, it doesn't seem to have as compelling a use case as combining mapping 
and processing.

In Chapter 4, Working with Collections, we looked at structuring algorithms.  
We can easily combine a filter with the structuring algorithm into a single, complex 
function. The following is a version of our preferred function to group the output from 
an iterable:

def group_by_iter(n, iterable):

    row= tuple(next(iterable) for i in range(n))

    while row:

        yield row

        row= tuple(next(iterable) for i in range(n))
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This will try to assemble a tuple of n items taken from an iterable. If there are any 
items in the tuple, they are yielded as part of the resulting iterable. In principle, the 
function then operates recursively on the remaining items from the original iterable. 
As the recursion is relatively inefficient in Python, we've optimized it into an explicit 
while loop.

We can use this function as follows:

    group_by_iter(7, filter( lambda x: x%3==0 or x%5==0, range(100)))

This will group the results of applying a filter() function to an iterable created by 
the range() function.

We can merge grouping and filtering into a single function that does both operations 
in a single function body. The modification to group_by_iter() looks as follows:

def group_filter_iter(n, predicate, iterable):

    data = filter(predicate, iterable)

    row= tuple(next(data) for i in range(n))

    while row:

        yield row

        row= tuple(next(data) for i in range(n))

This function applies the filter predicate function to the source iterable. As the filter 
output is itself a non-strict iterable, the data variable isn't computed in advance; the 
values for data are created as needed. The bulk of this function is identical to the 
version shown above.

We can slightly simplify the context in which we use this function as follows:

group_filter_iter(7, lambda x: x%3==0 or x%5==0, range(1,100))

Here, we've applied the filter predicate and grouped the results in a single function 
invocation. In the case of the filter() function, it's rarely a clear advantage to 
apply the filter in conjunction with other processing. It seems as if a separate, visible 
filter() function is more helpful than a combined function.

Writing generator functions
Many functions can be expressed neatly as generator expressions. Indeed, we've seen 
that almost any kind of mapping or filtering can be done as a generator expression. 
They can also be done with a built-in higher-order function such as map() or 
filter() or as a generator function. When considering multiple statement generator 
functions, we need to be cautious that we don't stray from the guiding principles of 
functional programming: stateless function evaluation.
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Using Python for functional programming means walking on a knife edge between 
purely functional programming and imperative programming. We need to identify 
and isolate the places where we must resort to imperative Python code because there 
isn't a purely functional alternative available.

We're obligated to write generator functions when we need statement features  
of Python. Features like the following  aren't available in generator expressions:

• A with context to work with external resources. We'll look at this in Chapter 
6, Recursions and Reductions, where we address file parsing.

• A while statement to iterate somewhat more flexibly than a for statement. 
The example of this is shown previously in the Flattening data while mapping 
section.

• A break or return statement to implement a search that terminates  
a loop early.

• The try-except construct to handle exceptions.
• An internal function definition. We've looked at this in several examples in 

Chapter 1, Introducing Functional Programming and Chapter 2, Introducing Some 
Functional Features. We'll also revisit it in Chapter 6, Recursions and Reductions.

• A really complex if-elif sequence. Trying to express more than  
one alternatives via if-else conditional expressions can become  
complex-looking.

• At the edge of the envelope, we have less-used features of Python such as 
for-else, while-else, try-else, and try-else-finally. These are all 
statement-level features that aren't available in generator expressions.

The break statement is most commonly used to end processing of a collection early. 
We can end processing after the first item that satisfies some criteria. This is a version 
of the any() function we're looking at to find the existence of a value with a given 
property. We can also end after processing some larger numbers of items, but not all 
of them.

Finding a single value can be expressed succinctly as min(some-big-expression) 
or max(something big). In these cases, we're committed to examining all of the 
values to assure that we've properly found the minimum or the maximum.

In a few cases, we can stand to have a first(function, collection) function 
where the first value that is True is sufficient. We'd like the processing to terminate 
as early as possible, saving needless calculation.
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We can define a function as follows:

def first(predicate, collection):

    for x in collection:

        if predicate(x): return x

We've iterated through the collection, applying the given predicate function. If the 
predicate is True, we'll return the associated value. If we exhaust the collection, 
the default value of None will be returned.

We can also download a version of this from PyPi. The first module contains a 
variation on this idea. For more details visit: https://pypi.python.org/pypi/first.

This can act as a helper when trying to determine whether a number is a prime 
number or not. The following is a function that tests a number for being prime:

import math

def isprimeh(x):

    if x == 2: return True

    if x % 2 == 0: return False

    factor= first( lambda n: x%n==0,  
    range(3,int(math.sqrt(x)+.5)+1,2))

    return factor is None

This function handles a few of the edge cases regarding the number 2 being a prime 
number and every other even number being composite. Then, it uses the first() 
function defined above to locate the first factor in the given collection.

When the first() function will return the factor, the actual number doesn't matter. 
Its existence is all that matters for this particular example. Therefore, the isprimeh() 
function returns True if no factor was found.

We can do something similar to handle data exceptions. The following is a version of 
the map() function that also filters bad data:

def map_not_none(function, iterable):

    for x in iterable:

        try:

            yield function(x)

        except Exception as e:

            pass # print(e)

https://pypi.python.org/pypi/first
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This function steps through the items in the iterable. It attempts to apply the function 
to the item; if no exception is raised, this new value is yielded. If an exception is 
raised, the offending value is silently dropped.

This can be handy when dealing with data that include values that are not applicable 
or missing. Rather than working out complex filters to exclude these values, we 
attempt to process them and drop the ones that aren't valid.

We might use the map() function for mapping not-None values as follows:

data = map_not_none(int, some_source)

We'll apply the int() function to each value in some_source. When the  
some_source parameter is an iterable collection of strings, this can be a handy  
way to reject strings that don't represent a number.

Building higher-order functions with 
Callables
We can define higher-order functions as instances of the Callable class. This builds 
on the idea of writing generator functions; we'll write callables because we need 
statement features of Python. In addition to using statements, we can also apply a 
static configuration when creating the higher-order function.

What's important about a Callable class definition is that the class object, created by 
the class statement, defines essentially a function that emits a function. Commonly, 
we'll use a callable object to create a composite function that combines two other 
functions into something relatively complex.

To emphasize this, consider the following class:

from collections.abc import Callable

class NullAware(Callable):

    def __init__(self, some_func):

        self.some_func= some_func

    def __call__(self, arg):

        return None if arg is None else self.some_func(arg)

This class creates a function named NullAware() that is a higher-order function 
that is used to create a new function. When we evaluate the NullAware(math.log) 
expression, we're creating a new function that can be applied to argument values.  
The __init__() method will save the given function in the resulting object.
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The __call__() method is how the resulting function is evaluated. In this  
case, the function that was created will gracefully tolerate None values without 
raising exceptions.

The common approach is to create the new function and save it for future use  
by assigning it a name as follows:

null_log_scale= NullAware(math.log)

This creates a new function and assigns the name null_log_scale(). We can then 
use the function in another context. Take a look at the following example:

>>> some_data = [10, 100, None, 50, 60]

>>> scaled = map(null_log_scale, some_data)

>>> list(scaled)

[2.302585092994046, 4.605170185988092, None, 3.912023005428146,  
4.0943445622221]

A less common approach is to create and use the emitted function in one expression 
as follows:

>>> scaled= map(NullAware( math.log ), some_data)

>>> list(scaled)

[2.302585092994046, 4.605170185988092, None, 3.912023005428146,  
4.0943445622221]

The evaluation of NullAware( math.log ) created a function. This anonymous 
function was then used by the map() function to process an iterable, some_data.

This example's __call__() method relies entirely on expression evaluation. It's 
an elegant and tidy way to define composite functions built up from lower-level 
component functions. When working with scalar functions, there are a few complex 
design considerations. When we work with iterable collections, we have to be a bit 
more careful.

Assuring good functional design
The idea of stateless functional programming requires some care when using Python 
objects. Objects are typically stateful. Indeed, one can argue that the entire purpose 
of object-oriented programming is to encapsulate state change into class definition. 
Because of this, we find ourselves pulled in opposing directions between functional 
programming and imperative programming when using Python class definitions to 
process collections.
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The benefit of using a Callable to create a composite function gives us slightly 
simpler syntax when the resulting composite function is used. When we start 
working with iterable mappings or reductions, we have to be aware of how  
and why we introduce stateful objects.

We'll return to our sum_filter_f() composite function shown above. Here is a 
version built from a Callable class definition:

from collections.abc import Callable

class Sum_Filter(Callable):

    __slots__ = ["filter", "function"]

    def __init__(self, filter, function):

        self.filter= filter

        self.function= function

    def __call__(self, iterable):

        return sum(self.function(x) for x in iterable if 
        self.filter(x))

We've imported the abstract superclass Callable and used this as the basis for our 
class. We've defined precisely two slots in this object; this puts a few constraints on 
our ability to use the function as a stateful object. It doesn't prevent all modifications 
to the resulting object, but it limits us to just two attributes. Attempting to add 
attributes results in an exception.

The initialization method, __init__(), stows the two function names, filter and 
function, in the object's instance variables. The __call__() method returns a value 
based on a generator expression that uses the two internal function definitions. 
The self.filter() function is used to pass or reject items. The self.function() 
function is used to transform objects that are passed by the filter() function.

An instance of this class is a function that has two strategy functions built into it.  
We create an instance as follows:

count_not_none = Sum_Filter(lambda x: x is not None, lambda x: 1)

We've built a function named count_not_none() that counts the non-None values 
in a sequence. It does this by using a lambda to pass non-None values and a function 
that uses a constant 1 instead of the actual values present.
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Generally, this count_not_none() object will behave like any other Python function. 
The use is somewhat simpler than our previous example of sum_filter_f().

We can use the count_not_None() function as follows:

N= count_not_none(data)

Instead of using sum_filter_f() funtion:

N= sum_filter_f(valid, count_, data)

The count_not_none() function, based on a Callable, doesn't require quite so 
many arguments as a conventional function. This makes it superficially simpler to 
use. However, it can also make it somewhat more obscure because the details of  
how the function works are in two places in the source code: where the function  
was created as an instance of the Callable class and where the function was used.

Looking at some of the design patterns
The max(), min(), and sorted() functions have a default behavior without a 
key= function. They can be customized by providing a function that defines how 
to compute a key from the available data. For many of our examples, the key() 
function has been a simple extraction of available data. This isn't a requirement;  
the key() function can do anything.

Imagine the following method: max(trip, key=random.randint()). Generally,  
we try not to have have key() functions that do something obscure.

The use of a key= function is a common design pattern. Our functions can easily 
follow this pattern.

We've also looked at lambda forms that we can use to simplify using higher-order 
functions. One significant advantage of using lambda forms is that it follows the 
functional paradigm very closely. When writing more conventional functions, 
we can create imperative programs that might clutter an otherwise succinct and 
expressive functional design.
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We've looked at several kinds of higher-order functions that work with a collection 
of values. Throughout the previous chapters, we've hinted around at several 
different design patterns for higher-order collection and scalar functions.  
The following is a broad classification:

• Return a Generator. A higher-order function can return a generator 
expression. We consider the function higher-order because it didn't return 
scalar values or collections of values. Some of these higher-order 
functions also accept functions as arguments.

• Act as a Generator. Some function examples use the yield statement to 
make them first-class generator functions. The value of a generator function 
is an iterable collection of values that are evaluated lazily. We suggest that 
a generator function is essentially indistinguishable from a function that 
returns a generator expression. Both are non-strict. Both can yield a sequence 
of values. For this reason, we'll also consider generator functions as higher 
order. Built-in functions such as map() and filter() fall into this category.

• Materialize a Collection. Some functions must return a materialized 
collection object: list, tuple, set, or mapping. These kinds of functions 
can be of a higher order if they have a function as part of the arguments. 
Otherwise, they're ordinary functions that happen to work with 
collections.

• Reduce a Collection. Some functions work with an iterable (or a collection 
object) and create a scalar result. The len() and sum() functions are 
examples of this. We can create higher-order reductions when we accept  
a function as an argument. We'll return to this in the next chapter.

• Scalar. Some functions act on individual data items. These can be  
higher-order functions if they accept another function as an argument.

As we design our own software, we can pick and choose among these established 
design patterns.
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Summary
In this chapter, we have seen two reductions that are higher-order functions: max()  
and min(). We also looked at the two central higher-order functions, map()  
and filter(). We also looked at sorted().

We also looked at how to use a higher-order function to also transform the structure 
of data. We can perform several common transformations, including wrapping, 
unwrapping, flattening, and structure sequences of different kinds.

We looked at three ways to define our own higher-order functions, which are  
as follows:

• The def statement. Similar to this is a lambda form that we assign  
to a variable.

• Defining a Callable class as a kind of function that emits  
composite functions.

• We can also use decorators to emit composite functions. We'll return  
to this in Chapter 11, Decorator Design Techniques.

In the next chapter, we'll look at the idea of purely functional iteration via recursion. 
We'll use Pythonic structures to make several common improvements over purely 
functional techniques. We'll also look at the associated problem of performing 
reductions from collections to individual values.



Recursions and Reductions
In previous chapters, we've looked at several related kinds of processing designs; 
some of them are as follows:

• Mapping and filtering that create collections from collections
• Reductions that create a scalar value from a collection

The distinction is exemplified by functions such as map() and filter() that 
accomplish the first kind of collection processing. There are several specialized 
reduction functions, which include min(), max(), len(), and sum(). There's a 
general-purpose reduction function, also, functools.reduce().

We'll also consider a collections.Counter() function as a kind of reduction 
operator. It doesn't produce a single scalar value per se, but it does create a new 
organization of the data that eliminates some of the original structure. At its heart, 
it's a kind of count-group-by operation that has more in common with a counting 
reduction than with a mapping.

In this chapter, we'll look at reduction functions in more detail. From a purely 
functional perspective, a reduction is defined recursively. For this reason, we'll look 
at recursion first before we look at reduction algorithms.

Generally, a functional programming language compiler will optimize a recursive 
function to transform a call in the tail of the function to a loop. This will dramatically 
improve performance. From a Python perspective, pure recursion is limited, so we 
must do the tail-call optimization manually. The tail-call optimization technique 
available in Python is to use an explicit for loop.

We'll look at a number of reduction algorithms including sum(), count(), max(), 
and min(). We'll also look at the collections.Counter() function and related 
groupby() reductions. We'll also look at how parsing (and lexical scanning) are 
proper reductions since they transform sequences of tokens (or sequences of 
characters) into higher-order collections with more complex properties.
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Simple numerical recursions
We can consider all numeric operations to be defined by recursions. For more  
depth, read about the Peano axioms that define the essential features of numbers. 
http://en.wikipedia.org/wiki/Peano_axioms is one place to start.

From these axioms, we can see that addition is defined recursively using more 
primitive notions of the next number, or successor of a number, n, ( )S n .

To simplify the presentation, we'll assume that we can define a predecessor function,
( )P n , such that ( )( ) ( )( )n S P n P S n= = , as long as 0n ≠

Addition between two natural numbers could be defined recursively as follows:

( ) ( ) ( )( )
0

add ,
add , 0

b a
a b

P a S b a
 ==  ≠

if
if

If we use more common 1n +  and 1n −  instead of ( )S n  and ( )P n , we can see that 
( ) ( )add , add 1, 1a b a b= − + .

This translates neatly in Python, as shown in the following command snippet:

def add(a,b):

    if a == 0: return b

    else: return add(a-1, b+1)

We've simply rearranged common mathematical notation into Python. The if 
clauses are placed to the left instead of the right.

Generally, we don't provide our own functions in Python to do simple addition.  
We rely on Python's underlying implementation to properly handle arithmetic  
of various kinds. Our point here is that fundamental scalar arithmetic can be  
defined recursively.

All of these recursive definitions include at least two cases: the nonrecursive cases 
where the value of the function is defined directly and recursive cases where the 
value of the function is computed from a recursive evaluation of the function with 
different values.

In order to be sure the recursion will terminate, it's important to see how the 
recursive case computes values that approach the defined nonrecursive case. There 
are often constraints on the argument values that we've omitted from the functions 
here. The add() function in the preceding command snippet, for example, can 
include assert a>= and b>=0 to establish the constraints on the input values. 

http://en.wikipedia.org/wiki/Peano_axioms
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Without these constraints. a-1 can't be guaranteed to approach the nonrecursive case 
of a == 0.

In most cases, this is obvious. In a few rare cases, it might be difficult to prove. 
One example is the Syracuse function. This is one of the pathological cases where 
termination is unclear.

Implementing tail-call optimization
In the case of some functions, the recursive definition is the one often stated  
because it is succinct and expressive. One of the most common examples is the 
factorial() function.

We can see how this is rewritten as a simple recursive function in Python from the 
following formula:

( )
1 0

!
1 ! 0

n
n

n n n
 ==  × − >

if
if

The preceding formula can be executed in Python by using the following commands:

def fact(n):

    if n == 0: return 1

    else: return n*fact(n-1)

This has the advantage of simplicity. The recursion limits in Python artificially 
constrain us; we can't do anything larger than about fact(997). The value of 1000! has 
2,568 digits and generally exceeds our floating-point capacity; on some systems this 
is about 30010  Pragmatically, it's common to switch to a log gamma function, which 
works well with large floating-point values.

This function demonstrates a typical tail recursion. The last expression in the function 
is a call to the function with a new argument value. An optimizing compiler can 
replace the function call stack management with a loop that executes very quickly.

Since Python doesn't have an optimizing compiler, we're obliged to look at scalar 
recursions with an eye toward optimizing them. In this case, the function involves  
an incremental change from n to n-1. This means that we're generating a sequence  
of numbers and then doing a reduction to compute their product.
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Stepping outside purely functional processing, we can define an imperative facti() 
calculation as follows:

def facti(n):

    if n == 0: return 1

    f= 1

    for i in range(2,n):

        f= f*i

    return f

This version of the factorial function will compute values beyond 1000! (2000!, 
for example, has 5733 digits). It isn't purely functional. We've optimized the tail 
recursion into a stateful loop depending on the i variable to maintain the state  
of the computation.

In general, we're obliged to do this in Python because Python can't automatically 
do the tail-call optimization. There are situations, however, where this kind of 
optimization isn't actually helpful. We'll look at a few situations.

Leaving recursion in place
In some cases, the recursive definition is actually optimal. Some recursions involve 
a divide and conquer strategy that minimizes the work from ( )O n  to ( )2logO n . One 
example of this is the exponentiation by the squaring algorithm. We can state it 
formally like this:

( )

1

2/2

1 0
n n

n

n
a a a n

a n

−

 == ×



if
if is odd

if is even

We've broken the process into three cases, easily written in Python as a recursion. 
Look at the following command snippet:

def fastexp(a, n):

      if n == 0: return 1

      elif n % 2 == 1: return a*fastexp(a,n-1)

      else:

             t= fastexp(a,n//2)

             return t*t
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This function has three cases. The base case, the fastexp(a, 0) method is defined 
as having a value of 1. The other two cases take two different approaches. For odd 
numbers, the fastexp() method is defined recursively. The exponent, n, is reduced 
by 1. A simple tail-recursion optimization would work for this case.

For even numbers, however, the fastexp() recursion uses n/2, chopping the 
problem into half of its original size. Since the problem size is reduced by a factor  
of 2, this case results in a significant speed-up of the processing.

We can't trivially reframe this kind of function into a tail-call optimization loop. Since 
it's already optimal, we don't really need to optimize this further. The recursion limit in 
Python would impose the constraint of 10002n ≤ , a generous upper bound.

Handling difficult tail-call optimization
We can look at the definition of Fibonacci numbers recursively. Following is one 
widely used definition for the nth Fibonacci number:

1 2

0 0
1 1

2
n

n n

n
F n

F F n− −

=
= =
 + ≥

if
if
if

A given Fibonacci number, nF , is defined as the sum of the previous two  numbers, 
1 2n nF F− −+ . This is an example of multiple recursion: it can't be trivially optimized as a 

simple tail-recursion. However, if we don't optimize it to a tail-recursion, we'll find it 
to be too slow to be useful.

The following is a naïve implementation:

def fib(n):

    if n == 0: return 0

    if n == 1: return 1

    return fib(n-1) + fib(n-2)

This suffers from the multiple recursion problem. When computing the fib(n) 
method, we must compute fib(n-1) and fib(n-2) methods. The computation of 
fib(n-1) method involves a duplicate calculation of fib(n-2) method. The two 
recursive uses of the Fibonacci function will duplicate the amount of computation 
being done.

Because of the left-to-right Python evaluation rules, we can evaluate values up to 
about fib(1000). However, we have to be patient. Very patient.
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Following is an alternative which restates the entire algorithm to use stateful 
variables instead of a simple recursion:

def fibi(n):

    if n == 0: return 0

    if n == 1: return 1

    f_n2, f_n1 = 1, 1

    for i in range(3, n+1):

        f_n2, f_n1 = f_n1, f_n2+f_n1

    return f_n1

Our stateful version of this function counts up from 0, unlike the 
recursion, which counts down from the initial value of n. It saves the 
values of 2nF −  and 1nF −  that will be used to compute nF . This version is 
considerably faster than the recursive version.

What's important here is that we couldn't trivially optimize the recursion with an 
obvious rewrite. In order to replace the recursion with an imperative version, we 
had to look closely at the algorithm to determine how many stateful intermediate 
variables were required.

Processing collections via recursion
When working with a collection, we can also define the processing recursively.  
We can, for example, define the map() function recursively. The formalism looks  
as follows:

( ) [ ]( ) [ ]( )( )
( )
( )

[] 0
,

, : 1 1 0
C

map f C
map f C append f C C

 ==  − − ≠

if len
if len

We've defined the mapping of a function to an empty collection as an empty 
sequence. We've also specified that applying a function to a collection can be 
defined recursively with a three step expression. First, apply the function to all of 
the collection except the last element, creating a sequence object. Then apply the 
function to the last element. Finally, append the last calculation to the previously 
built sequence.
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Following is a purely recursive function version of the older map() function:

def mapr(f, collection):

    if len(collection) == 0: return []

    return mapr(f, collection[:-1]) + [f(collection[-1])]

The value of the mapr(f,[]) method is defined to be an empty list object. The 
value of the mapr() function with a non-empty list will apply the function to the 
last element in the list and append this to the list built recursively from the mapr() 
function applied to the head of the list.

We have to emphasize that this mapr() function actually creates a list object, 
similar to the older map() function in Python. The Python 3 map() function is an 
iterable, and isn't as good an example of tail-call optimization.

While this is an elegant formalism, it still lacks the tail-call optimization required. 
The tail-call optimization allows us to exceed the recursion depth of 1000 and also 
performs much more quickly than this naïve recursion.

Tail-call optimization for collections
We have two general ways to handle collections: we can use a higher-order function 
which returns a generator expression or we can create a function which uses a for 
loop to process each item in a collection. The two essential patterns are very similar.

Following is a higher-order function that behaves like the built-in map() function:

def mapf(f, C):

    return (f(x) for x in C)

We've returned a generator expression which produces the required mapping.  
This uses an explicit for loop as a kind of tail-call optimization.

Following is a generator function with the same value:

def mapg(f, C):

    for x in C:

        yield f(x)

This uses a complete for statement for the required optimization.
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In both cases, the result is iterable. We must do something following this to 
materialize a sequence object:

>>> list(mapg(lambda x:2**x, [0, 1, 2, 3, 4]))

[1, 2, 4, 8, 16]

For performance and scalability, this kind of tail-call optimization is essentially 
required in Python programs. It makes the code less than purely functional. 
However, the benefit far outweighs the lack of purity. In order to reap the benefits of 
succinct and expression functional design, it is helpful to treat these less-than-pure 
functions as if they were proper recursions.

What this means, pragmatically, is that we must avoid cluttering up a collection 
processing function with additional stateful processing. The central tenets of 
functional programming are still valid even if some elements of our programs are 
less than purely functional.

Reductions and folding – from many to one
We can consider the sum() function to have the following kind of definition:

We could say that the sum of a collection is 0 for an empty collection. For a non-empty 
collection the sum is the first element plus the sum of the remaining elements.

( ) [ ] [ ]( )
( )
( )

0 0
sum

0 sum 1: 0
C

C
C C C
 ==  + >

if len
if len

Similarly, we can compute the product of a collection of numbers recursively using 
two cases:

( ) [ ] [ ]( )
( )
( )

1 0
prod

0 prod 1: 0
C

C
C C C
 ==  × >

if len
if len

The base case defines the product of an empty sequence as 1. The recursive case 
defines the product as the first item times the product of the remaining items.

We've effectively folded in × or + operators between each item of the sequence. 
Further, we've grouped the items so that processing will be done right-to-left.  
This could be called a fold-right way of reducing a collection to a single value.
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In Python, the product function can be defined recursively as follows:

def prodrc(collection):

    if len(collection) == 0: return 1

    return collection[0] * prodrc(collection[1:])

This is technically correct. It's a trivial rewrite from mathematical notation to 
Python. However, it is less than optimal because it tends to create a large number of 
intermediate list objects. It's also limited to only working with explicit collections;  
it can't work easily with iterable objects.

We can revise this slightly to work with an iterable, which avoids creating any 
intermediate collection objects. Following is a properly recursive product function 
which works with an iterable source of data:

def prodri(iterable):

    try:

        head= next(iterable)

    except StopIteration:

        return 1

    return head*prodri(iterable)

We can't interrogate an iterable with the len() function to see how many elements 
it has. All we can do is attempt to extract the head of the iterable sequence. If 
there are no items in the sequence, then any attempt to get the head will raise the 
StopIteration exception. If there is an item, then we can multiply this item by the 
product of the remaining items in the sequence. For a demo, we must explicitly create 
an iterable from a materialized sequence object, using the iter() function. In other 
contexts, we might have an iterable result that we can use. Following is an example:

>>> prodri(iter([1,2,3,4,5,6,7]))

5040

This recursive definition does not rely on explicit state or other imperative features 
of Python. While it's more purely functional, it is still limited to working with 
collections of under 1000 items. Pragmatically, we can use the following kind of 
imperative structure for reduction functions:

def prodi(iterable):

    p= 1

    for n in iterable:

        p *= n

    return p
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This lacks the recursion limits. It includes the required tail-call optimization.  
Further, this will work equally well with either a sequence object or an iterable.

In other functional languages, this is called a foldl operation: the operators are 
folded into the iterable collection of values from left-to-right. This is unlike the 
recursive formulations which are generally called foldr operations because the 
evaluations are done from right-to-left in the collection.

For languages with optimizing compilers and lazy evaluation, the fold-left and  
fold-right distinction determines how intermediate results are created. This may 
have profound performance implications, but the distinction might not be obvious.  
A fold-left, for example, could immediately consume and process the first elements 
in a sequence. A fold-right, however, might consume the head of the sequence, but 
not do any processing until the entire sequence was consumed.

Group-by reductions – from many  
to fewer
A very common operation is a reduction that groups values by some key or 
indicator. In SQL, this is often called the SELECT GROUP BY operation. The raw data 
is grouped by some columns value and reductions (sometimes aggregate functions) 
are applied to other columns. The SQL aggregate functions include SUM, COUNT, MAX, 
and MIN.

The statistical summary called the mode is a count that's grouped by some 
independent variable. Python offers us several ways to group data before computing 
a reduction of the grouped values. We'll start by looking at two ways to get simple 
counts of grouped data. Then we'll look at ways to compute different summaries of 
grouped data.

We'll use the trip data that we computed in Chapter 4, Working with Collections.  
This data started as a sequence of latitude-longitude waypoints. We restructured  
it to create legs represented by three tuples of start, end, and distance for the leg.  
The data looks as follows:

(((37.5490162, -76.330295), (37.840832, -76.273834), 17.7246),  
((37.840832, -76.273834), (38.331501, -76.459503), 30.7382),  
((38.331501, -76.459503), (38.845501, -76.537331), 31.0756), ...  
((38.330166, -76.458504), (38.976334, -76.473503), 38.8019))
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A common operation that can be approached either as a stateful map or as a 
materialized, sorted object is computing the mode of a set of data values. When we 
look at our trip data, the variables are all continuous. To compute a mode, we'll need 
to quantize the distances covered. This is also called binning: we'll group the data 
into different bins. Binning is common in data visualization applications, also. In this 
case, we'll use 5 nautical miles as the size of each bin.

The quantized distances can be produced with a generator expression:

quantized= (5*(dist//5) for start,stop,dist in trip)

This will divide each distance by 5 – discarding any fractions – and then multiply by 
5 to compute a number that represents the distance rounded down to the nearest 5 
nautical miles.

Building a mapping with Counter
A mapping like the collections.Counter method is a great optimization for doing 
reductions that create counts (or totals) grouped by some value in the collection.  
A more typical functional programming solution to grouping data is to sort the 
original collection, and then use a recursive loop to identify when each group begins. 
This involves materializing the raw data, performing a O n n( log ) sort, and then 
doing a reduction to get the sums or counts for each key.

We'll use the following generator to create an simple sequence of distances 
transformed into bins:

quantized= (5*(dist//5) for start,stop,dist in trip)

We divided each distance by 5 using truncated integer division, and then multiplied 
by 5 to create a value that's rounded down to the nearest 5 miles.

The following expression creates a mapping from distance to frequency:

from collections import Counter

Counter(quantized)

This is a stateful object, that was created by – technically – imperative object-oriented 
programming. Since it looks like a function, however, it seems a good fit for a design 
based on functional programming ideas.
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If we print Counter(quantized).most_common() function, we'll see the  
following results:

[(30.0, 15), (15.0, 9), (35.0, 5), (5.0, 5), (10.0, 5), (20.0, 5),  
(25.0, 5), (0.0, 4), (40.0, 3), (45.0, 3), (50.0, 3), (60.0, 3),  
(70.0, 2), (65.0, 1), (80.0, 1), (115.0, 1), (85.0, 1), (55.0, 1),  
(125.0, 1)]

The most common distance was about 30 nautical miles. The shortest recorded leg 
was four instances of 0. The longest leg was 125 nautical miles.

Note that your output may vary slightly from this. The results of the most_common() 
function are in order by frequency; equal-frequency bins may be in any order.  
These 5 lengths may not always be in the order shown:

(35.0, 5), (5.0, 5), (10.0, 5), (20.0, 5), (25.0, 5)

Building a mapping by sorting
If we want to implement this without using the Counter class, we can use a more 
functional approach of sorting and grouping. Following is a common algorithm:

def group_sort(trip):

    def group(data):

        previous, count = None, 0

        for d in sorted(data):

            if d == previous:

                count += 1

            elif previous is not None: # and d != previous

                yield previous, count

                previous, count = d, 1

            elif previous is None:

                previous, count = d, 1

            else:

                raise Exception("Bad bad design problem.")

        yield previous, count

    quantized= (5*(dist//5) for start,stop,dist in trip)

    return dict(group(quantized))
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The internal group() function steps through the sorted sequence of data items. If 
a given item has already been seen – it matches the value in previous – then the 
counter can be incremented. If a given item does not match the previous value and 
the previous value is not-None, then we've had a change in value; we can emit the 
previous value and the count, and begin a new accumulation of counts for the new 
value. The third condition only applies once: if the previous value has never been set, 
then this is the first value, and we should save it.

The final line of the function creates a dictionary from the grouped items. This 
dictionary will be similar to a Counter dictionary. The primary difference is that a 
Counter() function will have a most_common() method function which a default 
dictionary lacks.

The elif previous is None method case is an irksome overhead. Getting  
rid of this elif clause (and seeing a slight performance improvement) isn't  
terribly difficult.

To remove the extra elif clause, we need to use a slightly more elaborate 
initialization in the internal group() function:

    def group(data):

        sorted_data= iter(sorted(data))

        previous, count = next(sorted_data), 1

        for d in sorted_data:

            if d == previous:

                count += 1

            elif previous is not None: # and d != previous

                yield previous, count

                previous, count = d, 1

            else:

                raise Exception("Bad bad design problem.")

        yield previous, count

This picks the first item out of the set of data to initialize the previous variable.  
The remaining items are then processed through the loop. This design shows a loose 
parallel with recursive designs where we initialize the recursion with the first item, 
and each recursive call provides either a next item or None to indicate that no items 
are left to process.

We can also do this with itertools.groupby(). We'll look at this function closely in 
Chapter 8, The Itertools Module.
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Grouping or partitioning data by key values
There are no limits to the kinds of reductions we might want to apply to grouped 
data. We might have data with a number of independent and dependent variables. 
We can consider partitioning the data by an independent variable and computing 
summaries like maximum, minimum, average, and standard deviation of the values 
in each partition.

The essential trick to doing more sophisticated reductions is to collect all of the data 
values into each group. The Counter() function merely collects counts of identical 
items. We want to create sequences of the original items based on a key value.

Looked at in a more general way, each 5-mile bin will contain the entire collection of 
legs of that distance, not merely a count of the legs. We can consider the partitioning 
as a recursion or as a stateful application of defaultdict(list) object. We'll look at 
the recursive definition of a groupby() function, since it's easy to design.

Clearly, the groupby(C, key) method for an empty collection, C, is the empty 
dictionary, dict(). Or, more usefully, the empty defaultdict(list) object.

For a non-empty collection, we need to work with item C[0], the head, and 
recursively process sequence C[1:], the tail. We can use head, *tail = C 
command to do this parsing of the collection, as follows:

>>> C= [1,2,3,4,5]

>>> head, *tail= C

>>> head

1

>>> tail

[2, 3, 4, 5]

We need to do the dict[key(head)].append(head) method to include the head 
element in the resulting dictionary. And then we need to do the groupby(tail,key) 
method to process the remaining elements.

We can create a function as follows:

def group_by(key, data):

    def group_into(key, collection, dictionary):

        if len(collection) == 0: 

            return dictionary

        head, *tail= collection

        dictionary[key(head)].append(head)

        return group_into(key, tail, dictionary)

    return group_into(key, data, defaultdict(list))



Chapter 6

[ 131 ]

The interior function handles our essential recursive definition. An empty collection 
returns the provided dictionary. A non-empty collection is parsed into a head and 
tail. The head is used to update the dictionary. The tail is then used, recursively,  
to update the dictionary with all remaining elements.

We can't easily use Python's default values to collapse this into a single function.  
We cannot use the following command snippet:

def group_by(key, data, dictionary=defaultdict(list)):

If we try this, all uses of the group_by() function share one common 
defaultdict(list) object. Python builds default values just once. Mutable 
objects as default values rarely do what we want. Rather than try to include more 
sophisticated decision-making to handle an immutable default value (like None), 
we prefer to use a nested function definition. The wrapper() function properly 
initializes the arguments to the interior function.

We can group the data by distance as follows:

binned_distance = lambda leg: 5*(leg[2]//5)

by_distance= group_by(binned_distance, trip)

We've defined simple, reusable lambda which puts our distances into 5 nm bins.  
We then grouped the data using the provided lambda.

We can examine the binned data as follows:

import pprint

for distance in sorted(by_distance):

    print(distance)

    pprint.pprint(by_distance[distance])

Following is what the output looks like:

0.0

[((35.505665, -76.653664), (35.508335, -76.654999), 0.1731),  
((35.028175, -76.682495), (35.031334, -76.682663), 0.1898),  
((25.4095, -77.910164), (25.425833, -77.832664), 4.3155),  
((25.0765, -77.308167), (25.080334, -77.334), 1.4235)]

5.0

[((38.845501, -76.537331), (38.992832, -76.451332), 9.7151),  
((34.972332, -76.585167), (35.028175, -76.682495), 5.8441),  
((30.717167, -81.552498), (30.766333, -81.471832), 5.103),  
((25.471333, -78.408165), (25.504833, -78.232834), 9.7128),  
((23.9555, -76.31633), (24.099667, -76.401833), 9.844)] ...  
125.0

[((27.154167, -80.195663), (29.195168, -81.002998), 129.7748)]
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This can also be written as an iteration as follows:

def partition(key, data):

    dictionary= defaultdict(list)

    for head in data:

        dictionary[key(head)].append(head)

    return dictionary

When doing the tail-call optimization, the essential line of the code in the imperative 
version will match the recursive definition. We've highlighted that line to emphasize 
that the rewrite is intended to have the same outcome. The rest of the structure 
represents the tail-call optimization we've adopted as a common way to work 
around the Python limitations.

Writing more general group-by reductions
Once we have partitioned the raw data, we can compute various kinds of  
reductions on the data elements in each partition. We might, for example,  
want the northern-most point for the start of each leg in the distance bins.

We'll introduce some helper functions to decompose the tuple as follows:

start = lambda s, e, d: s

end = lambda s, e, d: e

dist = lambda s, e, d: d

latitude = lambda lat, lon: lat

longitude = lambda lat, lon: lon

Each of these helper functions expects a tuple object to be provided using the * 
operator to map each element of the tuple to a separate parameter of the lambda. 
Once the tuple is expanded into the s, e, and p parameters, it's reasonably obvious  
to return the proper parameter by name. It's much more clear than trying to interpret 
the tuple_arg[2] method.

Following is how we use these helper functions:

>>> point = ((35.505665, -76.653664), (35.508335, -76.654999),  
0.1731)

>>> start(*point)

(35.505665, -76.653664)

>>> end(*point)

(35.508335, -76.654999)

>>> dist(*point)
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0.1731

>>> latitude(*start(*point))

35.505665

Our initial point object is a nested three tuple with (0) - a starting position, (1) -  the 
ending position, and (2) - the distance. We extracted various fields using our helper 
functions.

Given these helpers, we can locate the northern-most starting position for the legs in 
each bin:

for distance in sorted(by_distance):

    print(distance, max(by_distance[distance],  
    key=lambda pt: latitude(*start(*pt))))

The data that we grouped by distance included each leg of the given distance.  
We supplied all of the legs in each bin to the max() function. The key function  
we provided to the max() function extracted just the latitude of the starting  
point of the leg.

This gives us a short list of the northern-most legs of each distance as follows:

0.0 ((35.505665, -76.653664), (35.508335, -76.654999), 0.1731)

5.0 ((38.845501, -76.537331), (38.992832, -76.451332), 9.7151)

10.0 ((36.444168, -76.3265), (36.297501, -76.217834), 10.2537)

... 

125.0 ((27.154167, -80.195663), (29.195168, -81.002998), 129.7748)

Writing higher-order reductions
We'll look at an example of a higher-order reduction algorithm here. This will 
introduce a rather complex topic. The simplest kind of reduction develops a single 
value from a collection of values. Python has a number of built-in reductions, 
including any(), all(), max(), min(), sum(), and len().

As we noted in Chapter 4, Working with Collections, we can do a great deal of statistical 
calculation if we start with a few simple reductions such as the following:

def s0(data):

    return sum(1 for x in data) # or len(data)

def s1(data):

    return sum(x for x in data) # or sum(data)

def s2(data):

    return sum(x*x for x in data)
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This allows us to define mean, standard deviation, normalized values, correction, 
and even least-squares linear regression using a few simple functions.

The last of our simple reductions, s2(), shows how we can apply existing  
reductions to create higher-order functions. We might change our approach  
to be more like the following:

def sum_f(function, data):

    return sum(function(x) for x in data)

We've added a function that we'll use to transform the data. We'll compute the sum 
of the transformed values.

Now we can apply this function in three different ways to compute the three 
essential sums as follows:

N= sum_f(lambda x: 1, data) # x**0

S= sum_f(lambda x: x, data) # x**1

S2= sum_f( lambda x: x*x, data ) # x**2

We've plugged in a small lambda to compute ( )0 1
x X x X

x
∈ ∈

=∑ ∑ , which is the count, 
( )1x X x X
x x

∈ ∈
=∑ ∑ , the sum, and 

2

x X
x

∈∑ , the sum of the squares, which we can use 
to compute standard deviation.

A common extension to this includes a filter to reject raw data which is unknown  
or unsuitable in some way. We might use the following command to reject bad data:

def sum_filter_f(filter, function, data):

    return sum(function(x) for x in data if filter(x))

Execution of the following command snippet allows us to do things like reject None 
values in a simple way:

count_= lambda x: 1

sum_ = lambda x: x

valid = lambda x: x is not None

N = sum_filter_f(valid, count_, data)

This shows how we can provide two distinct lambda to our sum_filter_f() function. 
The filter argument is a lambda that rejects None values, we've called it valid to 
emphasize its meaning. The function argument is a lambda that implements a count 
or a sum method. We can easily add a lambda to compute a sum of squares.
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It's important to note that this function is similar to other examples in that it actually 
returns a function rather than a value. This is one of the defining characteristics of 
higher-order functions, and is pleasantly simple to implement in Python.

Writing file parsers
We can often consider a file parser to be a kind of reduction. Many languages have 
two levels of definition: the lower-level tokens in the language and the higher-level 
structures built from those tokens. When looking at an XML file, the tags, tag names, 
and attribute names form this lower-level syntax; the structures which are described 
by XML form a higher-level syntax.

The lower-level lexical scanning is a kind of reduction that takes individual 
characters and groups them into tokens. This fits well with Python's generator 
function design pattern. We can often write functions that look as follows:

Def lexical_scan( some_source ):

    for char in some_source:

        if some_pattern completed: yield token

        else: accumulate token

For our purposes, we'll rely on lower-level file parsers to handle this for us. We'll use 
the CSV, JSON, and XML packages to manage these details. We'll write higher-level 
parsers based on these packages.

We'll still rely on a two-level design pattern. A lower-level parser will produce a 
useful canonical representation of the raw data. It will be an iterator over tuples 
of text. This is compatible with many kinds of data files. The higher-level parser 
will produce objects useful for our specific application. These might be tuples of 
numbers, or namedtuples, or perhaps some other class of immutable Python objects.

We provided one example of a lower-level parser in Chapter 4, Working with 
Collections. The input was a KML file; KML is an XML representation of geographic 
information. The essential features of the parser look similar to the following 
command snippet:

def comma_split(text):

    return text.split(",")

def row_iter_kml(file_obj):

    ns_map={

        "ns0": "http://www.opengis.net/kml/2.2",

        "ns1": "http://www.google.com/kml/ext/2.2"}

    doc= XML.parse(file_obj)
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    return (comma_split(coordinates.text)

            for coordinates in  
            doc.findall("./ns0:Document/ns0:Folder/ns0:Placemark 
            /ns0:Point/ns0:coordinates", ns_map)

The bulk of the row_iter_kml() function is the XML parsing that allows us to use 
the doc.findall() function to iterate through the <ns0:coordinates> tags in the 
document. We've used a function named comma_split() to parse the text of this tag 
into a three tuple of values. 

This is focused on working with the normalized XML structure. The document 
mostly fits the database designer's definitions of First Normal Form, that is, each 
attribute is atomic and only a single value. Each row in the XML data had the same 
columns with data of a consistent type. The data values weren't properly atomic; we 
had to split the points on a "," to separate longitude, latitude, and altitude into atomic 
string values.

A large volume of data – xml tags, attributes, and other punctuation – was reduced 
to a somewhat smaller volume including just floating-point latitude and longitude 
values. For this reason, we can think of parsers as a kind of reduction.

We'll need a higher-level set of conversions to map the tuples of  text into  
floating-point numbers. Also, we'd like to discard altitude, and reorder longitude 
and latitude. This will produce the application-specific tuple we need. We can use 
functions as follows for this conversion:

def pick_lat_lon(lon, lat, alt):

    return lat, lon

def float_lat_lon(row_iter):

    return (tuple(map(float, pick_lat_lon(*row))) 
        for row in row_iter)

The essential tool is the float_lat_lon() function. This is a higher-order function 
which returns a generator expression. The generator uses map() function to apply 
the float() function conversion to the results of pick_lat_lon() class. We've used 
the *row parameter to assign each member of the row tuple to a different parameter 
of the pick_lat_lon() function. This function then returns a tuple of the selected 
items in the required order.

We can use this parser as follows:

with urllib.request.urlopen("file:./Winter%202012-2013.kml") as  
source:

    trip = tuple(float_lat_lon(row_iter_kml(source)))
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This will build a tuple-of-tuple representation of each waypoint along the path in 
the original KML file. It uses a low-level parser to extract rows of text data from the 
original representation. It uses a high-level parser to transform the text items into 
more useful tuples of floating-point values. In this case, we have not implemented 
any validation.

Parsing CSV files
In Chapter 3, Functions, Iterators and Generators, we saw another example where we 
parsed a CSV file that was not in a normalized form: we had to discard header rows 
to make it useful. To do this, we used a simple function that extracted the header and 
returned an iterator over the remaining rows.

The data looks as follows:

Anscombe's quartet

I  II  III  IV

x  y  x  y  x  y  x  y

10.0  8.04  10.0  9.14  10.0  7.46  8.0  6.58

8.0  6.95  8.0  8.14  8.0  6.77  8.0  5.76

... 

5.0  5.68  5.0  4.74  5.0  5.73  8.0  6.89

The columns are separated by tab characters. Plus there are three rows of headers 
that we can discard.

Here's another version of that CSV-based parser. We've broken it into three 
functions. The first, row_iter() function, returns the iterator over the rows  
in a tab-delimited file. The function looks as follows:

def row_iter_csv(source):

    rdr= csv.reader(source, delimiter="\t")

    return rdr

This is a simple wrapper around the CSV parsing process. When we look back at the 
previous parsers for XML and plain text, this was the kind of thing that was missing 
from those parsers. Producing an iterable over row tuples can be a common feature 
of parsers for normalized data.

Once we have a row of tuples, we can pass rows that contain usable data and reject 
rows that contain other metadata, like titles and column names. We'll introduce a 
helper function that we can use to do some of the parsing, plus a filter() function 
to validate a row of data.
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Following is the conversion:

def float_none(data):

    try:

        data_f= float(data)

        return data_f

    except ValueError:

        return None

This function handles the conversion of a single string to float values, converting 
bad data to None value. We can embed this function in a mapping so that we convert 
all columns of a row to a float or None value. The lambda looks as follows:

float_row = lambda row: list(map(float_none, row))

Following is a row-level validator based on the use of the all() function to assure 
that all values are float (or none of the values are None):

all_numeric = lambda row: all(row) and len(row) == 8

Following is a higher-order function which combines the row-level conversion  
and filtering:

def head_filter_map(validator, converter, validator, row_iter):

    return filter(all_validator, map(converter, row_iter))

This function gives us a slightly more complete pattern for parsing an input file. 
The foundation is a lower-level function that iterates over tuples of text. We can 
then wrap this in functions to convert and validate the converted data. For the 
cases where files are either in first normal form (all rows are the same) or a simple 
validator can reject the other rows, this design works out nicely.

All parsing problems aren't quite this simple, however. Some files have important 
data in header or trailer rows that must be preserved, even though it doesn't match 
the format of the rest of the file. These non-normalized files will require a more 
sophisticated parser design.

Parsing plain text files with headers
In Chapter 3, Functions, Iterators, and Generators, the Crayola.GPL file was presented 
without showing the parser. This file looks as follows:

GIMP Palette
Name: Crayola
Columns: 16
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#
239 222 205  Almond
205 149 117  Antique Brass

We can parse a text file using regular expressions. We need to use a filter to read 
(and parse) header rows. We also want to return an iterable sequence of data rows. 
This rather complex two-part parsing is based entirely on the two-part – head and 
tail – file structure.

Following is a low-level parser that handles both head and tail:

def row_iter_gpl(file_obj):

    header_pat= re.compile(r"GIMP  
    Palette\nName:\s*(.*?)\nColumns:\s*(.*?)\n#\n", re.M)

    def read_head(file_obj):

        match= header_pat.match("".join( file_obj.readline() for _ in  
        range(4)))

        return (match.group(1), match.group(2)), file_obj

    def read_tail(headers, file_obj):

        return headers, (next_line.split() for next_line in file_obj)

    return read_tail(*read_head(file_obj))

We've defined a regular expression that parses all four lines of the header, and 
assigned this to the header_pat variable. There are two internal functions for parsing 
different parts of the file. The read_head() function parses the header lines. It does 
this by reading four lines and merging them into a single long string. This is then 
parsed with the regular expression. The results include the two data items from the 
header plus an iterator ready to process additional lines.

The read_tail() function accepts the output from the read_head() function and 
parses the iterator over the remaining lines. The parsed information from the header 
rows forms a two tuple that is given to the read_tail() function along with the 
iterator over the remaining lines. The remaining lines are merely split on spaces, 
since that fits the description of the GPL file format.

For more information, visit the following link:
https://code.google.com/p/grafx2/issues/detail?id=518.

Once we've transformed each line of the file into a canonical tuple-of-strings format, 
we can apply the higher level of parsing to this data. This involves conversion and  
(if necessary) validation.

https://code.google.com/p/grafx2/issues/detail?id=518
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Following is a higher-level parser command snippet:

def color_palette(headers, row_iter):

    name, columns = headers

    colors = tuple(Color(int(r), int(g), int(b), " ".join(name)) 
        for r,g,b,*name in row_iter)

    return name, columns, colors

This function will work with the output of the lower-level row_iter_gpl() parser: it 
requires the headers and the iterator. This function will use the multiple assignment 
to separate the color numbers and the remaining words into four variables, r, g, b, 
and name. The use of the *name parameter assures that all remaining values will be 
assigned to names as a tuple. The " ".join(name) method then concatenates the 
words into a single space-separated string.

Following is how we can use this two-tier parser:

with open("crayola.gpl") as source:

    name, columns, colors = color_palette(*row_iter_gpl(source))

    print(name, columns, colors)

We've applied the higher-level parser to the results of the lower-level parser.  
This will return the headers and a tuple built from the sequence of Color objects.

Summary
In this chapter, we've looked at two significant functional programming topics. 
We've looked at recursions in some detail. Many functional programming language 
compilers will optimize a recursive function to transform a call in the tail of the 
function to a loop. In Python, we must do the tail-call optimization manually by 
using an explicit for loop instead of a purely function recursion.

We've also looked at reduction algorithms including sum(), count(), max(), and 
min() functions. We looked at the collections.Counter() function and related 
groupby() reductions.

We've also looked at how parsing (and lexical scanning) are similar to reductions 
since they transform sequences of tokens (or sequences of characters) into higher-
order collections with more complex properties. We've examined a design pattern that 
decomposes parsing into a lower level that tries to produce tuples of raw strings and a 
higher level that creates more useful application objects.

In the next chapter, we'll look at some techniques appropriate to working with 
namedtuples and other immutable data structures. We'll look at techniques that 
make stateful objects unnecessary. While stateful objects aren't purely functional, the 
idea of a class hierarchy can be used to package related method function definitions.
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Many of the examples we've looked at have either been scalar functions, or 
relatively simple structures built from small tuples. We can often exploit Python's 
immutable namedtuple as a way to build complex data structures. We'll look at how 
we use and how we create namedtuples. We'll also look at ways that immutable 
namedtuples can be used instead of stateful object classes.

One of the beneficial features of object-oriented programming is the ability to create 
complex data structures incrementally. In some respects, an object is simply a cache 
for results of functions; this will often fit well with functional design patterns. 
In other cases, the object paradigm provides for property methods that include 
sophisticated calculations. This is an even better fit for functional design ideas.

In some cases, however, object class definitions are used statefully to create complex 
objects. We'll look at a number of alternatives that provide similar features without 
the complexities of stateful objects. We can identify stateful class definitions and 
then include meta-properties for valid or required ordering of method function calls. 
Statements such as If X.p() is called before X.q(), the results are undefined are outside the 
formalism of the language and are meta-properties of a class. Sometimes, stateful 
classes include the overhead of explicit assertions and error checking to assure that 
methods are used in the proper order. If we avoid stateful classes, we eliminate these 
kinds of overheads.

We'll also look at some techniques to write generic functions outside any 
polymorphic class definition. Clearly, we can rely on Callable classes to create a 
polymorphic class hierarchy. In some cases, this might be a needless overhead in a 
functional design.
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Using an immutable namedtuple as  
a record
In Chapter 3, Functions, Iterators, and Generators, we showed two common techniques 
to work with tuples. We've also hinted at a third way to handle complex structures. 
We can do any of the following, depending on the circumstances:

• Use lambdas (or functions) to select a named item using the index
• Use lambdas (or functions) with *parameter to select an item by parameter 

name, which maps to an index
• Use namedtuples to select an item by attribute name or index

Our trip data, introduced in Chapter 4, Working with Collections, has a rather complex 
structure. The data started as an ordinary time series of position reports. To compute 
the distances covered, we transposed the data into a sequence of legs with a start 
position, end position, and distance as a nested three-tuple.

Each item in the sequence of legs looks as follows as a three-tuple:

first_leg= ((37.54901619777347, -76.33029518659048), (37.840832,  
-76.273834), 17.7246)

This is a short trip between two points on the Chesapeake Bay.

A nested tuple of tuples can be rather difficult to read; for example, expressions such 
as first_leg[0][0] aren't very informative.

Let's look at the three alternatives for selected values out of a tuple. The first technique 
involves defining some simple selection functions that can pick items from a tuple by 
index position:

start= lambda leg: leg[0]

end= lambda leg: leg[1]

distance= lambda leg: leg[2]

latitude= lambda pt: pt[0]

longitude= lambda pt: pt[1]

With these definitions, we can use latitude(start(first_leg)) to refer to a 
specific piece of data.
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These definitions don't provide much guidance on the data types involved. We can 
use a simple naming convention to make this a bit more clear. The following are 
some examples of selection functions that use a suffix:

start_point = lambda leg: leg[0]

distance_nm= lambda leg: leg[2]

latitude_value= lambda point: point[0]

When used judiciously, this can be helpful. It can also degenerate into an elaborately 
complex Hungarian notation as a prefix (or suffix) of each variable.

The second technique uses the *parameter notation to conceal some details of the 
index positions. The following are some selection functions that use the * notation:

start= lambda start, end, distance: start

end= lambda start, end, distance: end

distance= lambda start, end, distance: distance

latitude= lambda lat, lon: lat

longitude= lambda lat, lon: lon

With these definitions, we can use latitude(*start(*first_leg)) to refer to a 
specific piece of data. This has the advantage of clarity. It can look a little odd to see 
the * operator in front of the tuple arguments to these selection functions.

The third technique is the namedtuple function. In this case, we have nested 
namedtuple functions such as the following:

Leg = namedtuple("Leg", ("start", "end", "distance"))
Point = namedtuple("Point", ("latitude", "longitude"))

This allows us to use first_leg.start.latitude to fetch a particular piece of data. 
The change from prefix function names to postfix attribute names can be seen as a 
helpful emphasis. It can also be seen as a confusing shift in the syntax.

We will also replace tuple() functions with appropriate Leg() or Point() function 
calls in our process that builds the raw data. We will also have to locate some return 
and yield statements that implicitly create tuples.

For example, take a look at the following code snippet:

def float_lat_lon(row_iter):

    return (tuple(map(float, pick_lat_lon(*row)))  
    for row in row_iter)
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The preceding code would be changed to the following code snippet:

def float_lat_lon(row_iter):

    return (Point(*map(float, pick_lat_lon(*row)))  
    for row in row_iter)

This would build Point objects instead of anonymous tuples of floating-point 
coordinates.

Similarly, we can introduce the following to build the complete trip of Leg objects:

with urllib.request.urlopen("file:./Winter%202012-2013.kml") as  
source:

    path_iter = float_lat_lon(row_iter_kml(source))

    pair_iter = legs(path_iter)

    trip_iter = (Leg(start, end, round(haversine(start, end),4))  
    for start,end in pair_iter)

    trip= tuple(trip_iter)

This will iterate through the basic path of points, pairing them up to make start  
and end for each Leg object. These pairs are then used to build Leg instances using 
the start point, end point, and the haversine() function from Chapter 4, Working 
with Collections.

The trip object will look as follows when we try to print it:

(Leg(start=Point(latitude=37.54901619777347, longitude= 
-76.33029518659048), end=Point(latitude=37.840832, longitude= 
-76.273834), distance=17.7246),  
Leg(start=Point(latitude=37.840832, longitude=-76.273834),  
end=Point(latitude=38.331501, longitude=-76.459503),  
distance=30.7382), 
...

Leg(start=Point(latitude=38.330166, longitude=-76.458504),  
end=Point(latitude=38.976334, longitude=-76.473503),  
distance=38.8019))

It's important to note that the haversine() function was written to 
use simple tuples. We've reused this function with namedtuples. As 
we carefully preserved the order the arguments, this small change in 
representation was handled gracefully by Python.

In some cases, the namedtuple function adds clarity. In other cases, the namedtuple 
is a needless change in syntax from prefix to suffix.
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Building namedtuples with functional 
constructors
There are three ways we can build namedtuple instances. The choice of technique we 
use is generally based on how much additional information is available at the time of 
object construction.

We've shown two of the three techniques in the examples in the previous section. 
We'll emphasize the design considerations here. It includes the following choices:

• We can provide the parameter values according to their positions. This works 
out well when there are one or more expressions that we were evaluating. 
We used it when applying the haversine() function to the start and end 
points to create a Leg object.
Leg(start, end, round(haversine(start, end),4))

• We can use the *argument notation to assign parameters according to their 
positions in a tuple. This works out well when we're getting the arguments 
from another iterable or an existing tuple. We used it when using map() to 
apply the float() function to the latitude and longitude values.
Point(*map(float, pick_lat_lon(*row)))

• We can use explicit keyword assignment. While not used in the previous 
example, we might see something like this as a way to make the relationships 
more obvious:

Point(longitude=float(row[0]), latitude=float(row[1]))

It's helpful to have the flexibility of a variety of ways of created namedtuple 
instances. This allows us to more easily transform the structure of data. We 
can emphasize features of the data structure that are relevant for reading and 
understanding the application. Sometimes, the index number of 0 or 1 is an 
important thing to emphasize. Other times, the order of start, end, and  
distance is important.

Avoiding stateful classes by using 
families of tuples
In several previous examples, we've shown the idea of Wrap-Unwrap design 
patterns that allow us to work with immutable tuples and namedtuples. The point 
of this kind of designs is to use immutable objects that wrap other immutable objects 
instead of mutable instance variables.
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A common statistical measure of correlation between two sets of data is the 
Spearman rank correlation. This compares the rankings of two variables. Rather 
than trying to compare values, which might have different scales, we'll compare 
the relative orders. For more information, visit http://en.wikipedia.org/wiki/
Spearman%27s_rank_correlation_coefficient.

Computing the Spearman rank correlation requires assigning a rank value to each 
observation. It seems like we should be able to use enumerate(sorted()) to do this. 
Given two sets of possibly correlated data, we can transform each set into a sequence 
of rank values and compute a measure of correlation.

We'll apply the Wrap-Unwrap design pattern to do this. We'll wrap data items with 
their rank for the purposes of computing the correlation coefficient.

In Chapter 3, Functions, Iterators, and Generators, we showed how to parse a simple 
dataset. We'll extract the four samples from that dataset as follows:

from ch03_ex5 import series, head_map_filter, row_iter

with open("Anscombe.txt") as source:

    data = tuple(head_map_filter(row_iter(source)))

    series_I= tuple(series(0,data))

    series_II= tuple(series(1,data))

    series_III= tuple(series(2,data))

    series_IV= tuple(series(3,data))

Each of these series is a tuple of Pair objects. Each Pair object has x and y 
attributes. The data looks as follows:

(Pair(x=10.0, y=8.04), Pair(x=8.0, y=6.95), …, Pair(x=5.0, y=5.68))

We can apply the enumerate() function to create sequences of values as follows:

y_rank= tuple(enumerate(sorted(series_I, key=lambda p: p.y)))

xy_rank= tuple(enumerate(sorted(y_rank, key=lambda rank: rank[1].x)))

The first step will create simple two-tuples with (0) a rank number and (1) the 
original Pair object. As the data was sorted by the y value in each pair, the rank 
value will reflect this ordering.

The sequence will look as follows:

((0, Pair(x=8.0, y=5.25)), (1, Pair(x=8.0, y=5.56)), ...,  
(10, Pair(x=19.0, y=12.5)))

http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
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The second step will wrap these two-tuples into yet another layer of wrapping. We'll 
sort by the x value in the original raw data. The second enumeration will be by the x 
value in each pair.

We'll create more deeply nested objects that should look like the following:

((0, (0, Pair(x=4.0, y=4.26))), (1, (2, Pair(x=5.0, y=5.68))), ...,  
(10, (9, Pair(x=14.0, y=9.96))))

In principle, we can now compute rank-order correlations between the two variables 
by using the x and y rankings. The extraction expression, however, is rather awkward. 
For each ranked sample in the data set, r, we have to compare r[0] with r[1][0].

To overcome these awkward references, we can write selector functions as follows:

x_rank = lambda ranked: ranked[0]

y_rank= lambda ranked: ranked[1][0]

raw = lambda ranked: ranked[1][1]

This allows us to compute correlation using x_rank(r) and y_rank(r), making 
references to values less awkward.

We've wrapped the original Pair object twice, which created new tuples with the 
ranking value. We've avoided stateful class definitions to create complex data 
structures incrementally.

Why create deeply nested tuples? The answer is simple: laziness. The processing 
required to unpack a tuple and build a new, flat tuple is simply time consuming. 
There's less processing involved in wrapping an existing tuple. There are some 
compelling reasons for giving up the deeply nested structure.

There are two improvements we'd like to make; they are as follows:

We'd like a flatter data structure. The use of a nested tuple of (x rank, (y rank, 
Pair())) doesn't feel expressive or succinct:

• The enumerate() function doesn't deal properly with ties. If two 
observations have the same value, they should get the same rank. The 
general rule is to average the positions of equal observations. The sequence 
[0.8, 1.2, 1.2, 2.3, 18] should have rank values of 1, 2.5, 2.5, 4. 
The two ties in positions 2 and 3 have the midpoint value of 2.5 as their 
common rank.
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Assigning statistical ranks
We'll break the rank ordering problem into two parts. First, we'll look at a generic, 
higher-order function that we can use to assign ranks to either the x or y value of 
a Pair object. Then, we'll use this to create a wrapper around the Pair object that 
includes both x and y rankings. This will avoid a deeply nested structure.

The following is a function that will create a rank order for each observation  
in a dataset:

from collections import defaultdict

def rank(data, key=lambda obj:obj):    

    def rank_output(duplicates, key_iter, base=0):

        for k in key_iter:

            dups= len(duplicates[k])

            for value in duplicates[k]:

                yield (base+1+base+dups)/2, value

            base += dups

    def build_duplicates(duplicates, data_iter, key):

        for item in data_iter:

             duplicates[key(item)].append(item)

        return duplicates

    duplicates= build_duplicates(defaultdict(list), iter(data), key)

    return rank_output(duplicates, iter(sorted(duplicates)), 0)

Our function to create the rank ordering relies on creating an object that is like 
Counter to discover duplicate values. We can't use a simple Counter function, as 
it uses the entire object to create a collection. We only want to use a key function 
applied to each object. This allows us to pick either the x or y value of a Pair object.

The duplicates collection in this example is a stateful object. We could have written 
a properly recursive function. We'd then have to do tail-call optimization to allow 
working with large collections of data. We've shown the optimized version of that 
recursion here.

As a hint to how this recursion would look, we've provided the arguments to build_
duplicates() that expose the state as argument values. Clearly, the base case for 
the recursion is when data_iter is empty. When data_iter is not empty, a new 
collection is built from the old collection and the head next(data_iter). A recursive 
evaluation of build_duplicates() will handle all items in the tail of data_iter.
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Similarly, we could have written two properly recursive functions to emit the 
collection with the assigned rank values. Again, we've optimized that recursion 
into nested for loops. To make it clear how we're computing the rank value, 
we've included the low end of the range (base+1) and the high end of the range 
(base+dups) and taken the midpoint of these two values. If there is only a single 
duplicate, we evaluate (2*base+2)/2, which has the advantage of being a  
general solution.

The following is how we can test this to be sure it works.

>>> list(rank([0.8, 1.2, 1.2, 2.3, 18]))

[(1.0, 0.8), (2.5, 1.2), (2.5, 1.2), (4.0, 2.3), (5.0, 18)]

>>> data= ((2, 0.8), (3, 1.2), (5, 1.2), (7, 2.3), (11, 18))

>>> list(rank(data, key=lambda x:x[1]))

[(1.0, (2, 0.8)), (2.5, (3, 1.2)), (2.5, (5, 1.2)), (4.0, (7, 2.3)),  
(5.0, (11, 18))]

The sample data included two identical values. The resulting ranks split positions 2 
and 3 to assign position 2.5 to both values. This is the common statistical practice for 
computing the Spearman rank-order correlation between two sets of values.

The rank() function involves rearranging the input data as part of 
discovering duplicated values. If we want to rank on both the x and y 
values in each pair, we need to reorder the data twice.

Wrapping instead of state changing
We have two general strategies to do wrapping; they are as follows:

• Parallelism: We can create two copies of the data and rank each copy. We 
then need to reassemble the two copies into a final result that includes both 
rankings. This can be a bit awkward because we'll need to somehow merge 
two sequences that are likely to be in different orders.

• Serialism: We can compute ranks on one variable and save the results as a 
wrapper that includes the original raw data. We can then rank this wrapped 
data on the other variable. While this can create a complex structure, we can 
optimize it slightly to create a flatter wrapper for the final results.
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The following is how we can create an object that wraps a pair with the rank order 
based on the y value:

Ranked_Y= namedtuple("Ranked_Y", ("r_y", "raw",))

def rank_y(pairs):

    return (Ranked_Y(*row)  
    for row in rank(pairs, lambda pair: pair.y))

We've defined a namedtuple function that contains the y value rank plus the original 
(raw) value. Our rank_y() function will create instances of this tuple by applying  
the rank() function using a lambda that selects the y value of each pairs object.  
We then created instances of the resulting two tuples.

The idea is that we can provide the following input:

>>> data = (Pair(x=10.0, y=8.04), Pair(x=8.0, y=6.95), ...,  
Pair(x=5.0, y=5.68))

We can get the following output:

>>> list(rank_y(data))

[Ranked_Y(r_y=1.0, raw=Pair(x=4.0, y=4.26)),  
Ranked_Y(r_y=2.0, raw=Pair(x=7.0, y=4.82)), ...  
Ranked_Y(r_y=11.0, raw=Pair(x=12.0, y=10.84))]

The raw Pair objects have been wrapped in a new object that includes the rank.  
This isn't all we need; we'll need to wrap this one more time to create an object that 
has both x and y rank information.

Rewrapping instead of state changing
We can use a namedtuple named Ranked_X that contains two attributes: r_x and 
ranked_y. The ranked_y attribute is an instance of Ranked_Y that has two attributes: 
r_y and raw. Although this looks simple, the resulting objects are annoying to work 
with because the r_x and r_y values aren't simple peers in a flat structure. We'll 
introduce a slightly more complex wrapping process that produces a slightly  
simpler result.

We want the output to look like this:

Ranked_XY= namedtuple("Ranked_XY", ("r_x", "r_y", "raw",))
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We're going to create a flat namedtuple with multiple peer attributes. This kind 
of expansion is often easier to work with than deeply nested structures. In some 
applications, we might have a number of transformations. For this application, we 
have only two transformations: x-ranking and y-ranking. We'll break this into two 
steps. First, we'll look at a simplistic wrapping like the one shown previously and 
then a more general unwrap-rewrap.

The following is how the x-y ranking builds on the y-ranking:

def rank_xy(pairs):

    return (Ranked_XY(r_x=r_x, r_y=rank_y_raw[0],  
    raw=rank_y_raw[1])

        for r_x, rank_y_raw in rank(rank_y(pairs),  
        lambda r: r.raw.x))

We've used the rank_y() function to build Rank_Y objects. Then, we applied the 
rank() function to those objects to order them by the original x values. The result 
of the second rank function will be two tuples with (0) the x rank and (1) the 
Rank_Y object. We build a Ranked_XY object from the x ranking (r_x), the y ranking 
(rank_y_raw[0]), and the original object (rank_y_raw[1]).

What we've shown in this second function is a more general approach to adding  
data to a tuple. The construction of the Ranked_XY object shows how to unwrap  
the values from a data and rewrap to create a second, more complete structure.  
This approach can be used generally to introduce new variables to a tuple.

The following is some sample data:

>>> data = (Pair(x=10.0, y=8.04), Pair(x=8.0, y=6.95), ...,  
Pair(x=5.0, y=5.68))

This allows us to create ranking objects as follows:

>>> list(rank_xy(data))

[Ranked_XY(r_x=1.0, r_y=1.0, raw=Pair(x=4.0, y=4.26)),  
Ranked_XY(r_x=2.0, r_y=3.0, raw=Pair(x=5.0, y=5.68)), ..., 

Ranked_XY(r_x=11.0, r_y=10.0, raw=Pair(x=14.0, y=9.96))]

Once we have this data with the appropriate x and y rankings, we can compute the 
Spearman rank-order correlation value. We can compute the Pearson correlation 
from the raw data.

Our multiranking approach involves decomposing a tuple and building a new, flat 
tuple with the additional attributes we need. We will often need this kind of design 
when computing multiple derived values from source data.
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Computing the Spearman rank-order 
correlation
The Spearman rank-order correlation is a comparison between the rankings of two 
variables. It neatly bypasses the magnitude of the values, and it can often find a 
correlation even when the relationship is not linear. The formula is as follows:

t

This formula shows us that we'll be summing the differences in rank, ix  and iy , for 
all of the pairs of observed values. The Python version of this depends on the sum() 
and len() functions, as follows:

def rank_corr(pairs):

    ranked= rank_xy(pairs)

    sum_d_2 = sum((r.r_x - r.r_y)**2 for r in ranked)

    n = len(pairs)

    return 1-6*sum_d_2/(n*(n**2-1))

We've created Rank_XY objects for each pair. Given this, we can then subtract the 
r_x and r_y values from those pairs to compare their difference. We can then square 
and sum the differences.

A good article on statistics will provide detailed guidance on what the coefficient 
means. A value around 0 means that there is no correlation between the data ranks  
of the two series of data points. A scatter plot shows a random scattering of points.  
A value around +1 or -1 indicates a strong relationship between the two values.  
A graph shows a clear line or curve.

The following is an example based on Anscombe's Quartet series I:

>>> data = (Pair(x=10.0, y=8.04), Pair(x=8.0, y=6.95), …,  
Pair(x=5.0, y=5.68))

>>> round(rank_corr( data ), 3)

0.818

For this particular data set, the correlation is strong.
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In Chapter 4, Working with Collections, we showed how to compute the Pearson 
correlation coefficient. The function we showed, corr(), worked with two separate 
sequences of values. We can use it with our sequence of Pair objects as follows:

import ch04_ex4

def pearson_corr(pairs):

    X = tuple(p.x for p in pairs)

    Y = tuple(p.y for p in pairs)

    return ch04_ex4.corr(X, Y)

We've unwrapped the Pair objects to get the raw values that we can use with the 
existing corr() function. This provides a different correlation coefficient. The 
Pearson value is based on how well the standardized values compare between two 
sequences. For many data sets, the difference between the Pearson and Spearman 
correlations is relatively small. For some datasets, however, the differences can be 
quite large.

To see the importance of having multiple statistical tools for exploratory data 
analysis, compare the Spearman and Pearson correlations for the four sets of  
data in the Anscombe's Quartet.

Polymorphism and Pythonic pattern 
matching
Some functional programming languages offer clever approaches to working with 
statically typed function definitions. The issue is that many functions we'd like 
to write are entirely generic with respect to data type. For example, most of our 
statistical functions are identical for integer or floating-point numbers, as long 
as division returns a value that is a subclass of numbers.Real (for example, Decimal, 
Fraction, or float). In order to make a single generic definition work for multiple 
data types, sophisticated type or pattern-matching rules are used by the compiler.

Instead of the (possibly) complex features of statically typed functional languages, 
Python changes the issue using dynamic selection of the final implementation of 
an operator based on the data types being used. This means that a compiler doesn't 
certify that our functions are expecting and producing the proper data types. We 
generally rely on unit testing for this.

In Python, we're effectively writing generic definitions because the code isn't bound 
to any specific data type. The Python runtime will locate the appropriate operations 
using a simple set of matching rules. The 3.3.7 Coercion rules section of the language 
reference manual and the numbers module in the library provide details on how this 
mapping from operation to special method name works.
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In rare cases, we might need to have different behavior based on the types of the data 
elements. We have two ways to tackle this; they are as follows:

• We can use the isinstance() function to distinguish the different cases
• We can create our own subclass of numbers.Number or tuple and implement 

a proper polymorphic special method names

In some cases, we'll actually need to do both so that we can include appropriate data 
type conversions.

When we look back at the ranking example in the previous section, we're tightly 
bound to the idea of applying rank-ordering to simple pairs. While this is the way 
the Spearman correlation is defined, we might have a multivariate dataset and have 
a need to do rank-order correlation among all the variables.

The first thing we'll need to do is generalize our idea of rank-order information. The 
following is a namedtuple that handles a tuple of ranks and a tuple of raw data:

Rank_Data = namedtuple("Rank_Data", ("rank_seq", "raw"))

For any specific piece of Rank_Data, such as r, we can use r.rank_seq[0] to get a 
specific ranking and r.raw to get the original observation.

We'll add some syntactic sugar to our ranking function. In many previous examples, 
we've required either an iterable or a collection. The for statement is graceful about 
working with either one. However, we don't always use the for statement, and for 
some functions, we've had to explicitly use iter() to make an iterable out of a 
collection. We can handle this situation with a simple isinstance() check, as shown 
in the following code snippet:

def some_function(seq_or_iter):

    if not isinstance(seq_or_iter,collections.abc.Iterator):

        yield from some_function(iter(seq_or_iter), key)

        return

    # Do the real work of the function using the iterable

We've included a type check to handle the small difference between the  
two collections, which doesn't work with next() and an iterable, which  
supports next().

In the context of our rank-ordering function, we will use this variation on the  
design pattern:

def rank_data(seq_or_iter, key=lambda obj:obj):

    # Not a sequence? Materialize a sequence object

    if isinstance(seq_or_iter, collections.abc.Iterator):
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        yield from rank_data(tuple(seq_or_iter), key)

    data = seq_or_iter

    head= seq_or_iter[0]

    # Convert to Rank_Data and process.

    if not isinstance(head, Rank_Data):

        ranked= tuple(Rank_Data((),d) for d in data)

        for r, rd in rerank(ranked, key):

            yield Rank_Data(rd.rank_seq+(r,), rd.raw)

        return

    # Collection of Rank_Data is what we prefer.

    for r, rd in rerank(data, key):

        yield Rank_Data(rd.rank_seq+(r,), rd.raw)

We've decomposed the ranking into three cases for three different types of data. 
We're forced it to do this when the different kinds of data aren't polymorphic 
subclasses of a common superclass. The following are the three cases:

• Given an iterable (without a usable __getitem__() method), we'll 
materialize a tuple that we can work with

• Given a collection of some unknown type of data, we'll wrap the unknown 
objects into Rank_Data tuples

• Finally, given a collection of Rank_Data tuples, we'll add yet another ranking 
to the tuple of ranks inside the each Rank_Data container

This relies on a rerank() function that inserts and returns another ranking into 
the Rank_Data tuple. This will build up a collection of individual rankings from 
a complex record of raw data values. The rerank() function follows a slightly 
different design than the example of the rank() function shown previously.

This version of the algorithm uses sorting instead of creating a groups in a objects 
like Counter object:

def rerank(rank_data_collection, key):

    sorted_iter= iter(sorted( rank_data_collection, key=lambda  
    obj: key(obj.raw)))

    head = next(sorted_iter)

    yield from ranker(sorted_iter, 0, [head], key)

We've started by reassembling a single, sortable collection from the head and the 
data iterator. In the context in which this is used, we can argue that this is a bad idea.
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This function relies on two other functions. They can be declared within the body of 
rerank(). We'll show them separately. The following is the ranker, which accepts an 
iterable, a base rank number, a collection of values with the same rank, and a key:

def ranker(sorted_iter, base, same_rank_seq, key):

    """Rank values from a sorted_iter using a base rank value.

    If the next value's key matches same_rank_seq, accumulate those.

    If the next value's key is different, accumulate same rank values

    and start accumulating a new sequence.

    """

    try:

        value= next(sorted_iter)

    except StopIteration:

        dups= len(same_rank_seq)

        yield from yield_sequence((base+1+base+dups)/2,  
        iter(same_rank_seq))

        return

    if key(value.raw) == key(same_rank_seq[0].raw):

        yield from ranker(sorted_iter, base, same_rank_seq+[value],  
        key)

    else:

        dups= len(same_rank_seq)

        yield from yield_sequence( (base+1+base+dups)/2,  
        iter(same_rank_seq))

        yield from ranker(sorted_iter, base+dups, [value], key)

We've extracted the next item from the iterable collection of sorted values. If this 
fails, there is no next item, and we need to emit the final collection of equal-valued 
items in the same_rank_seq sequence. If this works, then we need to use the key() 
function to see whether the next item, which is a value, has the same key as the 
collection of equal-ranked items. If the key is the same, the overall value is defined 
recursively; the reranking is the rest of the sorted items, the same base value for the 
rank, a larger collection of same_rank items, and the same key() function.

If the next item's key doesn't match the sequence of equal-valued items, the result  
is a sequence of equal-valued items. This will be followed by the reranking of the rest 
of the sorted items, a base value incremented by the number of equal-valued items,  
a fresh list of equal-rank items with just the new value, and the same key  
extraction function.
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This depends on the yield_sequence() function, which looks as follows:

def yield_sequence(rank, same_rank_iter):

    head= next(same_rank_iter)

    yield rank, head

    yield from yield_sequence(rank, same_rank_iter)

We've written this in a way that emphasizes the recursive definition. We don't 
really need to extract the head, emit it, and then recursively emit the remaining 
items. While a single for statement might be shorter, it's sometimes more clear to 
emphasize the recursive structure that has been optimized into a for loop.

The following are some examples of using this function to rank (and rerank) data. 
We'll start with a simple collection of scalar values:

>>> scalars= [0.8, 1.2, 1.2, 2.3, 18]

>>> list(ranker(scalars))

[Rank_Data(rank_seq=(1.0,), raw=0.8), Rank_Data(rank_seq=(2.5,),  
raw=1.2), Rank_Data(rank_seq=(2.5,), raw=1.2), Rank_Data(rank_seq=(4.0,), 
raw=2.3), Rank_Data(rank_seq=(5.0,),  
raw=18)]

Each value becomes the raw attribute of a Rank_Data object.

When we work with a slightly more complex object, we can also have multiple 
rankings. The following is a sequence of two tuples:

>>> pairs= ((2, 0.8), (3, 1.2), (5, 1.2), (7, 2.3), (11, 18))

>>> rank_x= tuple(ranker(pairs, key=lambda x:x[0] ))

>>> rank_x

(Rank_Data(rank_seq=(1.0,), raw=(2, 0.8)), Rank_Data(rank_seq=(2.0,),  
raw=(3, 1.2)), Rank_Data(rank_seq=(3.0,), raw=(5, 1.2)),  
Rank_Data(rank_seq=(4.0,), raw=(7, 2.3)), Rank_Data(rank_seq=(5.0,),  
raw=(11, 18)))

>>> rank_xy= (ranker(rank_x, key=lambda x:x[1] ))

>>> tuple(rank_xy)

(Rank_Data(rank_seq=(1.0, 1.0), raw=(2, 0.8)), 
 Rank_Data(rank_seq=(2.0, 2.5), raw=(3, 1.2)),  
Rank_Data(rank_seq=(3.0, 2.5), raw=(5, 1.2)),  
Rank_Data(rank_seq=(4.0, 4.0), raw=(7, 2.3)), Rank_Data(rank_seq=(5.0, 
5.0), raw=(11, 18)))
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Here, we defined a collection of pairs. Then, we ranked the two tuples, assigning the 
sequence of Rank_Data objects to the rank_x variable. We then ranked this collection 
of Rank_Data objects, creating a second rank value and assigning the result to the 
rank_xy variable.

The resulting sequence can be used to a slightly modified rank_corr() function 
to compute the rank correlations of any of the available values in the rank_seq 
attribute of the Rank_Data objects. We'll leave this modification as an exercise  
for the readers.

Summary
In this chapter, we looked at different ways to use namedtuple objects to implement 
more complex data structures. The essential features of a namedtuple are a good fit 
with functional design. They can be created with a creation function and accessed by 
position as well as name.

We looked at how to use immutable namedtuples instead of stateful object 
definitions. The core technique was to wrap an object in an immutable tuple to 
provide additional attribute values.

We also looked at ways to handle multiple data types in Python. For most arithmetic 
operations, Python's internal method dispatch locates proper implementations. To 
work with collections, however, we might want to handle iterators and sequences 
slightly differently.

In the next two chapters, we'll look at the itertools module. This library module 
provides a number of functions that help us work with iterators in sophisticated 
ways. Many of these tools are examples of higher-order functions. They can help 
make a functional design stay succinct and expressive.



The Itertools Module
Functional programming emphasizes stateless programming. In Python this leads 
us to work with generator expressions, generator functions, and iterables. In this 
chapter, we'll look at the itertools library with numerous functions to help us work 
with iterable collections.

We introduced iterator functions in Chapter 3, Functions, Iterators, and Generators.  
In this chapter, we'll expand on that superficial introduction. We used some related 
functions in Chapter 5, Higher-order Functions.

Some of the functions merely behave like they are proper, lazy 
Python iterables. It's important to look at the implementation details 
for each of these functions. Some of them create intermediate objects, 
leading to the potential of consuming a large amount of memory. 
Since implementations might change with Python releases, we can't 
provide function-by-function advice here. If you have performance or 
memory issues, ensure that you check the implementation.

There are a large number of iterator functions in this module. We'll examine some of 
the functions in the next chapter. In this chapter, we'll look at three broad groupings 
of iterator functions. These are as follows:

• Functions that work with infinite iterators. These can be applied to any iterable 
or an iterator over any collection; they will consume the entire source.

• Functions that work with finite iterators. These can either accumulate a 
source multiple times, or they produce a reduction of the source.

• The tee iterator function which clones an iterator into several copies that can 
each be used independently. This provides a way to overcome the primary 
limitation of Python iterators: they can be used once only.
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We need to emphasize an important limitation of iterables that we've touched upon 
in other places.

Iterables can be used only once.
This can be astonishing because there's no error. Once exhausted, 
they appear to have no elements and will raise the StopIteration 
exception every time they're used.

There are some other features of iterators that aren't such  profound limitations.  
They are as follows:

• There's no len() function for an iterable. In almost every other respect, they 
appear to be a container.

• Iterables can do next() operations, unlike a container.
• The for statement makes the distinction between containers and iterables 

invisible; containers will produce an iterable via the iter() function.  
An iterable simply returns itself.

These points will provide some necessary background for this chapter. The idea 
of the itertools module is to leverage what iterables can do to create succinct, 
expressive applications without the complex-looking overheads associated with the 
details of managing the iterables.

Working with the infinite iterators
The itertools module provides a number of functions that we can use to enhance 
or enrich an iterable source of data. We'll look at the following three functions:

• count(): This is an unlimited version of the range() function
• cycle(): This will reiterate a cycle of values
• repeat(): This can repeat a single value an indefinite number of times

Our goal is to understand how these various iterator functions can be used in 
generator expressions and with generator functions.

Counting with count()
The built-in range() function is defined by an upper limit: the lower limit and 
step values are optional. The count() function, on the other hand, has a start and 
optional step, but no upper limit.
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This function can be thought of as the primitive basis for a function like 
enumerate(). We can define the enumerate() function in terms of zip() and 
count() functions, as follows:

enumerate = lambda x, start=0: zip(count(start),x)

The enumerate() function behaves as if it's a zip() function that uses the count() 
function to generate the values associated with some iterator.

Consequently, the following two commands are equivalent to each other:

zip(count(), some_iterator)

enumerate(some_iterator)

Both will emit a sequence of numbers of two tuples paired with items from  
the iterator.

The zip() function is made slightly simpler with the use of the count() function,  
as shown in the following command:

zip(count(1,3), some_iterator)

This will provide values of 1, 4, 7, 10, and so on, as the identifiers for each value from 
the enumerator. This is a challenge because enumerate doesn't provide a way to 
change the step.

The following command describes the enumerate() function:

((1+3*e, x) for e,x in enumerate(a))

The count() function permits non-integer values. We can use 
something like the count(0.5, 0.1) method to provide floating-
point values. This will accumulate a substantial error if the increment 
value doesn't have an exact representation. It's generally better to 
use the (0.5+x*.1 for x in count()) method to assure that 
representation errors don't accumulate.

Here's a way to examine the accumulating error. We'll define a function, which 
will evaluate items from an iterator until some condition is met. Here's how we can 
define the until() function:

def until(terminate, iterator):

    i = next(iterator)

    if terminate(*i): return i

    return until(terminate, iterator)
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We'll get the next value from the iterator. If it passes the test, that's our value. 
Otherwise, we'll evaluate this function recursively to search for a value that passes 
the test.

We'll provide a source iterable and a comparison function as follows:

source = zip(count(0, .1), (.1*c for c in count()))

neq = lambda x, y: abs(x-y) > 1.0E-12

When we evaluate the until(neq, source) method, we find the result is as follows:

(92.799999999999, 92.80000000000001)

After 928 iterations, the sum of the error bits has accumulated to 1210− . Neither value 
has an exact binary representation.

The count() function is close to the Python recursion limit. We'd 
need to rewrite our until() function to use tail-call optimization to 
locate counts with larger accumulated errors.

The smallest detectible difference can be computed as follows:

>>> until(lambda x, y: x != y, source)

(0.6, 0.6000000000000001)

After just six steps, the count(0, 0.1) method has accumulated a measurable error 
of 1610− . Not a large error, but within 1000 steps, it will be considerably larger.

Reiterating a cycle with cycle()
The cycle() function repeats a sequence of values. We can imagine using it to solve 
silly fizz-buzz problems. 

Visit http://rosettacode.org/wiki/FizzBuzz for a comprehensive set of 
solutions to a fairly trivial programming problem. Also see https://projecteuler.
net/problem=1 for an interesting variation on this theme.

We can use the cycle() function to emit sequences of True and False values  
as follows:

m3= (i == 0 for i in cycle(range(3)))

m5= (i == 0 for i in cycle(range(5)))

http://rosettacode.org/wiki/FizzBuzz
https://projecteuler.net/problem=1
https://projecteuler.net/problem=1
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If we zip together a finite collection of numbers, we'll get a set of triples with a 
number, and two flags showing whether or not the number is a multiple of 3 or a 
multiple of 5. It's important to introduce a finite iterable to create a proper upper 
bound on the volume of data being generated. Here's a sequence of values and their 
multiplier flags:

multipliers = zip(range(10), m3, m5)

We can now decompose the triples and use a filter to pass numbers which are 
multiples and reject all others:

sum(i for i, *multipliers in multipliers if any(multipliers))

This function has another, more valuable use for exploratory data analysis.

We often need to work with samples of large sets of data. The initial phases of 
cleansing and model creation are best developed with small sets of data and tested 
with larger and larger sets of data. We can use the cycle() function to fairly select 
rows from within a larger set. The population size, PN , and the desired sample size, 
SN , denotes how long we can use a cycle:

P

S

Nc
N

=

We'll assume that the data can be parsed with the csv module. This leads to an 
elegant way to create subsets. We can create subsets using the following commands:

chooser = (x == 0 for x in cycle(range(c)))

rdr= csv.reader(source_file)

wtr= csv.writer(target_file)

wtr.writerows(row for pick, row in zip(chooser, rdr) if pick)

We created a cycle() function based on the selection factor, c. For example, we 
might have a population of 10 million records: a 1,000-record subset involves picking 
1/10,000 of the records. We assumed that this snippet of code is nestled securely 
inside a with statement that opens the relevant files. We also avoided showing 
details of any dialect issues with the CSV format files.

We can use a simple generator expression to filter the data using the cycle() 
function and the source data that's available from the CSV reader. Since the chooser 
expression and the expression used to write the rows are both non-strict, there's little 
memory overhead from this kind of processing.
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We can—with a small change—use the random.randrange(c) method instead  
of the cycle(c) method to achieve a randomized selection of a similar sized subset.

We can also rewrite this method to use compress(), filter(), and islice() 
functions, as we'll see later in this chapter.

This design will also reformat a file from any nonstandard CSV-like format into 
a standardized CSV format. As long as we define parser functions that return 
consistently defined tuples and write consumer functions that write tuples to the 
target files, we can do a great deal of cleansing and filtering with relatively short, 
clear scripts.

Repeating a single value with repeat()
The repeat() function seems like an odd feature: it returns a single value over and 
over again. It can serve as a replacement for the cycle() function. We can extend 
our data subset selection function using the repeat(0) method instead of the 
cycle(range(100)) method in an expression line, for example,(x==0 for x in 
some_function).

We can think of the following commands:

all = repeat(0)

subset= cycle(range(100))

chooser = (x == 0 for x in either_all_or_subset)

This allows us to make a simple parameter change, which will either pick all data  
or pick a subset of data.

We can embed this in nested loops to create more complex structures. Here's a 
simple example:

>>> list(tuple(repeat(i, times=i)) for i in range(10))

[(), (1,), (2, 2), (3, 3, 3), (4, 4, 4, 4), (5, 5, 5, 5, 5),  
(6, 6, 6, 6, 6, 6), (7, 7, 7, 7, 7, 7, 7), (8, 8, 8, 8, 8, 8, 8, 8),  
(9, 9, 9, 9, 9, 9, 9, 9, 9)]

>>> list(sum(repeat(i, times=i)) for i in range(10))

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We created repeating sequences of numbers using the times parameter on the 
repeat() function.
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Using the finite iterators
The itertools module provides a number of functions that we can use to produce 
finite sequences of values. We'll look at ten functions in this module, plus some 
related built-in functions:

• enumerate(): This function is actually part of the __builtins__ package, 
but it works with an iterator and is very similar to other functions in the 
itertools module.

• accumulate(): This function returns a sequence of reductions of the input 
iterable. It's a higher-order function and can do a variety of clever calculations.

• chain(): This function combines multiple iterables serially.
• groupby(): This function uses a function to decompose a single iterable into 

a sequence of iterables over subsets of the input data.
• zip_longest(): This function combines elements from multiple iterables. 

The built-in zip() function truncates the sequence at the length of the 
shortest iterable. The zip_longest() function pads the shorter iterables  
with the given fillvalue.

• compress(): This function filters one iterable based on a second iterable  
of Boolean values.

• islice(): This function is the equivalent of a slice of a sequence when 
applied to an iterable.

• dropwhile() and takewhile(): Both of these functions use a Boolean 
function to filter items from an iterable. Unlike filter() or filterfalse(), 
these functions rely on a single True or False value to change their filter 
behavior for all subsequent values.

• filterfalse(): This function applies a filter function to an iterable.  
This complements the built-in filter() function.

• starmap(): This function maps a function to an iterable sequence of tuples 
using each iterable as an *args argument to the given function. The map() 
function does a similar thing using multiple parallel iterables.

We've grouped these functions into approximate categories. The categories are 
roughly related to concepts of restructuring an iterable, filtering, and mapping.
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Assigning numbers with enumerate()
In Chapter 7, Additional Tuple Techniques, we used the enumerate() function to make 
a naïve assignment of rank numbers to sorted data. We can do things like pairing up 
a value with its position in the original sequence, as follows:

pairs = tuple(enumerate(sorted(raw_values)))

This will sort the items in raw_values into order, create two tuples with an 
ascending sequence of numbers, and materialize an object we can use for further 
calculations. The command and the result are as follows:

>>> raw_values= [1.2, .8, 1.2, 2.3, 11, 18]

>>> tuple(enumerate( sorted(raw_values)))

((0, 0.8), (1, 1.2), (2, 1.2), (3, 2.3), (4, 11), (5, 18))

In Chapter 7, Additional Tuple Techniques we implemented an alternative form of 
enumerate, rank() function, which would handle ties in a more statistically useful 
way.

This is a common feature that is added to a parser to record the source data row 
numbers. In many cases, we'll create some kind of row_iter() function to extract 
the string values from a source file. This might iterate over the string values in tags 
of an XML file or in columns of a CSV file. In some cases, we might even be parsing 
data presented in an HTML file parsed with Beautiful Soup.

In Chapter 4, Working with Collections, we parsed an XML to create a simple sequence 
of position tuples. We then created legs with a start, end, and distance. We did not, 
however, assign an explicit leg number. If we ever sorted the trip collection, we'd be 
unable to determine the original ordering of the legs.

In Chapter 7, Additional Tuple Techniques, we expanded on the basic parser to create 
namedtuples for each leg of the trip. The output from this enhanced parser looks  
as follows:

(Leg(start=Point(latitude=37.54901619777347, longitude= 
-76.33029518659048), end=Point(latitude=37.840832, longitude= 
-76.273834), distance=17.7246),  
Leg(start=Point(latitude=37.840832, longitude=-76.273834),  
end=Point(latitude=38.331501, longitude=-76.459503),  
distance=30.7382),  
Leg(start=Point(latitude=38.331501, longitude=-76.459503),  
end=Point(latitude=38.845501, longitude=-76.537331),  
distance=31.0756),..., 
Leg(start=Point(latitude=38.330166, longitude=-76.458504),  
end=Point(latitude=38.976334, longitude=-76.473503),  
distance=38.8019))
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The first Leg function is a short trip between two points on the Chesapeake Bay.

We can add a function that will build a more complex tuple with the input order 
information as part of the tuple. First, we'll define a slightly more complex version  
of the Leg class:

Leg = namedtuple("Leg", ("order", "start", "end", "distance"))

This is similar to the Leg instance shown in Chapter 7, Additional Tuple Techniques 
but it includes the order as well as the other attributes. We'll define a function that 
decomposes pairs and creates Leg instances as follows:

def ordered_leg_iter(pair_iter):

    for order, pair in enumerate(pair_iter):

        start, end = pair

        yield Leg(order, start, end, round(haversine(start, end),4))

We can use this function to enumerate each pair of starting and ending points.  
We'll decompose the pair and then reassemble the order, start, and end parameters 
and the haversine(start,end) parameter's value as a single Leg instance. This 
generator function will work with an iterable sequence of pairs.

In the context of the preceding explanation, it is used as follows:

with urllib.request.urlopen("file:./Winter%202012-2013.kml") as  
source:

    path_iter = float_lat_lon(row_iter_kml(source))

    pair_iter = legs(path_iter)

    trip_iter = ordered_leg_iter(pair_iter)

    trip= tuple(trip_iter)

We've parsed the original file into the path points, created start-end pairs, and then 
created a trip that was built of individual Leg objects. The enumerate() function 
assures that each item in the iterable sequence is given a unique number that 
increments from the default starting value of 0. A second argument value can be 
given to provide an alternate starting value.

Running totals with accumulate()
The accumulate() function folds a given function into an iterable, accumulating 
a series of reductions. This will iterate over the running totals from another 
iterator; the default function is operator.add(). We can provide alternative 
functions to change the essential behavior from sum to product. The Python library 
documentation shows a particularly clever use of the max() function to create a 
sequence of maximum values so far.
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One application of running totals is quartiling data. We can compute the running 
total for each sample and divide them into quarters with an int(4*value/total) 
calculation.

In the Assigning numbers with enumerate() section, we introduced a sequence of 
latitude-longitude coordinates that describe a sequence of legs on a voyage. We can 
use the distances as a basis for quartiling the waypoints. This allows us to determine 
the midpoint in the trip.

The value of the trip variable looks as follows:

(Leg(start=Point(latitude=37.54901619777347, longitude= 
-76.33029518659048), end=Point(latitude=37.840832, longitude= 
-76.273834), distance=17.7246),  
Leg(start=Point(latitude=37.840832, longitude=-76.273834),  
end=Point(latitude=38.331501, longitude=-76.459503),  
distance=30.7382), ...,  
Leg(start=Point(latitude=38.330166, longitude=-76.458504),  
end=Point(latitude=38.976334, longitude=-76.473503),  
distance=38.8019))

Each Leg object has a start point, an end point, and a distance. The calculation of 
quartiles looks like the following example:

distances= (leg.distance for leg in trip)

distance_accum= tuple(accumulate(distances))

total= distance_accum[-1]+1.0

quartiles= tuple(int(4*d/total) for d in distance_accum)

We extracted the distance values and computed the accumulated distances for each 
leg. The last of the accumulated distances is the total. We've added 1.0 to the total 
to assure that 4*d/total is 3.9983, which truncates to 3. Without the +1.0, the final 
item would have a value of 4, which is an impossible fifth quartile. For some kinds of 
data (with extremely large values) we might have to add a larger value.

The value of the quartiles variable is as follows:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2,  
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,  
3, 3, 3, 3)

We can use the zip() function to merge this sequence of quartile numbers with 
the original data points. We can also use functions like groupby() to create distinct 
collections of the legs in each quartile.
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Combining iterators with chain()
We can use the chain() function to combine a collection of iterators into a single, 
overall iterator. This can be helpful to combine data that was decomposed via the 
groupby() function. We can use this to process a number of collections as if they 
were a single collection.

In particular, we can combine the chain() function with the contextlib.
ExitStack() method to process a collection of files as a single iterable sequence  
of values. We can do something like this:

from contextlib import ExitStack

import csv

def row_iter_csv_tab(*filenames):

    with ExitStack() as stack:

        files = [stack.enter_context(open(name, 'r', newline=''))

                 for name in filenames]

        readers = [csv.reader(f, delimiter='\t') for f in files]

        readers = map(lambda f: csv.reader(f, delimiter='\t'), files)

        yield from chain(*readers)

We've created an ExitStack object that can contain a number of individual contexts 
open. When the with statement finishes, all items in the ExitStack object will be 
closed properly. We created a simple sequence of open file objects; these objects were 
also entered into the ExitStack object.

Given the sequence of files in the files variable, we created a sequence of  
CSV readers in the readers variable. In this case, all of our files have a common  
tab-delimited format, which makes it very pleasant to open all of the files with a 
simple, consistent application of a function to the sequence of files.

We could also open the files using the following command:

readers = map(lambda f: csv.reader(f, delimiter='\t'), files)

Finally, we chained all of the readers into a single iterator with chain(*readers). 
This was used to yield the sequence of rows from all of the files.

It's important to note that we can't return the chain(*readers) object. If we do, this 
would exit the with statement context, closing all the source files. Instead, we must 
yield individual rows so that the with statement context is kept active.
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Partitioning an iterator with groupby()
We can use the groupby() function to partition an iterator into smaller iterators.  
This works by evaluating the given key() function for each item in the given 
iterable. If the key value matches the previous item's key, the two items are part of 
the same partition. If the key does not match the previous item's key, the previous 
partition is ended and a new partition is started.

The output from the groupby() function is a sequence of two tuples. Each tuple 
has the group's key value and an iterable over the items in the group. Each group's 
iterator can be preserved as a tuple or processed to reduce it to some summary value. 
Because of the way the group iterators are created, they can't be preserved.

In the Running totals with accumulate() section, earlier in the chapter, we showed how 
to compute quartile values for an input sequence.

Given the trip variable with the raw data and the quartile variable with the quartile 
assignments, we can group the data using the following commands:

group_iter= groupby(zip(quartile, trip), key=lambda q_raw:

    q_raw[0])

for group_key, group_iter in group_iter:

    print(group_key, tuple(group_iter))

This will start by zipping the quartile numbers with the raw trip data, iterating over 
two tuples. The groupby() function will use the given lambda variable to group by 
the quartile number. We used a for loop to examine the results of the groupby() 
function. This shows how we get a group key value and an iterator over members  
of the group.

The input to the groupby() function must be sorted by the key values. This will 
assure that all of the items in a group will be adjacent.

Note that we can also create groups using the defaultdict(list) method,  
as follows:

def groupby_2(iterable, key):

    groups = defaultdict(list)

    for item in iterable:

        groups[key(item)].append(item)

    for g in groups:

        yield iter(groups[g])
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We created a defaultdict class with a list object as the value associated with  
each key. Each item will have the given key() function applied to create a key value. 
The item is appended to the list in the defaultdict class with the given key.

Once all of the items are partitioned, we can then return each partition as an iterator 
over the items that share a common key. This is similar to the groupby() function 
because the input iterator to this function isn't necessarily sorted in precisely the 
same order; it's possible that the groups might have the same members, but the  
order might differ.

Merging iterables with zip_longest() and zip()
We saw the zip() function in Chapter 4, Working with Collections. The zip_longest() 
function differs from the zip() function in an important way: where the zip() 
function stops at the end of the shortest iterable, the zip_longest() function pads 
short iterables and stops at the end of the longest iterable.

The fillvalue keyword parameter allows filling with a value other than the default 
value, None.

For most exploratory data analysis applications, padding with a default value is 
statistically difficult to justify. The Python Standard Library document shows a few 
clever things which can be done with the zip_longest() function. It's difficult to 
expand on these without drifting far from our focus on data analysis.

Filtering with compress()
The built-in filter() function uses a predicate to determine if an item is passed  
or rejected. Instead of a function that calculates a value, we can use a second, parallel 
iterable to determine which items to pass and which to reject.

We can think of the filter() function as having the following definition:

def filter(iterable, function):

    i1, i2 = tee(iterable, 2)

    return compress(i1, (function(x) for x in i2))

We cloned the iterable using the tee() function. (We'll look at this function in 
detail later.) We evaluated the filter predicate for each value. Then we provided the 
original iterable and the filter function iterable to compress, pass, and reject values. 
This builds the features of the filter() function from the more primitive features  
of the compress() function.
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In the Reiterating a cycle with cycle() section of this chapter, we looked at data selection 
using a simple generator expression. Its essence was as follows:

chooser = (x == 0 for x in cycle(range(c)))

keep= (row for pick, row in zip(chooser, some_source) if pick)

We defined a function which would produce a value 1 followed by c-1 zeroes.  
This cycle would be repeated, allowing to pick only 1/c rows from the source.

We can replace the cycle(range(c)) function with the repeat(0) function to 
select all rows. We can also replace it with the random.randrange(c) function to 
randomize the selection of rows.

The keep expression is really just a compress(some_source, chooser) method.  
If we make that change, the processing is simplified:

all = repeat(0)

subset = cycle(range(c))

randomized = random.randrange(c)

selection_rule = one of all, subset, or randomized

chooser = (x == 0 for x in selection_rule)

keep = compress(some_source, chooser)

We've defined three alternative selection rules: all, subset, and randomized.  
The subset and randomized versions will pick 1/c rows from the source. The chooser 
expression will build an iterable over True and False values based on one of the 
selection rules. The rows to be kept are selected by applying the source iterable to the 
row selection iterable.

Since all of this is non-strict, rows are not read from the source until required.  
This allows us to process very large sets of data efficiently. Also, the relative 
simplicity of the Python code means that we don't really need a complex 
configuration file and an associated parser to make choices among the selection  
rules. We have the option to use this bit of Python code as the configuration for  
a larger data sampling application.

Picking subsets with islice()
In Chapter 4, Working with Collections, we looked at slice notation to select subsets 
from a collection. Our example was to pair up items sliced from a list object.  
The following is a simple list:

flat= ['2', '3', '5', '7', '11', '13', '17', '19', '23', '29', '31',  
'37', '41', '43', '47', '53', '59', '61', '67', '71',... ]
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We can create pairs using list slices as follows:

zip(flat[0::2], flat[1::2])

The islice() function gives us similar capabilities without the overhead of 
materializing a list object, and it looks like the following:

flat_iter_1= iter(flat)

flat_iter_2= iter(flat)

zip(islice(flat_iter_1, 0, None, 2), islice(flat_iter_2, 1, None, 2))

We created two independent iterators over a flat list of data points. These might be 
two separate iterators over an open file or a database result set. The two iterators 
need to be independent so that change in one islice() function doesn't interfere 
with the other islice() function.

The two sets of arguments to the islice() function are similar to the flat[0::2] 
and flat[1::2] methods. There's no slice-like shorthand, so the start and stop 
argument values are required. The step can be omitted and the default value is 1. 
This will produce a sequence of two tuples from the original sequence:

[(2, 3), (5, 7), (11, 13), (17, 19), (23, 29), ... (7883, 7901),  
(7907, 7919)]

Since islice() works with an iterable, this kind of design will work with extremely 
large sets of data. We can use this to pick a subset out of a larger set of data. In 
addition to using the filter() or compress() functions, we can also use the 
islice(source,0,None,c) method to pick 1/ c items from a larger set of data.

Stateful filtering with dropwhile() and 
takewhile()
The dropwhile() and takewhile() functions are stateful filter functions. They start 
in one mode; the given predicate function is a kind of flip-flop that switches the 
mode. The dropwhile() function starts in reject mode; when the function becomes 
False, it switches to pass mode. The takewhile() function starts in pass mode; 
when the given function becomes False, it switches into reject mode.

Since these are filters, both functions will consume the entire iterable. Given an 
infinite iterator like the count() function, it will continue indefinitely. Since there's 
no simple integer overflow in Python, an ill-considered use of dropwhile() or 
takewhile() functions won't crash after a few billion iterations with integer 
overflow. It really can run for a very, very long time.
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We can use these with file parsing to skip headers or footers in the input. We use the 
dropwhile() function to reject header rows and pass the remaining data. We use the 
takewhile() function to pass data and reject trailer rows. We'll return to the simple 
GPL file format shown in Chapter 3, Functions, Iterators, and Generators. The file has a 
header that looks as follows:

GIMP Palette
Name: Crayola
Columns: 16
#

This is followed by rows that look like the following example:

255  73 108  Radical Red

We can easily locate the final line of the headers—the # line—using a parser based  
on the dropwhile() function, as follows:

with open("crayola.gpl") as source:

    rdr = csv.reader(source, delimiter='\t')

    rows = dropwhile(lambda row: row[0] != '#', rdr)

We created a CSV reader to parse the lines based on tab characters. This will neatly 
separate the color three tuple from the name. The three tuple will need further 
parsing. This will produce an iterator that starts with the # line and continues with 
the rest of the file.

We can use the islice() function to discard the first item of an iterable. We can then 
parse the color details as follows:

    color_rows = islice(rows, 1, None)

    colors = ((color.split(), name) for color, name in color_rows)

    print(list(colors))

The islice(rows, 1, None) expression is similar to asking for a rows[1:] slice: 
the first item is quietly discarded. Once the last of the heading rows have been 
discarded, we can parse the color tuples and return more useful color objects.

For this particular file, we can also use the number of columns located by the CSV 
reader function. We can use the dropwhile(lambda row: len(row) == 1, rdr) 
method to discard header rows. This doesn't always work out well in general. 
Locating the last line of the headers is often easier than trying to locate some general 
feature that distinguishes header (or trailer) lines from the meaningful file content.
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Two approaches to filtering with filterfalse() 
and filter()
In Chapter 5, Higher-order Functions we looked at the built-in filter() function.  
The filterfalse() function from the itertools module could be defined from  
the filter() function, as follows:

filterfalse = lambda pred, iterable:

    filter(lambda x: not pred(x), iterable)

As with the filter() function, the predicate function can be of None value. The 
value of the filter(None, iterable) method is all the True values in the iterable. 
The value of the filterfalse(None, iterable) method is all of the False values 
from the iterable:

>>> filter(None, [0, False, 1, 2])

<filter object at 0x101b43a50>

>>> list(_)

[1, 2]

>>> filterfalse(None, [0, False, 1, 2])

<itertools.filterfalse object at 0x101b43a50>

>>> list(_)

[0, False]

The point of having the filterfalse() function is to promote reuse. If we have a 
succinct function that makes a filter decision, we should be able to use that function 
to partition input in to pass and reject groups without having to fiddle around with 
logical negation.

The idea is to execute the following commands:

iter_1, iter_2 = iter(some_source), iter(some_source)

good = filter(test, iter_1)

bad = filterfalse(test, iter_2)

This will obviously include all items from the source. The test() function is 
unchanged, and we can't introduce a subtle logic bug through improper use of ().
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Applying a function to data via starmap()  
and map()
The built-in map() function is a higher-order function that applies a map() function 
to items from an iterable. We can think of the simple version of the map() function, 
as follows:

map(function, arg_iter) == (function(a) for a in arg_iter)

This works well when the arg_iter parameter is a list of individual values. The 
starmap() function in the itertools module is simply the *a version of the map() 
function, which is as follows:

starmap(function, arg_iter) == (function(*a) for a in arg_iter)

This reflects a small shift in the semantics of the map() function to properly handle  
a tuple-of-tuples structure.

The map() function can also accept multiple iterables; the values from these 
additional iterables are zipped and it behaves like the starmap() function. Each 
zipped item from the source iterables becomes multiple arguments to the given 
function.

We can think of the map(function, iter1, iter2, ..., itern) method being 
defined as the following two commands:

(function(*args) for args in zip(iter1, iter2, ..., itern))

starmap(function, zip(iter1, iter2, ..., itern))

Various iterator values are used to construct a tuple of arguments via the *args 
construct. In effect, starmap() function is like this more general case. We can build 
the simple map() function from the more general starmap() function.

When we look at the trip data, from the preceding commands, we can redefine the 
construction of a Leg object based on the starmap() function. Prior to creating Leg 
objects, we created pairs of points. Each pair looks as follows:

((Point(latitude=37.54901619777347, longitude=-76.33029518659048),  
Point(latitude=37.840832, longitude=-76.273834)), ..., 
(Point(latitude=38.330166, longitude=-76.458504),  
Point(latitude=38.976334, longitude=-76.473503)))

We could use the starmap() function to assemble the Leg objects, as follows:

with urllib.request.urlopen(url) as source:

    path_iter = float_lat_lon(row_iter_kml(source))

    pair_iter = legs(path_iter)
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    make_leg = lambda start, end: Leg(start, end,  
    haversine(start,end))

    trip = list(starmap(make_leg, pair_iter))

The legs() function creates pairs of point objects that reflect the start and end of 
a leg of the voyage. Given these pairs, we can create a simple function, make_leg, 
which accepts a pair of Points object, and returns a Leg object with the start point, 
end point, and distance between the two points.

The benefit of the starmap(function, some_list) method is to replace a potentially 
wordy (function(*args) for args in some_list) generator expression.

Cloning iterators with tee()
The tee() function gives us a way to circumvent one of the important Python rules 
for working with iterables. The rule is so important, we'll repeat it here.

Iterators can be used only once.

The tee() function allows us to clone an iterator. This seems to free us from  
having to materialize a sequence so that we can make multiple passes over the  
data. For example, a simple average for an immense dataset could be written in  
the following way:

def mean(iterator):

    it0, it1= tee(iterator,2)

    s0= sum(1 for x in it0)

    s1= sum(x for x in it1)

    return s0/s1

This would compute an average without appearing to materialize the entire dataset 
in memory in any form.

While interesting in principle, the tee() function's implementation suffers from 
a severe limitation. In most Python implementations, the cloning is done by 
materializing a sequence. While this circumvents the "one time only" rule for small 
collections, it doesn't work out well for immense collections.

Also, the current implementation of the tee() function consumes the source iterator. 
It might be nice to create some syntactic sugar to allow unlimited use of an iterator. 
This is difficult to manage in practice. Instead, Python obliges us to optimize the 
tee() function carefully.
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The itertools recipes
The itertools chapter of the Python library documentation, Itertools Recipes, is 
outstanding. The basic definitions are followed by a series of recipes that are 
extremely clear and helpful. Since there's no reason to reproduce these, we'll 
reference them here. They should be considered as required reading on functional 
programming in Python.

10.1.2 section, Itertools Recipes of Python Standard Library, is a 
wonderful resource. See 
https://docs.python.org/3/library/itertools.
html#itertools-recipes.

It's important to note that these aren't importable functions in the itertools 
modules. A recipe needs to be read and understood and then, perhaps, copied or 
modified before inclusion in an application.

The following table summarizes some of the recipes that show functional 
programming algorithms built from the itertools basics:

Function Name Arguments Results
take (n, iterable) This returns the first n items of the iterable 

as a list. This wraps a use of islice() in a 
simple name.

tabulate (function, 
start=0)

This returns function(0) and 
function(1). This is based on a 
map(function, count()).

consume (iterator, n) This advances the iterator n steps ahead. If n 
is None, iterator consumes the steps entirely.

nth (iterable, n, 
default=None)

This returns the nth item or a default value. 
This wraps the use of islice() in a simple 
name.

quantify (iterable, 
pred=bool)

This counts how many times the predicate is 
true. This uses sum() and map(), and relies 
on the way a Boolean predicate is effectively 1 
when converted to an integer value.

padnone (iterable) This returns the sequence elements and then 
returns None indefinitely. This can create 
functions that behave like zip_longest() 
or map().

ncycles (iterable, n) This returns the sequence elements n times.

https://docs.python.org/3/library/itertools.html#itertools-recipes
https://docs.python.org/3/library/itertools.html#itertools-recipes
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Function Name Arguments Results
dotproduct (vec1, vec2) This is the essential definition of a dot 

product. Multiply two vectors and find the 
sum of the result.

flatten (listOfLists) This flattens one level of nesting. This chains 
the various lists together into a single list.

repeatfunc (func, 
times=None, 
*args)

This calls to func repeatedly with specified 
arguments.

pairwise (iterable): s -> (s0,s1), (s1,s2), (s2, s3).
grouper (iterable, n, 

fillvalue=None)
Collect data into fixed length chunks or 
blocks.

roundrobin (*iterables) roundrobin('ABC', 'D', 'EF') --> 
A D  
E B F C

partition (pred, 
iterable)

This uses a predicate to partition entries into 
False entries and True entries.

unique_
everseen

(iterable, 
key=None)

This lists unique elements, preserving order. 
Remembers all elements ever seen. unique_
everseen('AAAABBBCCDAABBB') - 
-> A B C D.

unique_
justseen

(iterable, 
key=None)

This lists unique elements, preserving order. 
Remembers only the element just seen. 
unique_justseen('AAAABBBCCDAABBB') 
- 
-> A B C D A B.

iter_except (func, 
exception, 
first=None)

Call a function repeatedly until an exception 
is raised. This can be used to iterate until 
KeyError or IndexError.

Summary
In this chapter, we've looked at a number of functions in the itertools module. 
This library module provides a number of functions that help us to work with 
iterators in sophisticated ways.

We've looked at the infinite iterators; these repeat without terminating. These include 
the count(), cycle(), and repeat() functions. Since they don't terminate, the 
consuming function must determine when to stop accepting values.
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We've also looked at a number of finite iterators. Some of these are built-in and some 
of these are part of the itertools module. These work with a source iterable, so they 
terminate when that iterable is exhausted. These functions include enumerate(), 
accumulate() , chain() , groupby() , zip_longest(), zip(), compress(), 
islice(), dropwhile(), takewhile(), filterfalse(), filter(), starmap(), and 
map(). These functions allow us to replace possibly complex generator expressions 
with simpler-looking functions.

Additionally, we looked at the recipes from the documentation, which provide yet 
more functions we can study and copy for our own applications. The recipes list 
shows a wealth of common design patterns.

In Chapter 9, More Itertools Techniques, we'll continue our study of the itertools 
module. We'll look at the iterators focused on permutations and combinations.  
These don't apply to processing large sets of data. They're a different kind of  
iterator-based tool.



More Itertools Techniques
Functional programming emphasizes stateless programming. In Python, this leads 
us to work with generator expressions, generator functions, and iterables. In this 
chapter, we'll continue our study of the itertools library, with numerous functions 
to help us work with iterable collections.

In the previous chapter, we looked at three broad groupings of iterator functions. 
They are as follows:

• Functions that work with infinite iterators can be applied to any iterable  
or an iterator over any collection; they will consume the entire source

• Functions that work with finite iterators can either accumulate a source 
multiple times, or they produce a reduction of the source

• The tee() iterator function clones an iterator into several copies that can 
each be used independently

In this chapter, we'll look at the itertools functions that work with permutations 
and combinations. These include several functions and a few recipes built on these 
functions. The functions are as follows:

• product(): This function forms a Cartesian product equivalent to the nested 
for loops

• permutations(): This function emits tuples of length r from a universe p in 
all possible orderings; there are no repeated elements

• combinations(): This function emits tuples of length r from a universe p in 
sorted order; there are no repeated elements

• combinations_with_replacement(): This function emits tuples of length r 
from p in a sorted order, with repeated elements
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These functions embody algorithms that iterate over potentially large result sets  
from small collections of input data. Some kinds of problems have exact solutions 
based on exhaustively enumerating a potentially gigantic universe of permutations. 
The functions make it simple to emit a large number of permutations; in some cases, 
the simplicity isn't actually optimal.

Enumerating the Cartesian product
The term Cartesian product refers to the idea of enumerating all the possible 
combinations of elements drawn from a number of sets.

Mathematically, we might say that the product of two sets, { } { }1,2,3,...,13 C,D,H,S× ,  
has 52 pairs as follows:

{(1, C), (1, D), (1, H), (1, S), (2, C), (2, D), (2, H), (2, S), ...,  
(13, C), (13, D), (13, H), (13, S)}

We can produce the preceding results by executing the following commands:

>>> list(product(range(1, 14), '♣♦♥♠'))

[(1, '♣'), (1, '♦'), (1, '♥'), (1, '♠'),(2, '♣'), (2, '♦'), (2, '♥'),  
(2, '♠'),… (13, '♣'), (13, '♦'), (13, '♥'), (13, '♠')]

The calculation of a product can be extended to any number of iterable collections. 
Using a large number of collections can lead to a very large result set.

Reducing a product
In relational database theory, a join between tables can be thought of as a filtered 
product. A SQL SELECT statement that joins tables without a WHERE clause will 
produce a Cartesian product of rows in the tables. This can be thought of as the 
worst-case algorithm: a product without any filtering to pick the proper results.

We can use the join() function to join two tables, as shown in the following 
commands:

def join(t1, t2, where):):

    return filter(where, product(t1, t2)))))

All combinations of the two iterables, t1 and t2, are computed. The filter() 
function will apply the given where function to pass or reject items that didn't fit the 
given condition to match appropriate rows from each iterable. This will work when 
the where function returns a simple Boolean.
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In some cases, we don't have a simple Boolean matching function. Instead, we're 
forced to search for a minimum or maximum of some distance between items.

Assume that we have a table of Color objects as follows:

[Color(rgb=(239, 222, 205), name='Almond'),  
Color(rgb=(255, 255, 153), name='Canary'),  
Color(rgb=(28, 172, 120), name='Green'),... 
Color(rgb=(255, 174, 66), name='Yellow Orange')]

For more information, see Chapter 6, Recursions and Reductions, where we showed you 
how to parse a file of colors to create namedtuple objects. In this case, we've left the 
RGB as a triple, instead of decomposing each individual field.

An image will have a collection of pixels:

pixels= [(([(r, g, b), (r, g, b), (r, g, b), ...)

As a practical matter, the Python Imaging Library (PIL) package presents the pixels 
in a number of forms. One of these is the mapping from (x, y) coordinate to RGB 
triple. For more information, visit https://pypi.python.org/pypi/Pillow for the 
Pillow project documentation.

Given a PIL.Image object, we can iterate over the collection of pixels with something 
like the following commands:

def pixel_iter(image):

    w, h = img.size

    return ((c, img.getpixel(c)) for c in product(range(w),  
range(h)))

We've determined the range of each coordinate based on the image size. The 
calculation of the product(range(w), range(h)) method creates all the possible 
combinations of coordinates. It is, effectively, two nested for loops.

This has the advantage of providing each pixel with its coordinates. We can then 
process the pixels in no particular order and still reconstruct an image. This is 
particularly handy when using multiprocessing or multithreading to spread the 
workload among several cores or processors. The concurrent.futures module 
provides an easy way to distribute work among cores or processors.

https://pypi.python.org/pypi/Pillow
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Computing distances
A number of decision-making problems require that we find a close-enough match. 
We might not be able to use a simple equality test. Instead, we have to use a distance 
metric and locate items with the shortest distance to our target. For text, we might 
use the Levenshtein distance; this shows how many changes are required to get from 
a given block of text to our target.

We'll use a slightly simpler example. This will involve very simple math. However, 
even though it's simple, it doesn't work out well if we approach it naively.

When doing color matching, we won't have a simple equality test. We're rarely able 
to check for the exact equality of pixel colors. We're often forced to define a minimal 
distance function to determine whether two colors are close enough, without 
being the same three values of R, G, and B. There are several common approaches, 
including the Euclidean distance, Manhattan distance, and yet other complex 
weightings based on visual preferences.

Here are the Euclidean and Manhattan distance functions:

def euclidean(pixel, color):

    return math.sqrt(sum(map(lambda x, y: (x-y)**2, pixel,  
    color.rgb)))))))

def manhattan(pixel, color):

    return sum(map(lambda x, y: abs(x-y), pixel, color.rgb)))))

The Euclidean distance measures the hypotenuse of a right-angled triangle among 
the three points in an RGB space. The Manhattan distance sums the edges of each 
leg of the right-angled triangle among the three points. The Euclidean distance offers 
precision where the Manhattan distance offers calculation speed.

Looking forward, we're aiming for a structure that looks like this. For each 
individual pixel, we can compute the distance from that pixel's color to the available 
colors in a limited color set. The results of this calculation for a single pixel might 
look like this:

(((0, 0), (92, 139, 195), Color(rgb=(239, 222, 205), name='Almond'),  
169.10943202553784), ((0, 0), (92, 139, 195),  
Color(rgb=(255, 255, 153), name='Canary'), 204.42357985320578),  
((0, 0), (92, 139, 195), Color(rgb=(28, 172, 120), name='Green'),  
103.97114984456024), ((0, 0), (92, 139, 195),  
Color(rgb=(48, 186, 143), name='Mountain Meadow'),  
82.75868534480233), ((0, 0), (92, 139, 195),  
Color(rgb=(255, 73, 108), name='Radical Red'), 196.19887869200477),  
((0, 0), (92, 139, 195), Color(rgb=(253, 94, 83),  
name='Sunset Orange'), 201.2212712413874), ((0, 0), (92, 139, 195),  
Color(rgb=(255, 174, 66), name='Yellow Orange'), 210.7961100210343))
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We've shown an overall tuple that consists of a number of four tuples. Each of the 
four tuples contains the following contents:

• The pixel's coordinates, for example, (0,0)
• The pixel's original color, for example, (92, 139, 195)
• A Color object from our set of seven colors, for example, Color(rgb=(239, 

222, 205),name='Almond')
• The Euclidean distance between the original color and the given Color object

We can see that the smallest Euclidean distance is the closest match color. This kind 
of reduction is done easily with the min() function. If the overall tuple is assigned to 
a variable name, choices, the pixel-level reduction would look like this:

min(choices, key=lambda xypcd: xypcd[3]))])

We've called each four tuple an xypcd, that is, an xy coordinate, pixel, color, and 
distance. The minimum distance calculation will then pick a single four tuple as the 
optimal match between pixel and color.

Getting all pixels and all colors
How do we get to the structure that contains all pixels and all colors? The answer is 
simple but, as we'll see, less than optimal.

One way to map pixels to colors is to enumerate all pixels and all colors using the 
product() function:

xy = lambda xyp_c: xyp_c[0][0]

p = lambda xyp_c: xyp_c[0][1]

c = lambda xyp_c: xyp_c[1]

distances= (( = ((xy(item), p(item), c(item), euclidean(p(item),  
c(item)))

    for item in product(pixel_iter(img), colors)))))

The core of this is the product(pixel_iter(img), colors) method that creates all 
pixels combined with all colors. We will do a bit of restructuring of the data to flatten 
it out. We will apply the euclidean() function to compute distances between pixel 
colors and Color objects.
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The final selection of colors uses the groupby() function and the min(choices,...) 
expression, as shown in the following command snippet:

for _, choices in groupby(distances, key=lambda xy_p_c_d:

    xy_p_c_d[0]):

        print(min(choices, key=lambda xypcd: xypcd[3])))]))

The overall product of pixels and colors is a long, flat iterable. We grouped the iterable 
into smaller collections where the coordinates match. This will break the big iterable 
into smaller iterables of just colors associated with a single pixel. We can then pick the 
minimal color distance for each color.

In a picture that's 3,648×2,736 with 133 Crayola colors, we have an iterable with 
1,327,463,424 items to be evaluated. Yes. That's a billion combinations created by this 
distances expression. The number is not necessarily impractical. It's well within the 
limits of what Python can do. However, it reveals an important flaw in the naïve use 
of the product() function.

We can't trivially do this kind of large-scale processing without some analysis to 
see how large it is. Here are some timeit numbers for these that do each of these 
calculations only 1,000,000 times:

• Euclidean 2.8
• Manhattan 1.8

Scaling up from 1 million to 1 billion means 1,800 seconds, that is, about half an  
hour for the Manhattan distance and 46 minutes to calculate the Euclidean distance. 
It appears that the core arithmetic operations of Python are too slow for this kind of 
naïve bulk processing.

More importantly, we're doing it wrong. This kind of width×height×color processing is 
simply a bad design. In many cases, we can do much better.

Performance analysis
A key feature of any big data algorithm is locating a way to execute some kind of a 
divide-and-conquer strategy. This is true of functional programming design as well 
as imperative design.

We have three options to speed up this processing; they are as follows:

• We can try to use parallelism to do more of the calculations concurrently.  
On a four-core processor, the time can be cut to approximately ¼. This cuts 
the time to 8 minutes for Manhattan distances.
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• We can see if caching intermediate results will reduce the amount of 
redundant calculation. The question arises of how many colors are the  
same and how many colors are unique.

• We can look for a radical change in the algorithm.

We'll combine the last two points by computing all the possible comparisons between 
source colors and target colors. In this case, as in many other contexts, we can easily 
enumerate the entire mapping and avoid redundant calculation when done on a  
pixel-by-pixel basis. We'll also change the algorithm from a series of comparisons  
to a series of simple lookups in a mapping object.

When looking at this idea of precomputing all transformations for source color 
to target color, we need some overall statistics for an arbitrary image. The code 
associated with this book includes IMG_2705.jpg. Here is a basic algorithm to  
collect some data from the specified image:

from collections import defaultdict, Counter

palette = defaultdict(list)

for xy_p in pixel_iter(img):

    xy, p = xy_p

    palette[p].append(xy)

w, h = img.size

print(""("Total pixels", w*h)

print(""("Total colors", len(palette)))))

We collected all pixels of a given color into a list organized by color. From this,  
we'll learn the first of the following facts:

• The total number of pixels is 9,980,928. This is not surprising for a 10 
megapixel image.

• The total number of colors is 210,303. If we try to compute the Euclidean 
distance between actual colors and the 133 colors, we would merely do 
27,970,299 calculations, which might take about 76 seconds.

• Using a 3-bit mask, 0b11100000, there are 214 colors used out of  
a possible 512.

• Using a 4-bit mask, 0b11110000, there are 1,150 colors used out of 4,096.
• Using a 5-bit mask, 0b11111000, there are 5,845 colors used out of 32,768.
• Using a 6-bit mask, 0b11111100, there are 27,726 colors out of 262,144.
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This gives us some insight into how we can rearrange the data structure, calculate 
the matching colors quickly, and then rebuild the image without doing a billion 
comparisons.

We can apply mask values to the RGB bytes with the following piece of command:

masked_color= tuple(map(lambda x: x&0b11100000, c))

This will pick out the most significant 3 bits of red, green, and blue values. If we use 
this instead of the original color to create a Counter object, we'll see that we have 214 
distinct values.

Rearranging the problem
The naïve use of the product() function to compare all pixels and all colors was  
a bad idea. There are 10 million pixels, but only 200,000 unique colors. When 
mapping the source colors to target colors, we only have to save 200,000 values  
in a simple map.

We'll approach it as follows:

• Compute the source to target color mapping. In this case, let's use 3-bit color 
values as output. Each R, G, and B value comes from the eight values in the 
range(0, 256, 32) method. We can use this expression to enumerate all 
the output colors:
product(range(0,256,32), range(0,256,32), range(0,256,32))

• We can then compute the Euclidean distance to the nearest color in our 
source palette, doing just 68,096 calculations. This takes about 0.14 seconds. 
It's done one time only and computes the 200,000 mappings.

• In one pass through the image, build a new image using the revised color 
table. In some cases, we can exploit the truncation of integer values. We can 
use an expression such as (0b11100000&r, 0b11100000&g, 0b11100000&b) 
to remove the least significant bits of an image color. We'll look at this 
additional reduction in computation later.

This will replace a billion Euclidean distance calculations with 10 million  
dictionary lookups. This will replace 30 minutes of calculation with about  
30 seconds of calculation.

Instead of doing color mapping for all pixels, we'll create a static mapping from 
input to output values. We can build the image building using simple lookup 
mapping from original color to new color.
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Once we have the palette of all 200,000 colors, we can apply the fast Manhattan 
distance to locate the nearest color in an output, such as the Crayola colors. This will 
use the algorithm for color matching shown earlier to compute the mapping instead 
of a result image. The difference will center on using the palette.keys() function 
instead of the pixel_iter() function.

We'll fold in yet another optimization: truncation. This will give us an even  
faster algorithm.

Combining two transformations
When combining multiple transformations, we can build a more complex mapping 
from source through intermediate targets to the result. To illustrate this, we'll 
truncate the colors as well as apply a mapping.

In some problem contexts, truncation can be difficult. In other cases, it's often 
quite simple. For example, truncating US postal ZIP codes from 9 to 5 characters is 
common. Postal codes can be further truncated to three characters to determine a 
regional facility that represents a larger geography.

For colors, we can use the bit-masking shown previously to truncate colors form 
three 8-bit values (24 bits, 16 million colors) to three 3-bit values (9 bits, 512 colors).

Here is a way to build a color map that combines both distances to a given set of 
colors and truncation of the source colors:

bit3 = range(0, 256, 0b100000)

best = (min(((((euclidean(rgb, c), rgb, c) for c in colors)

    for rgb in product(bit3, bit3, bit3)))))

color_map = dict(((((b[1], b[2].rgb) for b in best)

We created a range object, bit3, that will iterate through all eight of the 3-bit  
color values.

The range objects aren't like ordinary iterators; they can be used 
multiple times. As a result of this, the product(bit3, bit3, 
bit3) expression will produce all 512 color combinations that we'll 
use as the output colors.

For each truncated RGB color, we created a three tuple that has (0) the distance from 
all crayon colors, (1) the RGB color, and (2) the crayon Color object. When we ask for 
the minimum value of this collection, we'll get the closest crayon Color object to the 
truncated RGB color.
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We built a dictionary that maps from the truncated RGB color to the closest crayon. 
In order to use this mapping, we'll truncate a source color before looking up the 
nearest crayon in the mapping. This use of truncation coupled with the precomputed 
mapping shows how we might need to combine mapping techniques.

The following are the commands for the image replacement:

clone = img.copy()

for xy, p in pixel_iter(img):

    r, g, b = p

    repl = color_map[(([(0b11100000&r, 0b11100000&g,  
    0b11100000&b)]])]

    clone.putpixel(xy, repl)

clone.show()

This simply uses a number of PIL features to replace all of the pixels in a picture with 
other pixels.

What we've seen is that the naïve use of some functional programming tools can lead 
to algorithms that are expressive and succinct, but also inefficient. The essential tools 
to compute the complexity of a calculation—sometimes called Big-O analysis—is just 
as important for functional programming as it is for imperative programming.

The problem is not that the product() function is inefficient. The problem is that we 
can use the product() function in an inefficient algorithm.

Permuting a collection of values
When we permute a collection of values, we'll elaborate all the possible orders for the 
items. There are n! ways to permute n items. We can use permutations as a kind of 
brute-force solution to a variety of optimization problems.

By visiting http://en.wikipedia.org/wiki/Combinatorial_optimization,  
we can see that the exhaustive enumeration of all permutations isn't appropriate  
for larger problems. The use of the itertools.permutations() function is a handy 
way to explore very small problems.

One popular example of these combinatorial optimization problems is the 
assignment problem. We have n agents and n tasks, but the cost of each agent 
performing a given task is not equal. Imagine that some agents have trouble with 
some details, while other agents excel at these details. If we can properly assign tasks 
to agents, we can minimize the costs.

http://en.wikipedia.org/wiki/Combinatorial_optimization
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We can create a simple grid that shows how well a given agent is able to perform a 
given task. For a small problem of a half-dozen agents and tasks, there will be a grid 
of 36 costs. Each cell in the grid shows agents 0 to 5 performing tasks A to F.

We can easily enumerate all the possible permutations. However, this approach 
doesn't scale well. 10! is 3,628,800. We can see this sequence of 3 million items with 
the list(permutations(range(10))) method.

We would expect to solve a problem of this size in a few seconds. If we double the size 
of the problem to 20!, we would have a bit of a scalability problem: there would be 
2,432,902,008,176,640,000 permutations. If it takes about 0.56 seconds to generate 10! 
permutations, then to generate 20! permutations, it would take about 12,000 years.

Assume that we have a cost matrix with 36 values that show the costs of six agents 
and six tasks. We can formulate the problem as follows:

perms = permutations(range(6)))))

alt= [(([(sum(cost[x][y] for y, x in enumerate(perm)), perm) for perm  
in perms]

m = min(alt)[0]

print([[([ans for s, ans in alt if s == m]))])

We've created all permutations of tasks for our six agents. We've computed the sums 
of all the costs in our cost matrix for each task assigned to each agent. The minimum 
cost is the optimal solution. In many cases, there might be multiple optimal 
solutions; we'll locate all of them.

For small text-book examples, this is very fast. For larger examples, an 
approximation algorithm is more appropriate.

Generating all combinations
The itertools module also supports computing all combinations of a set of values. 
When looking at combinations, the order doesn't matter, so there are far fewer 
combinations than permutations. The number of combinations is often stated as 

( )
p!

r! !
p
r p r

 
=  − 

. This is the number of ways that we can take combinations of r things  
at a time from a universe of p items overall.

For example, there are 2,598,960 5-card poker hands. We can actually enumerate all 2 
million hands by executing the following command:

hands = list(combinations(tuple(product(range(13), '♠♥♦♣')), 5))
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More practically, we have a dataset with a number of variables. A common exploratory 
technique is to determine the correlation among all pairs of variables in a set of data. 
If there are v variables, then we will enumerate all variables that must be compared by 
executing the following command:

combinations(range(v), 2)

Let's get some sample data from http://www.tylervigen.com to show how this 
will work. We'll pick three datasets with the same time range: numbers 7, 43, and 
3890. We'll simply laminate the data into a grid, repeating the year column.

This is how the first and the remaining rows of the yearly data will look:

[('year', 'Per capita consumption of cheese (US)Pounds (USDA)',  
'Number of people who died by becoming tangled in their  
bedsheetsDeaths (US) (CDC)',  
'year', 'Per capita consumption of mozzarella cheese (US)Pounds  
(USDA)', 'Civil engineering doctorates awarded (US)Degrees awarded  
(National Science Foundation)',  
'year', 'US crude oil imports from VenezuelaMillions of barrels  
(Dept. of Energy)', 'Per capita consumption of high fructose corn  
syrup (US)Pounds (USDA)'),

(2000, 29.8, 327, 2000, 9.3, 480, 2000, 446, 62.6), 
(2001, 30.1, 456, 2001, 9.7, 501, 2001, 471, 62.5), 
(2002, 30.5, 509, 2002, 9.7, 540, 2002, 438, 62.8), 
(2003, 30.6, 497, 2003, 9.7, 552, 2003, 436, 60.9), 
(2004, 31.3, 596, 2004, 9.9, 547, 2004, 473, 59.8), 
(2005, 31.7, 573, 2005, 10.2, 622, 2005, 449, 59.1), 
(2006, 32.6, 661, 2006, 10.5, 655, 2006, 416, 58.2), 
(2007, 33.1, 741, 2007, 11, 701, 2007, 420, 56.1), 
(2008, 32.7, 809, 2008, 10.6, 712, 2008, 381, 53), 
(2009, 32.8, 717, 2009, 10.6, 708, 2009, 352, 50.1)]

This is how we can use the combinations() function to emit all the combinations  
of the nine variables in this dataset, taken two at a time:

combinations(range(9), 2)

There are 36 possible combinations. We'll have to reject the combinations that 
involve year and year. These will trivially correlate with a value of 1.00.

Here is a function that picks a column of data out of our dataset:

def column(source, x):

    for row in source:

        yield row[x]

http://www.tylervigen.com
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This allows us to use the corr() function from Chapter 4, Working with Collections, to 
compare two columns of data.

This is how we can compute all combinations of correlations:

from itertools import *

from Chapter_4.ch04_ex4 import corr

for p, q in combinations(range(9), 2):

    header_p, *data_p = list(column(source, p))

    header_q, *data_q = list(column(source, q))

    if header_p == header_q: continue

    r_pq = corr(data_p, data_q)

    print("{"{("{2: 4.2f}: {0} vs {1}". 
    format(header_p, header_q, r_pq)))))

For each combination of columns, we've extracted the two columns of data from our 
data set and used multiple assignments to separate the header from the remaining 
rows of data. If the headers match, we're comparing a variable to itself. This will be 
True for the three combinations of year and year that stem from the redundant  
year columns.

Given a combination of columns, we will compute the correlation function and then 
print the two headings along with the correlation of the columns. We've intentionally 
chosen some datasets that show spurious correlations with a dataset that doesn't 
follow the same pattern. In spite of this, the correlations are remarkably high.

The results look like this:

0.96: year vs Per capita consumption of cheese (US)Pounds (USDA)

0.95: year vs Number of people who died by becoming tangled in their  
bedsheetsDeaths (US) (CDC)

0.92: year vs Per capita consumption of mozzarella cheese (US)Pounds  
(USDA)

0.98: year vs Civil engineering doctorates awarded (US)Degrees  
awarded (National Science Foundation)

-0.80: year vs US crude oil imports from VenezuelaMillions of barrels  
(Dept. of Energy)

-0.95: year vs Per capita consumption of high fructose corn syrup  
(US)Pounds (USDA)

0.95: Per capita consumption of cheese (US)Pounds (USDA) vs Number of  
people who died by becoming tangled in their bedsheetsDeaths (US)  
(CDC)

0.96: Per capita consumption of cheese (US)Pounds (USDA) vs year
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0.98: Per capita consumption of cheese (US)Pounds (USDA) vs Per  
capita consumption of mozzarella cheese (US)Pounds (USDA)

...

0.88: US crude oil imports from VenezuelaMillions of barrels  
(Dept. of Energy) vs Per capita consumption of high fructose corn  
syrup (US)Pounds (USDA)

It's not at all clear what this pattern means. We used a simple expression, 
combinations(range(9), 2), to enumerate all the possible combinations of data. 
This kind of succinct, expressive technique makes it easier to focus on the data 
analysis issues instead of the Combinatoric algorithm considerations.

Recipes
The itertools chapter of the Python library documentation is outstanding. The basic 
definitions are followed by a series of recipes that are extremely clear and helpful. 
Since there's no reason to reproduce these, we'll reference them here. They are the 
required reading materials on functional programming in Python.

Section 10.1.2, Itertools Recipes, of Python Standard Library is a wonderful resource. 
Visit https://docs.python.org/3/library/itertools.html#itertools-
recipes more details.

These function definitions aren't importable functions in the itertools modules. 
These are ideas that need to be read and understood and then, perhaps, copied or 
modified before inclusion in an application.

The following table summarizes some recipes that show functional programming 
algorithms built from the itertools basics:

Function 
Name

Arguments Results

powerset (iterable) This generates all the subsets of the iterable. Each 
subset is actually a tuple object, not a set instance.

random_
product

(*args, 
repeat=1)

This randomly selects from itertools.
product(*args, **kwds).

random_
permutation

(iterable, 
r=None)

This randomly selects from itertools.
permutations(iterable, r).

random_
combination

(iterable, 
r)

This randomly selects from itertools.
combinations(iterable, r).

https://docs.python.org/3/library/itertools.html#itertools-recipes
https://docs.python.org/3/library/itertools.html#itertools-recipes
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Summary
In this chapter, we looked at a number of functions in the itertools module.  
This library module provides a number of functions that help us work with iterators 
in sophisticated ways.

We looked at the product() function that will compute all the possible combinations 
of the elements chosen from two or more collections. The permutations() function 
gives us different ways to reorder a given set of values. The combinations() 
function returns all the possible subsets of the original set.

We also looked at ways in which the product() and permutations() functions 
can be used naïvely to create extremely large result sets. This is an important 
cautionary note. A succinct and expressive algorithm can also involve a vast amount 
of computation. We must perform basic complexity analysis to be sure that the code 
will finish in a reasonable amount of time.

In the next chapter, we'll look at the functools module. This module includes some 
tools to work with functions as first-class objects. This builds on some material shown 
in Chapter 2, Introducing Some Functional Features, and Chapter 5, Higher-order Functions.





The Functools Module
Functional programming emphasizes functions as first class objects. We have many 
high-order functions that accept functions as arguments or return functions as 
results. In this chapter, we'll look at the functools library with some functions to 
help us create and modify functions.

We'll look at some higher-order functions in this chapter. Earlier, we looked at 
higher-order functions in Chapter 5, Higher-order Functions. We'll continue to look at 
higher-order function techniques in Chapter 11, Decorator Design Techniques, as well.

We'll look at the following functions in this module:

• @lru_cache: This decorator can be a huge performance boost for certain 
types of applications.

• @total_ordering: This decorator can help create rich comparison operators. 
However, it lets us look at the more general question of object-oriented 
design mixed with functional programming.

• partial(): It creates a new function with some arguments applied to  
a given function.

• reduce(): It is a higher-order function which generalizes reductions  
like sum().

We'll defer two additional members of this library to Chapter 11, Decorator Design 
Techniques: the update_wrapper() and wraps() functions. We'll look more closely  
at writing our own decorators in the next chapter also.

We'll ignore the cmp_to_key() function entirely. Its purpose is to help with 
converting Python 2 code—which uses a comparison—to run under Python 3  
which uses key extraction. We're only interested in Python 3; we'll write proper  
key functions.
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Function tools
We looked at a number of higher-order functions in Chapter 5, Higher-order Functions. 
These functions either accepted a function as an argument or returned a function (or 
generator expression) as a result. All these higher-order functions had an essential 
algorithm which was customized by injecting another function. Functions like max(), 
min(), and sorted() accepted a key= function that customized their behavior. 
Functions like map() and filter() accept a function and an iterable and apply 
this function to the arguments. In the case of the map() function, the results of the 
function are simply kept. In the case of the filter() function, the Boolean result of 
the function is used to pass or reject values from the iterable.

All the functions in Chapter 5, Higher-order Functions are part of the Python __
builtins__ package: they're available without the need to do an import. They are 
ubiquitous because they are so universally useful. The functions in this chapter must 
be introduced with an import because they're not quite so universally usable.

The reduce() function straddles this fence. It was originally built-in. After much 
discussion, it was removed from the __builtins__ package because of the possibility 
of abuse. Some seemingly simple operations can perform remarkably poorly.

Memoizing previous results with  
lru_cache
The lru_cache decorator transforms a given function into a function that might 
perform more quickly. The LRU means Least Recently Used: a finite pool of recently 
used items is retained. Items not frequently used are discarded to keep the pool to a 
bounded size.

Since this is a decorator, we can apply it to any function that might benefit from 
caching previous results. We might use it as follows:

from functools import lru_cache

@lru_cache(128)

def fibc(n):

    """Fibonacci numbers with naive recursion and caching

    >>> fibc(20)

    6765

    >>> fibc(1)

    1

    """
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    if n == 0: return 0

    if n == 1: return 1

    return fibc(n-1) + fibc(n-2)

This is an example based on Chapter 6, Recursions and Reductions. We've applied the 
@lru_cache decorator to the naïve Fibonacci number calculation. Because of this 
decoration, each call to the fibc(n) function will now be checked against a cache 
maintained by the decorator. If the argument, n, is in the cache, the previously 
computed result is used instead of doing a potentially expensive re-calculation.  
Each return value is added to the cache. When the cache is full, the oldest value is 
ejected to make room for a new value.

We highlight this example because the naïve recursion is quite expensive in this case. 
The complexity of computing any given Fibonacci number, nF , involves not merely 
computing 1nF −  but 2nF −  also. This tree of values leads to a complexity in the order  
of ( )2nO .

We can try to confirm the benefits empirically using the timeit module. We can 
execute the two implementations a thousand times each to see how the timing 
compares. Using the fib(20) and fibc(20) methods shows just how costly this 
calculation is without the benefit of caching. Because the naïve version is so slow,  
the timeit number of repetitions was reduced to only 1,000. Following are the results:

• Naive 3.23
• Cached 0.0779

Note that we can't trivially use the timeit module on the fibc() function. The 
cached values will remain in place: we'll only compute the fibc(20) function once, 
which populates this value in the cache. Each of the remaining 999 iterations will 
simply fetch the value from the cache. We need to actually clear the cache between 
uses of the fibc() function or the time drops to almost 0. This is done with a fibc.
cache_clear() method built by the decorator.

The concept of memoization is powerful. There are many algorithms that can benefit 
from memoization of results. There are also some algorithms that might not benefit 
quite so much.

The number of combinations of p things taken in groups of r is often stated as follows:

( )
!

! !
p p
r r p r

 
=  − 
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This binomial function involves computing three factorial values. It might make 
sense to use an @lru_cache decorator on a factorial function. A program that 
calculates a number of binomial values will not need to re-compute all of those 
factorials. For cases where similar values are computed repeatedly, the speedup 
can be impressive. For situations where the cached values are rarely reused, the 
overheads of maintaining the cached values outweigh any speedups.

When computing similar values repeatedly, we see the following:

• Naive Factorial 0.174
• Cached Factorial 0.046
• Cleared Cache Factorial 1.335

If we re-calculate the same binomial with the timeit module, we'll only really do the 
computation once, and return the same value the rest of the time; the cleared cache 
factorial shows the impact of clearing the cache before each calculation. The cache 
clearing operation—the cache_clear() function—introduces some overheads, 
making it appear more costly than it actually is. The moral of the story is that an 
lru_cache decorator is trivial to add. It often has a profound impact; but it may  
also have no impact, depending on the distribution of the actual data.

It's important to note that the cache is a stateful object. This design pushes the 
edge of the envelope on purely functional programming. A possible ideal is to 
avoid assignment statements and the associated changes of state. This concept of 
avoiding stateful variables is exemplified by a recursive function: the current state 
is contained in the argument values, and not in the changing values of variables. 
We've seen how tail-call optimization is an essential performance improvement to 
assure that this idealized recursion actually works nicely with the available processor 
hardware and limited memory budgets. In Python, we do this tail-call optimization 
manually by replacing the tail recursions with a for loop. Caching is a similar kind 
of optimization: we'll implement it manually as needed.

In principle, each call to a function with an LRU cache has two results: the  
expected result and a new cache object which should be used for all future  
requests. Pragmatically, we encapsulate the new cache object inside the decorated 
version of the fibc() function.

Caching is not a panacea. Applications that work with float values might not  
benefit much from memoization because all floats differ by small amounts.  
The least-significant bits of a float value are sometimes just random noise which 
prevents the exact equality test in the lru_cache decorator from working.

We'll revisit this in Chapter 16, Optimizations and Improvements. We'll look at some 
additional ways to implement this.
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Defining classes with total ordering
The total_ordering decorator is helpful for creating new class definitions that 
implement a rich set of comparison operators. This might apply to numeric classes 
that subclass numbers.Number. It may also apply to semi-numeric classes.

As an example of a semi-numeric class, consider a playing card. It has a numeric 
rank and a symbolic suit. The rank matters only when doing simulations of some 
games. This is particularly important when simulating casino Blackjack. Like 
numbers, cards have an ordering. We often sum the point values of each card, 
making them number-like. However, multiplication of card × card doesn't really 
make any sense.

We can almost emulate a playing card with a namedtuple() function as follows:

Card1 = namedtuple("Card1", ("rank", "suit"))

This suffers from a profound limitation: all comparisons include both a rank  
and a suit by default. This leads to the following awkward behavior:

>>> c2s= Card1(2, '\u2660')

>>> c2h= Card1(2, '\u2665')

>>> c2h == c2s

False

This doesn't work well for Blackjack. It's unsuitable for certain Poker simulations also.

We'd really prefer the cards to be compared only by their rank. Following is a much 
more useful class definition. We'll show this in two parts. The first part defines the 
essential attributes:

@total_ordering

class Card(tuple):

    __slots__ = ()

    def __new__( class_, rank, suit ):

        obj= tuple.__new__(Card, (rank, suit))

        return obj

    def __repr__(self):

        return "{0.rank}{0.suit}".format(self)

    @property

    def rank(self):

        return self[0]

    @property

    def suit(self):

        return self[1]
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This class extends the tuple class; it has no additional slots, thereby making it 
immutable. We've overridden the __new__() method so that we can seed initial 
values of a rank and a suit. We've provided a __repr__() method to print a string 
representation of a Card. We've provided two properties to extract a rank and a suit 
using attribute names.

The rest of the class definition shows how we can define just two comparisons:

    def __eq__(self, other):

        if isinstance(other,Card):

            return self.rank == other.rank

        elif isinstance(other,Number):

            return self.rank == other

    def __lt__(self, other):

        if isinstance(other,Card):

            return self.rank < other.rank

        elif isinstance(other,Number):

            return self.rank < other

We've defined the __eq__() and __lt__() functions. The @total_ordering 
decorator handles the construction of all other comparisons. In both cases, we've 
allowed comparisons between cards and also between a card and a number.

First, we get proper comparison of only the ranks as follows:

>>> c2s= Card(2, '\u2660')

>>> c2h= Card(2, '\u2665')

>>> c2h == c2s

True

>>> c2h == 2

True

We can use this class for a number of simulations with simplified syntax to  
compare ranks of cards. Further, we also have a rich set of comparison operators  
as follows:

>>> c2s= Card(2, '\u2660')

>>> c3h= Card(3, '\u2665')

>>> c4c= Card(4, '\u2663')

>>> c2s <= c3h < c4c

True

>>> c3h >= c3h
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True

>>> c3h > c2s

True

>>> c4c != c2s

True

We didn't need to write all of the comparison method functions; they were generated 
by the decorator. The decorator's creation of operators isn't perfect. In our case, we've 
asked for comparisons with integers as well as between Card instances. This reveals 
some problems.

Operations like the c4c > 3 and 3 < c4c commands would raise TypeError 
exceptions. This is a limitation in what the total_ordering decorator can do.  
The problem rarely shows up in practice, since this kind of mixed-class coercion  
is relatively uncommon.

Object-oriented programming is not antithetical to functional programming. There 
is a realm in which the two techniques are complementary. Python's ability to create 
immutable objects works particularly well with functional programming techniques. 
We can easily avoid the complexities of stateful objects, but still benefit from 
encapsulation to keep related method functions together. It's particularly helpful to 
define class properties that involve complex calculations; this binds the calculations 
to the class definition, making the application easier to understand.

Defining number classes
In some cases, we might want to extend the numeric tower available in Python. 
A subclass of numbers.Number may simplify a functional program. We can, for 
example, isolate parts of a complex algorithm to the Number subclass definition, 
making other parts of the application simpler or clearer.

Python already offers a rich variety of numeric types. The built-in types of the  
int and float variables cover a wide variety of problem domains. When working 
with currency, the decimal.Decimal package handles this elegantly. In some cases, 
we might find the fractions.Fraction class to be more appropriate than the  
float variable.

When working with geographic data, for example, we might consider creating 
a subclass of float variable that introduces additional attributes for conversion 
between degrees of latitude (or longitude) and radians. The arithmetic operations 
in this subclass could be done ( )2mod π  to simplify calculations that move across the 
equator or the Greenwich meridian.
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Since Python Numbers class is intended to be immutable, ordinary functional design 
can be applied to all of the various method functions. The exceptional Python in-
place special methods (for example, __iadd__() function) can be simply ignored.

When working with subclasses of Number, we have a fairly extensive volume of 
design considerations as follows:

• Equality testing and hash value calculation. The core features of hash 
calculation for numbers is documented in the 9.1.2 Notes for type implementors 
section of the Python Standard Library.

• The other comparison operators (often defined via @total_ordering 
decorator).

• The arithmetic operators: +, -, *, /, //, %, and **. There are special methods 
for the forward operations as well as additional methods for reverse type-
matching. Given an expression like a-b, Python uses the type of a to attempt 
to locate an implementation of the __sub__() method function: effectively, the 
a.__sub__(b) method. If the class of the left-hand value, a in this case, doesn't 
have the method or returns the NotImplemented exception, then the right-
hand value is examined to see if the b.__rsub__(a) method provides a result. 
There's an additional special case that applies when b's class is a subclass of a's 
class: this allows the subclass to override the left-hand side operation choice.

• The bit-fiddling operators: &, |, ^, >>, <<, and ~. These might not make  
sense for floating-point values; omitting these special methods might be  
the best design.

• Some additional functions like round(), pow(), and divmod() are 
implemented by numeric special method names. These might be meaningful 
for this class of numbers.

Chapter 7, Mastering Object-Oriented Python provides a detailed example of creating  
a new type of number. Visit the link for more details:

https://www.packtpub.com/application-development/mastering-object-
oriented-python.

As we noted previously, functional programming and object-oriented programming 
can be complementary. We can easily define classes that follow functional 
programming design patterns. Adding new kinds of numbers is one example of 
leveraging Python's object-oriented features to create more readable functional 
programs.

https://www.packtpub.com/application-development/mastering-object-oriented-python
https://www.packtpub.com/application-development/mastering-object-oriented-python
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Applying partial arguments with partial()
The partial() function leads to something called partial application. A partially 
applied function is a new function built from an old function and a subset of the 
required arguments. It is closely related to the concept of currying. Much of the 
theoretical background is not relevant here, since currying doesn't apply to the  
way Python functions are implemented. The concept, however, can lead us to  
some handy simplifications.

We can look at trivial examples as follows:

>>> exp2= partial(pow, 2)

>>> exp2(12)

4096

>>> exp2(17)-1

131071

We've created a function, exp2(y), which is the pow(2,y) function. The partial() 
function bounds the first positional parameter to the pow() function. When we 
evaluate the newly created exp2() function, we get values computed from the 
argument bound by the partial() function, plus the additional argument provided 
to the exp2() function.

The bindings of positional parameters are handed in a strict left-to-right order.  
For functions that accept keyword parameters, these can also be provided when 
building the partially applied function.

We can also create this kind of partially applied function with a lambda form  
as follows:
exp2= lambda y: pow(2,y)

Neither is clearly superior. Measuring performance shows that the partial() 
function is a hair faster than a lambda form in the following manner:

• partial 0.37
• lambda 0.42

This is 0.05 seconds over 1,000,000 iterations: not a remarkable savings.

Since lambda forms have all of the capabilities of the partial() function, it seems 
that we can safely set this function aside as not being profoundly useful. We'll return 
to it in Chapter 14, The PyMonad Library, and look at how we can accomplish this with 
currying also.
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Reducing sets of data with reduce()
The sum(), len(), max(), and min() functions are—in a way— all specializations 
of a more general algorithm expressed by the reduce() function. The reduce() 
function is a higher-order function that folds a function into each pair of items  
in an iterable.

A sequence object is given as follows:

d = [2, 4, 4, 4, 5, 5, 7, 9]

The function, reduce(lambda x,y: x+y, d), will fold in + operators to the list  
as follows:

2+4+4+4+5+5+7+9

Including () can show the effective grouping as follows:

((((((2+4)+4)+4)+5)+5)+7)+9

Python's standard interpretation of expressions involves a left-to-right evaluation  
of operators. The fold left isn't a big change in meaning.

We can also provide an initial value as follows:

reduce(lambda x,y: x+y**2, iterable, 0)

If we don't, the initial value from the sequence is used as the initialization. Providing 
an initial value is essential when there's a map() function as well as a reduce() 
function. Following is how the right answer is computed with an explicit 0 initializer:

0+ 2**2+ 4**2+ 4**2+ 4**2+ 5**2+ 5**2+ 7**2+ 9**2

If we omit the initialization of 0, and the reduce() function uses the first item as an 
initial value, we get the following wrong answer:

2+ 4**2+ 4**2+ 4**2+ 5**2+ 5**2+ 7**2+ 9**2

We can define a number of built-in reductions using the reduce() higher-order 
function as follows:

sum2= lambda iterable: reduce(lambda x,y: x+y**2, iterable, 0)

sum= lambda iterable: reduce(lambda x, y: x+y, iterable)

count= lambda iterable: reduce(lambda x, y: x+1, iterable, 0)

min= lambda iterable: reduce(lambda x, y: x if x < y else y,  
iterable)
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max= lambda iterable: reduce(lambda x, y: x if x > y else y,  
iterable)

The sum2() reduction function is the sum of squares, useful for computing standard 
deviation of a set of samples. This sum() reduction function mimics the built-in 
sum() function. The count() reduction function is similar to the len() function, but 
it can work on an iterable, where the len() function can only work on a materialized 
collection object.

The min() and max() functions mimic the built-in reductions. Because the first item 
of the iterable is used for initialization, these two functions will work properly. If we 
provided any initial value to these reduce() functions, we might incorrectly use a 
value that never occurred in the original iterable.

Combining map() and reduce()
We can see how to build higher-order functions around these simple definitions. 
We'll show a simplistic map-reduce function that combines the map() and reduce() 
functions as follows:

def map_reduce(map_fun, reduce_fun, iterable):

    return reduce(reduce_fun, map(map_fun, iterable))

We've created a composite function from the map() and reduce() functions that take 
three arguments: the mapping, the reduction operation, and the iterable or sequence 
to process.

We can build a sum-squared reduction using the map() and reduce() functions 
separately as follows:

def sum2_mr(iterable):

    return map_reduce(lambda y: y**2, lambda x,y: x+y, iterable)

In this case, we've used the lambda y: y**2 parameter as a mapping to square 
each value. The reduction is simply lambda x,y: x+y parameter. We don't need to 
explicitly provide an initial value because the initial value will be the first item in the 
iterable after the map() function has squared it.

The lambda x,y: x+y parameter is merely the + operator. Python offers all of the 
arithmetic operators as short functions in the operator module. Following is how 
we can slightly simplify our map-reduce operation:

import operator

def sum2_mr2(iterable):

    return map_reduce(lambda y: y**2, operator.add, iterable)
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We've used the operator.add method to sum our values instead of the longer 
lambda form.

Following is how we can count values in an iterable:

def count_mr(iterable):

    return map_reduce(lambda y: 1, operator.add, iterable)

We've used the lambda y: 1 parameter to map each value to a simple 1. The count 
is then a reduce() function using the operator.add method.

The general-purpose reduce() function allows us to create any species of reduction 
from a large dataset to a single value. There are some limitations, however, on what 
we should do with the reduce() function.

We should avoid executing commands such as the following:

reduce(operator.add, ["1", ",", "2", ",", "3"], "")

Yes, it works. However, the "".join(["1", ",", "2", ",", "3"]) method 
is considerably more efficient. We measured 0.23 seconds per million to do the 
"".join() function versus 0.69 seconds to do the reduce() function.

Using reduce() and partial()

The sum() function can be seen as the partial(reduce, 
operator.add) method. This, too, gives us a hint as to how we can 
create other mappings and other reductions. We can, indeed, define all 
of the commonly used reductions as partials instead of lambdas.

Following are two examples:

sum2= partial(reduce, lambda x,y: x+y**2)

count= partial(reduce, lambda x,y: x+1)

We can now use these functions via the sum2(some_data) or the count(some_
iter) method. As we noted previously, it's not clear how much benefit this has. 
It's possible that a particularly complex calculation can be explained simply with 
functions like this.
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Using map() and reduce() to sanitize raw data
When doing data cleansing, we'll often introduce filters of various degrees of 
complexity to exclude invalid values. We may also include a mapping to sanitize 
values in the cases where a valid but improperly formatted value can be replaced 
with a valid but proper value.

We might produce the following output:

def comma_fix(data):

    try:

        return float(data)

    except ValueError:

        return float(data.replace(",", ""))

def clean_sum(cleaner, data):

    return reduce(operator.add, map(cleaner, data))

We've defined a simple mapping, the comma_fix() class, that will convert data  
from a nearly correct format into a usable floating-point value.

We've also defined a map-reduce that applies a given cleaner function, the  
comma_fix() class, in this case, to the data before doing a reduce() function  
using the operator.add method.

We can apply the previously described function as follows:

>>> d = ('1,196', '1,176', '1,269', '1,240', '1,307',  
... '1,435', '1,601', '1,654', '1,803', '1,734')

>>> clean_sum(comma_fix, d)

14415.0

We've cleaned the data, by fixing the commas, as well as computed a sum. The syntax 
is very convenient for combining these two operations.

We have to be careful, however, of using the cleaning function more than once.  
If we're also going to compute a sum of squares, we really should not execute the 
following command:

comma_fix_squared = lambda x: comma_fix(x)**2
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If we use the clean_sum(comma_fix_squared, d) method as part of computing 
a standard deviation, we'll do the comma-fixing operation twice on the data: 
once to compute the sum and once to compute the sum of squares. This is a poor 
design; caching the results with an lru_cache decorator can help. Materializing the 
sanitized intermediate values as a temporary tuple object is probably better.

Using groupby() and reduce()
A common requirement is to summarize data after partitioning it into groups.  
We can use a defaultdict(list) method to partition data. We can then analyze 
each partition separately. In Chapter 4, Working with Collections, we looked at some 
ways to group and partition. In Chapter 8, The Itertools Module, we looked at others.

Following is some sample data that we need to analyze:

>>> data = [('4', 6.1), ('1', 4.0), ('2', 8.3), ('2', 6.5),  
... ('1', 4.6), ('2', 6.8), ('3', 9.3), ('2', 7.8), ('2', 9.2),  
... ('4', 5.6), ('3', 10.5), ('1', 5.8), ('4', 3.8), ('3', 8.1),  
... ('3', 8.0), ('1', 6.9), ('3', 6.9), ('4', 6.2), ('1', 5.4),  
... ('4', 5.8)]

We've got a sequence of raw data values with a key and a measurement for each key.

One way to produce usable groups from this data is to build a dictionary that maps a 
key to a list of members in this group as follows:

from collections import defaultdict

def partition(iterable, key=lambda x:x):

    """Sort not required."""

    pd = defaultdict(list)

    for row in iterable:

        pd[key(row)].append(row)

    for k in sorted(pd):

        yield k, iter(pd[k])

This will separate each item in the iterable into individual groups. The key() 
function is used to extract a key value from each item. This key is used to append 
each item to a list in the pd dictionary. The resulting value of this function matches 
the results of the itertools.groupby() function: it's an iterable sequence of the 
(group key, iterator) pairs.
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Following is the same feature done with the itertools.groupby() function:

def partition_s(iterable, key= lambda x:x):

    """Sort required"""

    return groupby(iterable, key)

The important difference in the inputs to each function is that the groupby() function 
version requires data already sorted by the key whereas the defaultdict version doesn't 
require sorting. For very large sets of data, the sort can be expensive measured in both time 
and storage. The final sort of the keys does create an intermediate list object, but this object 
might not be as large as the original set of data, depending on the cardinality of the keys.

We can summarize the grouped data as follows:

mean= lambda seq: sum(seq)/len(seq)

var= lambda mean, seq: sum( (x-mean)**2/mean for x in seq)

def summarize( key_iter ):

    key, item_iter= key_iter

    values= tuple((v for k,v in item_iter))

    μ= mean(values)

    return key, μ, var(μ, values)

The results of the partition() functions will be a sequence of (key, iterator) 
two tuples. We'll separate the key from the item iterator. Each item in the item 
iterator is one of the original objects in the source data; these are (key, value) 
pairs; we only want the values, and so we've used a simple generator expression to 
separate the source keys from the values.

We can also execute the following command to pick the second item from each of the 
two tuples:

map(snd, item_iter)

This requires the snd= lambda x: x[1] method.

We can use the following command to apply the summarize() function to  
each partition:

>>> partition1= partition(list(data), key=lambda x:x[0])

>>> groups= map(summarize, partition1)

The alternative commands are as follows:

>>> partition2= partition_s(sorted(data), key=lambda x:x[0])

>>> groups= map(summarize, partition2)
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Both will provide us summary values for each group. The resulting group statistics 
look as follows:

1 5.34 0.93

2 7.72 0.63

3 8.56 0.89

4 5.5 0.7

The variance can be used as part of a 2X  test to determine if the null hypothesis holds 
for this data. The null hypothesis asserts that there's nothing to see; the variance 
in the data is essentially random. We can also compare the data between the four 
groups to see if the various means are consistent with the null hypothesis or there is 
some statistically significant variation.

Summary
In this chapter, we've looked at a number of functions in the functools module. 
This library module provides a number of functions that help us create sophisticated 
functions and classes.

We've looked at the @lru_cache function as a way to boost certain types of 
applications with frequent re-calculations of the same values. This decorator is of 
tremendous value for certain kinds of functions that take the integer or the string 
argument values. It can reduce processing by simply implementing memoization.

We looked at the @total_ordering function as a decorator to help us build 
objects that support rich ordering comparisons. This is at the fringe of functional 
programming, but is very helpful when creating new kinds of numbers.

The partial() function creates a new function with the partial application of 
argument values. As an alternative, we can build a lambda with similar features.  
The use case for this is ambiguous.

We also looked at the reduce() function as a higher-order function. This generalizes 
reductions like the sum() function. We'll use this function in several examples in 
the later chapters. This fits logically with the filter() and map() functions as an 
important higher-order function.

In the next chapters, we'll look at how we can build higher-order functions 
using decorators. These higher-order functions can lead to slightly simpler and 
clearer syntax. We can use decorators to define an isolated aspect that we need to 
incorporate into a number of other functions or classes.
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Python offers us many ways to create higher-order functions. In Chapter 5,  
Higher-order Functions, we looked at two techniques: defining a function which 
accepts a function as an argument and defining a subclass of Callable which is 
either initialized with a function or called with a function as an argument.

In this chapter, we'll look at using a decorator to build a function based on  
another function. We'll also look at two functions from the functools module,  
the update_wrapper() and wraps() functions, that can help us build decorators.

One of the benefits of decorated functions is that we can create composite  
functions. These are single functions that embody functionality from several  
sources. A composite function, ( )f g x� , can be somewhat more expressive of  
a complex algorithm than ( )( )f g x . It's often helpful to have a number of syntax 
alternatives for expressing complex processing.

Decorators as higher-order functions
The core idea of a decorator is to transform some original function into another form. 
A decorator creates a kind of composite function based on the decorator and the 
original function being decorated.

A decorator function can be used in one of the two following ways:

• As a prefix that creates a new function with the same name as the base 
function as follows:
@decorator

def original_function():

    pass
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• As an explicit operation that returns a new function, possibly with  
a new name:
def original_function():

    pass

original_function= decorator(original_function)

These are two different syntaxes for the same operation. The prefix notation has the 
advantages of being tidy and succinct. The prefix location is more visible to some 
readers. The suffix notation is explicit and slightly more flexible. While the prefix 
notation is common, there is one reason for using the suffix notation: we might 
not want the resulting function to replace the original function. We might want to 
execute the following command that allows us to use both the decorated and the 
undecorated functions:

new_function = decorator(original_function)

Python functions are first-class objects. A function that accepts a function as an 
argument and returns a function as the result is clearly a built-in feature of the 
language. The open question then is how do we update or adjust the internal code 
structure of a function?

The answer is we don't.

Rather than messing about on the inside of the code, it's much cleaner to define a 
new function that wraps the original function. We have two tiers of higher-order 
functions involved in defining a decorator as follows:

• The decorator function applies a wrapper to a base function and returns the 
new wrapper. This function can do some one-time only evaluation as part of 
building the decorated function.

• The wrapper function can (and usually does) evaluate the base function.  
This function will be evaluated every time the decorated function is evaluated.

Here's an example of a simple decorator:

from functools import wraps

def nullable(function):

    @wraps(function)

    def null_wrapper(arg):

        return None if arg is None else function(arg)

    return null_wrapper
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We almost always want to use the functools.wraps() function to assure that the 
decorated function retains the attributes of the original function. Copying the __
name__, and __doc__ attributes, for example, assures that the resulting decorated 
function has the name and docstring of the original function.

The resulting composite function, called null_wrapper() function in the definition 
of the decorator, is also a kind of higher-order function that combines the original 
function, the function() function, in an expression that preserves the None values. 
The original function is not an explicit argument; it is a free variable that will get its 
value from the context in which the wrapper() function is defined.

The decorator function's return value will return the newly minted function. It's 
important that decorators only return functions, and not attempt any processing of 
data. Decorators are meta-programming: a code that creates a code. The wrapper() 
function, however, will be used to process the real data.

We can apply our @nullable decorator to create a composite function as follows:

nlog = nullable(math.log)

We now have a function, nlog(), which is a null-aware version of the math.log() 
function. We can use our composite, nlog() function, as follows:

>>> some_data = [10, 100, None, 50, 60]

>>> scaled = map(nlog, some_data) 

>>> list(scaled)

[2.302585092994046, 4.605170185988092, None, 3.912023005428146,  
4.0943445622221]

We've applied the function to a collection of data values. The None value politely 
leads to a None result. There was no exception processing involved.

This example isn't really suitable for unit testing. We'll need 
to round the values for testing purposes. For this, we'll need 
a null-aware round() function too.

Here's how we can create a null-aware rounding function using decorator notation:

@nullable

def nround4(x):

    return round(x,4)

This function is a partial application of the round() function, wrapped to be 
null-aware. In some respects, this is a relatively sophisticated bit of functional 
programming that's readily available to Python programmers.
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We could also create the null-aware rounding function using the following:

nround4= nullable(lambda x: round(x,4))

This has the same effect, at some cost in clarity.

We can use this round4() function to create a better test case for our nlog() function 
as follows:

>>> some_data = [10, 100, None, 50, 60]

>>> scaled = map(nlog, some_data)

>>> [nround4(v) for v in scaled]

[2.3026, 4.6052, None, 3.912, 4.0943]

This result will be independent of any platform considerations.

This decorator makes an assumption that the decorated function is unary. We would 
need to revisit this design to create a more general-purpose null-aware decorator that 
works with arbitrary collections of arguments.

In Chapter 14, The PyMonad Library, we'll look at an alternative approach to this 
problem of tolerating the None values. The PyMonad library defines a Maybe class of 
objects which may have a proper value or may be the None value.

Using functool's update_wrapper() functions
The @wraps decorator applies the update_wrapper() function to preserve a few 
attributes of a wrapped function. In general, this does everything we need by 
default. This function copies a specific list of attributes from the original function to 
the resulting function created by a decorator. What's the specific list of attributes? It's 
defined by a module global.

The update_wrapper() function relies on a module global variable to determine what 
attributes to preserve. The WRAPPER_ASSIGNMENTS variable defines the attributes that 
are copied by default. The default value is this list of attributes to copy:

('__module__', '__name__', '__qualname__', '__doc__',  
'__annotations__')

It's difficult to make meaningful modifications to this list. In order to copy additional 
attributes, we have to assure that our functions are defined with these additional 
attributes. This is challenging, since the internals of the def statement aren't open to 
simple modification or change.
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Because we can't easily fold in new attributes, it's difficult to locate reasons to modify 
or extend the way the wrapping works on a function. It's mostly interesting to use 
this variable as a piece of reference information.

If we're going to use the callable objects, then we might have a class that provides 
some additional attributes as part of the definition. We could then have a situation 
where a decorator might need to copy these additional attributes from the original 
wrapped callable object to the wrapping function being created. However, it seems 
simpler to make these kinds of changes in the class definition itself, rather than 
exploit tricky decorator techniques.

While there's a lot of flexibility available, much of it isn't helpful for ordinary 
application development.

Cross-cutting concerns
One general principle behind decorators is to allow us to build a composite function 
from the decorator and the original function to which the decorator is applied. The 
idea is to have a library of common decorators that can provide implementations for 
common concerns.

We often call these cross-cutting concerns because they apply across several 
functions. These are the sorts of things that we would like to design once via a 
decorator and have them applied in relevant classes throughout an application  
or a framework.

Concerns that are often centralized as described previously include the following:

• Logging
• Auditing
• Security
• Handling incomplete data

A logging decorator, for example, might write standardized messages to the 
application's logfile. An audit decorator might write details surrounding a database 
update. A security decorator might check some runtime context to be sure that the 
login user has the necessary permissions.

Our example of a null-aware wrapper for a function is a cross-cutting concern. In this 
case, we'd like to have a number of functions handle the None values by returning 
the None values instead of raising an exception. In applications where data is 
incomplete, we may have a need to process rows in a simple, uniform way without 
having to write lots of distracting if statements to handle missing values.
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Composite design
The common mathematical notation for a composite function looks as follows:

( ) ( )( )f g x f g x=�

The idea is that we can define a new function, ( )f g x� , that combines two other 
functions, ( )f y and ( )g x .

Python's multiple-line definition of the form is as follows:

@f

def g(x):

    something

This is vaguely equivalent to ( )f g x� . The equivalence isn't very precise because 
the @f decorator isn't the same as the mathematical abstraction of composing ( )f y  
and ( )g x . For the purposes of discussing function composition, we'll ignore the 
implementation disconnect between the abstraction of ( )f y  and the @f decorator.

Because decorators wrap another function, Python offers a slightly more generalized 
composition. We can think of Python design as follows:

( ) ( )( )( )w g w x w g w xβ α β α=i i

A decorator applied to some application function, ( )g x , will include a wrapper 
function. One portion of the wrapper, ( )w xα , applies before the wrapped function  
and the other portion, ( )w xβ , applies after the wrapped function.

The Wrapper() function often looks as follows:

@wraps(argument_function)

def something_wrapper(*args, **kw):

    # The "before" part, w_α, applied to *args or **kw

    result= argument_function(*args, **kw)

    # the "after" part, w_β, applied to the result

Details will vary, and vary widely. There are many clever things that can be done 
within this general framework.
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A great deal of functional programming amounts to ( )( )f g x  kinds of constructs. We 
often spell these functions out because there's no real benefit from summarizing the 
function into a composite, ( )f g x� . In some cases, however, we might want to use a 
composite function with a higher-order function like map(), filter(), or reduce().

We can always resort to the map(f, map(g, x)) method. It might be more clear, 
however, to use the map(f_g, x) method to apply a composite to a collection. 
It's important to note that there's no inherent performance advantage to either 
technique. The map() function is lazy: with two map() functions, one item will be 
taken from x, processed by the g() function, and then processed by the f() function. 
With a single map() function, an item will be taken from x and then processed by the 
f_g() composite function.

In Chapter 14, The PyMonad Library, we'll look at an alternative approach to this 
problem of creating composite functions from individual curried functions.

Preprocessing bad data
One cross-cutting concern in some exploratory data analysis applications is how  
to handle numeric values that are missing or cannot be parsed. We often have a 
mixture of float, int, and Decimal currency values that we'd like to process with 
some consistency.

In other contexts, we have not applicable or not available data values that shouldn't 
interfere with the main thread of the calculation. It's often handy to allow the Not 
Applicable values to pass through an expression without raising an exception.  
We'll focus on three bad-data conversion functions: bd_int(), bd_float(), and  
bd_decimal(). The composite feature we're adding will be defined before the  
built-in conversion function.

Here's a simple bad-data decorator:

import decimal

def bad_data(function):

    @wraps(function)

    def wrap_bad_data(text, *args, **kw):

        try:

            return function(text, *args, **kw)

        except (ValueError, decimal.InvalidOperation):

            cleaned= text.replace(",", "")

            return function(cleaned, *args, **kw)

    return wrap_bad_data
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This function wraps a given conversion function to try a second conversion in the 
event the first conversion involved bad data. In the case of preserving the None 
values as a Not Applicable code, the exception handling would simply return the 
None value.

In this case, we've provided Python *args and **kw parameters. This assures that 
the wrapped functions can have additional argument values provided.

We can use this wrapper as follows:

bd_int= bad_data(int)

bd_float= bad_data(float)

bd_decimal= bad_data(Decimal)

This will create a suite of functions that can do conversions of good data as well as a 
limited amount of data cleansing to handle specific kinds of bad data.

Following are some examples of using the bd_int() function:

>>> bd_int("13")

13

>>> bd_int("1,371")

1371

>>> bd_int("1,371", base=16)

4977

We've applied the bd_int() function to a string that converted neatly and a string 
with the specific type of punctuation that we'll tolerate. We've also shown that we 
can provide additional parameters to each of these conversion functions.

We might like to have a more flexible decorator. One feature that we might like to 
add is the ability to handle a variety of data scrubbing alternatives. Simple, removal 
isn't always what we need. We may also need to remove $, or ° symbols, too. We'll 
look at more sophisticated, parameterized decorators in the next section.

Adding a parameter to a decorator
A common requirement is to customize a decorator with additional parameters. 
Rather than simply creating a composite ( )f g x� , we're doing something a bit more 
complex. We're creating ( )( )( )f c g xi . We've applied a parameter, c, as part of creating 
the wrapper. This parameterized composite, ( )f c g� , can then be used with the actual 
data, x.
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In Python syntax, we can write it as follows:

@deco(arg)

def func( ):

    something

This will provide a parameterized deco(arg) function to the base function definition.

The effect is as follows:

def func( ):

    something

func= deco(arg)(func)

We've done three things and they are as follows:

1. Define a function, func.
2. Apply the abstract decorator, deco(), to its arguments to create a concrete 

decorator, deco(arg).
3. Apply the concrete decorator, deco(arg), to the base function to create the 

decorated version of the function, deco(arg)(func).

A decorator with arguments involves indirect construction of the final function.  
We seem to have moved beyond merely higher-order functions into something  
even more abstract: higher-order functions that create higher-order functions.

We can expand our bad-data aware decorator to create a slightly more flexible 
conversion. We'll define a decorator that can accept parameters of characters to 
remove. Following is a parameterized decorator:

import decimal

def bad_char_remove(*char_list):

    def cr_decorator(function):

        @wraps(function)

        def wrap_char_remove(text, *args, **kw):

            try:

                return function(text, *args, **kw)

            except (ValueError, decimal.InvalidOperation):

                cleaned= clean_list(text, char_list)

                return function(cleaned, *args, **kw)

        return wrap_char_remove

    return cr_decorator
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A parameterized decorator has three parts and they are as follows:

• The overall decorator. This defines and returns the abstract decorator.  
In this case, the cr_decorator is an abstract decorator. This has a free 
variable, char_list, that comes from the initial decorator.

• The abstract decorator. In this case, the cr_decorator decorator will have  
its free variable, char_list, bound so that it can be applied to a function.

• The decorating wrapper. In this example, the wrap_char_remove function 
will replace the wrapped function. Because of the @wraps decorator,  
the __name__ (and other attributes) will be replaced with the name of the 
function being wrapped.

We can use this decorator to create conversion functions as follows:

@bad_char_remove("$", ",")

def currency(text, **kw):

    return Decimal(text, **kw)

We've used our decorator to wrap a currency() function. The essential feature  
of the currency() function is a reference to the decimal.Decimal constructor.

This currency() function will now handle some variant data formats:

>>> currency("13")

Decimal('13')

>>> currency("$3.14")

Decimal('3.14')

>>> currency("$1,701.00")

Decimal('1701.00')

We can now process input data using a relatively simple map(currency, row) 
method to convert source data from strings to usable Decimal values. The try:/
except: error-handling has been isolated to a function that we've used to build a 
composite conversion function.

We can use a similar design to create Null-tolerant functions. These functions would 
use a similar try:/except: wrapper, but would simply return the None values.
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Implementing more complex descriptors
We can easily write the following commands:

@f_wrap

@g_wrap

def h(x):

    something

There's nothing in Python to stop us. This has a meaning somewhat like ( )f g h x� � . 
However, the name is merely ( )h x . Because of this potential confusion, we need to be 
cautious when creating functions that involve deeply nested descriptors. If our intent 
is simply to handle some cross-cutting concerns, then each decorator can handle a 
concern without creating much confusion.

If, on the other hand, we're using a decoration to create a composite function, it 
might also be better to use the following command:

f_g_h= f_wrap(g_wrap(h))

This clarifies as to what precisely is going on. Decorator functions don't correspond 
precisely with the mathematical abstraction of functions being composed. The 
decorator function actually contains a wrapper function that will contain the function 
being composed. This distinction between a function and a decorator that creates a 
composite from the function can become a problem when trying to understand  
an application.

As with other aspects of functional programming, a succinct and expressive program 
is the goal. Decorators who are expressive are welcome. Writing an über-meta-super-
callable that can do everything in the application with only minor customizations 
may be succinct, but it's rarely expressive.

Recognizing design limitations
In the case of our data cleanup, the simplistic removal of stray characters may not 
be sufficient. When working with the geolocation data, we may have a wide variety 
of input formats that include simple degrees (37.549016197), degrees and minutes 
(37° 32.94097′), and degrees-minutes-seconds (37° 32′ 56.46″). Of course, there 
can be even more subtle cleaning problems: some devices will create an output with 
the Unicode U+00BA character, º, instead of the similar-looking degree character, °, 
which is U+00B0.
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For this reason, it is often necessary to provide a separate cleansing function that's 
bundled in with the conversion function. This function will handle the more 
sophisticated conversions required by inputs that are as wildly inconsistent  
in format as latitudes and longitudes.

How can we implement this? We have a number of choices. Simple higher-order 
functions are a good choice. A decorator, on the other hand, doesn't work out terribly 
well. We'll look at a decorator-based design to see that there are limitations to what 
makes sense in a decorator.

The requirements have two orthogonal design considerations and they are  
as follows:

1. The output conversion (int, float, Decimal)
2. The input cleaning (clean stray characters, reformat coordinates)

Ideally, one of these aspects is an essential function that gets wrapped and the other 
aspect is something that's included via a wrapper. The choice of essence versus wrap 
isn't clear. One of the reasons it isn't clear is that our previous examples are a bit 
more complex than a simple two-part composite.

In the previous examples, we were actually creating a three-part composite:

• The output conversion (int, float, Decimal)
• The input cleansing—either a simple replace or a more complex  

multiple-character replacement
• The function which attempted the conversion, did the cleansing as a response 

to an exception, and attempted the conversion again

The third part – attempting the conversion and retrying – is the actual wrapper that 
also forms a part of the composite function. As we noted previously, a wrapper 
contains a before phase and an after phase, which we've called ( )w xα  and ( )w xβ , 
respectively.

We want to use this wrapper to create a composite of two additional functions.  
We have two choices for the syntax. We could include the cleansing function  
as an argument to the decorator on the conversion as follows:

@cleanse_before(cleanser)

def convert(text):

    something
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Or, we could include the conversion function as an argument to the decorator for a 
cleansing function as follows:

@then_convert(converter)

def clean(text):

    something

In this case, we can choose the @then_convert(converter) style decorator because 
we're relying—for the most part—on the built-in conversions. Our point is to show 
that the choice is not crystal clear.

The decorator looks as follows:

def then_convert(convert_function):

    def clean_convert_decorator(clean_function):

        @wraps(clean_function)

        def cc_wrapper(text, *args, **kw):

            try:

                return convert_function(text, *args, **kw)

            except (ValueError, decimal.InvalidOperation):

                cleaned= clean_function(text)

                return convert_function(cleaned, *args, **kw)

        return cc_wrapper

    return clean_convert_decorator

We've defined a three-layer decorator. At the heart is the cc_wrapper() function that 
applies the convert_function function. If this fails, then it uses a clean_function 
function and then tries the convert_function function again. This function is 
wrapped around the clean_function function by the then_convert_decorator() 
concrete decorator function. The concrete decorator has the convert_function 
function as a free variable. The concrete decorator is created by the decorator 
interface, then_convert(), which is customized by a conversion function.

We can now build a slightly more flexible cleanse and convert function as follows:

@then_convert(int)

def drop_punct(text):

    return text.replace(",", "").replace("$", "")

The integer conversion is a decorator applied to the given cleansing function. In this 
case, the cleansing function removes $ and , characters. The integer conversion is 
wrapped around this cleansing.
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We can use the integer conversion as follows:

>>> drop_punct("1,701")

1701

>>> drop_punct("97")

97

While this can encapsulate some sophisticated cleansing and converting into a 
very tidy package, the results are potentially confusing. The name of the function 
is the name of the core cleansing algorithm; the other function's contribution to the 
composite is lost.

As an alternative, we can use the integer conversion as follows:

def drop_punct(text):

    return text.replace(",", "").replace("$", "")

drop_punct_int = then_convert(int)(drop_punct)

This will allow us to provide a new name to the decorated cleaning function.  
This solves the naming problem, but the construction of the final function via the 
then_convert(int)(drop_punct) method is rather opaque.

It seems like we've reached the edge of the envelope here. The decorator model 
isn't ideal for this kind of design. Generally, decorators work well when we have a 
number of relatively simple and fixed aspects that we want to include with a given 
function (or a class). Decorators are also important when these additional aspects 
can be looked at as an infrastructure or a support, and not something essential to the 
meaning of the application code.

For something that involves multiple orthogonal dimensions, we might want to 
result to the Callables function with various kinds of plugin strategy objects. 
This might provide something more palatable. We might want to look closely at 
creating higher-order functions. We can then create partial functions with various 
combinations of parameters for the higher-order functions.

The typical examples of logging or security testing can be considered as the kind 
of background processing that isn't specific to the problem domain. When we have 
processing that is as ubiquitous as the air that surrounds us, then a decorator might 
be more appropriate.
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Summary
In this chapter, we've looked at two kinds of decorators: the simple decorator with 
no arguments and parameterized decorators. We've seen how decorators involve 
an indirect composition between functions: the decorator wraps a function (defined 
inside the decorator) around another function.

Using the functools.wraps() decorator assures that our decorators will properly 
copy attributes from the function being wrapped. This should be a piece of every 
decorator we write.

In the next chapter, we'll look at the multiprocessing and multithreading techniques 
that are available to us. These packages become particularly helpful in a functional 
programming context. When we eliminate a complex shared state and design around 
nonstrict processing, we can leverage parallelism to improve the performance.





The Multiprocessing and 
Threading Modules

When we eliminate complex, shared state and design around non-strict processing, 
we can leverage parallelism to improve performance. In this chapter, we'll look at 
the multiprocessing and multithreading techniques that are available to us. Python 
library packages become particularly helpful when applied to algorithms that permit 
lazy evaluation.

The central idea here is to distribute a functional program across several threads 
within a process or across several processes. If we've created a sensible functional 
design, we don't have complex interactions among application components; we have 
functions that accept argument values and produce results. This is an ideal structure 
for a process or a thread.

We'll focus on the multiprocessing and concurrent.futures modules.  
These modules allow a number of parallel execution techniques.

We'll also focus on process-level parallelism instead of multithreading. The idea 
behind process parallelism allows us to ignore Python's Global Interpreter Lock 
(GIL) and achieve outstanding performance.

For more information on Python's GIL, see https://docs.python.org/3.3/c-api/
init.html#thread-state-and-the-global-interpreter-lock.

We won't emphasize features of the threading module. This is often used for 
parallel processing. If we have done our functional programming design well, any 
issues that stem from multithreaded write access should be minimized. However, the 
presence of the GIL means that multithreaded applications in CPython suffer from 
some small limitations. As waiting for I/O doesn't involve the GIL, it's possible that 
some I/O bound programs might have unusually good performance. 

https://docs.python.org/3.3/c-api/init.html#thread-state-and-the-global-interpreter-lock
https://docs.python.org/3.3/c-api/init.html#thread-state-and-the-global-interpreter-lock
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The most effective parallel processing occurs where there are no dependencies 
among the tasks being performed. With some careful design, we can approach 
parallel programming as an ideal processing technique. The biggest difficulty in 
developing parallel programs is coordinating updates to shared resources.

When following functional design patterns and avoiding stateful programs, we can 
also minimize concurrent updates to shared objects. If we can design software where 
lazy, non-strict evaluation is central, we can also design software where concurrent 
evaluation is possible.

Programs will always have some strict dependencies where ordering of operations 
matters. In the 2*(3+a) expression, the (3+a) subexpression must be evaluated 
first. However, when working with a collection, we often have situations where the 
processing order among items in the collection doesn't matter.

Consider the following two examples:

x = list(func(item) for item in y)

x = list(reversed([func(item) for item in y[::-1]]))

Both of these commands have the same result even though the items are evaluated in 
the reverse order.

Indeed, even this following command snippet has the same result:

import random

indices= list(range(len(y)))

random.shuffle(indices)

x = [None]*len(y)

for k in indices:

    x[k] = func(y[k])

The evaluation order is random. As the evaluation of each item is independent, the 
order of evaluation doesn't matter. This is the case with many algorithms that permit 
non-strict evaluation.

What concurrency really means
In a small computer, with a single processor and a single core, all evaluations are 
serialized only through the core of the processor. The operating system will interleave 
multiple processes and multiple threads through clever time-slicing arrangements.
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On a computer with multiple CPUs or multiple cores in a single CPU, there can 
be some actual concurrent processing of CPU instructions. All other concurrency 
is simulated through time slicing at the OS level. A Mac OS X laptop can have 200 
concurrent processes that share the CPU; this is far more processes than the number 
of available cores. From this, we can see that the OS time slicing is responsible for 
most of the apparently concurrent behavior.

The boundary conditions
Let's consider a hypothetical algorithm which has O n( )

2 . Assume that there is an 
inner loop that involves 1,000 bytes of Python code. When processing 10,000 objects, 
we're executing 100 billion Python operations. This is the essential processing 
budget. We can try to allocate as many processes and threads as we feel might be 
helpful, but the processing budget can't change.

The individual CPython bytecode doesn't have a simple execution timing. However, 
a long-term average on a Mac OS X laptop shows that we can expect about 60 MB of 
code to be executed per second. This means that our 100 billion bytecode operation 
will take about 1,666 seconds, or 28 minutes.

If we have a dual processor, four-core computer, then we might cut the elapsed time 
to 25 percent of the original total: 7 minutes. This presumes that we can partition the 
work into four (or more) independent OS processes.

The important consideration here is that our budget of 100 billion bytecodes can't be 
changed. Parallelism won't magically reduce the workload. It can only change the 
schedule to, perhaps, reduce the elapsed time.

Switching to a better algorithm which is O n n( log ) can reduce the workload to 132 MB 
of operations. At 60 MBps, this workload is considerably smaller. Parallelism won't 
have the kind of dramatic improvements that algorithm change will have.

Sharing resources with process or threads
The OS assures that there is little or no interaction between processes. For two 
processes to interact, some common OS resource must be explicitly shared. This can 
be a common file, a specific shared memory object, or a semaphore with a shared 
state between the processes. Processes are inherently independent, interaction is 
exceptional.
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Multiple threads, on the other hand, are part of a single process; all threads of a 
process share OS resources. We can make an exception to get some thread-local 
memory that can be freely written without interference from other threads. Outside 
thread-local memory, operations that write to memory can set the internal state 
of the process in a potentially unpredictable order. Explicit locking must be used 
to avoid problems with these stateful updates. As noted previously, the overall 
sequence of instruction executions is rarely, strictly speaking, concurrent. The 
instructions from concurrent threads and processes are generally interleaved in an 
unpredictable order. With threading comes the possibility of destructive updates to 
shared variables and the need for careful locking. With parallel processing come the 
overheads of OS-level process scheduling.

Indeed, even at the hardware level, there are some complex memory write situations. 
For more information on issues in memory writes, visit http://en.wikipedia.org/
wiki/Memory_disambiguation.

The existence of concurrent object updates is what raises havoc with trying to design 
multithreaded applications. Locking is one way to avoid concurrent writes to shared 
objects. Avoiding shared objects is another viable design technique. This is more 
applicable to functional programming.

In CPython, the GIL is used to assure that OS thread scheduling will not interfere 
with updates to Python data structures. In effect, the GIL changes the granularity of 
scheduling from machine instructions to Python virtual machine operations. Without 
the GIL, it's possible that an internal data structure might be corrupted by the 
interleaved interaction of competing threads.

Where benefits will accrue
A program that does a great deal of calculation and relatively little I/O will not see 
much benefit from concurrent processing. If a calculation has a budget of 28 minutes 
of computation, then interleaving the operations in different ways won't have very 
much impact. Switching from strict to non-strict evaluation of 100 billion bytecodes 
won't shrink the elapsed execution time.

However, if a calculation involves a great deal of I/O, then interleaving CPU 
processing and I/O requests can have an impact on performance. Ideally, we'd like 
to do our computations on some pieces of data while waiting for the OS to complete 
input of the next pieces of data.

http://en.wikipedia.org/wiki/Memory_disambiguation
http://en.wikipedia.org/wiki/Memory_disambiguation
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We have two approaches to interleaving computation and I/O. They are as follows:

• We can try to interleave I/O and calculation for the entire problem as a 
whole. We might create a pipeline of processing with read, compute, and 
write as operations. The idea is to have individual data objects flowing 
through the pipe from one stage to the next. Each stage can operate in 
parallel.

• We can decompose the problem into separate, independent pieces that can be 
processed from the beginning to the end in parallel.

The differences between these approaches aren't crisp; there is a blurry middle 
region that's not clearly one or the other. For example, multiple parallel pipelines are 
a hybrid mixture of both designs. There are some formalisms that make it somewhat 
easier to design concurrent programs. The Communicating Sequential Processes 
(CSP) paradigm can help design message-passing applications. Packages such as 
pycsp can be used to add CSP formalisms to Python.

I/O-intensive programs often benefit from concurrent processing. The idea is 
to interleave I/O and processing. CPU-intensive programs rarely benefit from 
attempting concurrent processing.

Using multiprocessing pools and tasks
To make non-strict evaluation available in a larger context, the multiprocessing 
package introduces the concept of a Pool object. We can create a Pool object of 
concurrent worker processes, assign tasks to them, and expect the tasks to be 
executed concurrently. As noted previously, this creation does not actually mean 
simultaneous creation of Pool objects. It means that the order is difficult to predict 
because we've allowed OS scheduling to interleave execution of multiple processes. 
For some applications, this permits more work to be done in less elapsed time.

To make the most use of this capability, we need to decompose our application into 
components for which non-strict concurrent execution is beneficial. We'd like to 
define discrete tasks that can be processed in an indefinite order.

An application that gathers data from the Internet via web scraping is often optimized 
through parallel processing. We can create a Pool object of several identical website 
scrapers. The tasks are URLs to be analyzed by the pooled processes.
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An application that analyzes multiple logfiles is also a good candidate for 
parallelization. We can create a Pool object of analytical processes. We can assign 
each logfile to an analyzer; this allows reading and analysis to proceed in parallel 
among the various workers in the Pool object. Each individual worker will involve 
serialized I/O and computation. However, one worker can be analyzing the 
computation while other workers are waiting for I/O to complete.

Processing many large files
Here is an example of a multiprocessing application. We'll scrape Common Log 
Format (CLF) lines in web logfiles. This is the generally used format for an access  
log. The lines tend to be long, but look like the following when wrapped to the 
book's margins:

99.49.32.197 - - [01/Jun/2012:22:17:54 -0400] "GET /favicon.ico  
HTTP/1.1" 200 894 "-" "Mozilla/5.0 (Windows NT 6.0)  
AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.52  
Safari/536.5"

We often have large numbers of large files that we'd like to analyze. The presence 
of many independent files means that concurrency will have some benefit for our 
scraping process.

We'll decompose the analysis into two broad areas of functionality. The first phase of 
any processing is the essential parsing of the logfiles to gather the relevant pieces of 
information. We'll decompose this into four stages. They are as follows:

1. All the lines from multiple source logfiles are read.
2. Then, create simple namedtuples from the lines of log entries in a collection 

of files.
3. The details of more complex fields such as dates and URLs are parsed.
4. Uninteresting paths from the logs are rejected; we can also think of this  

as passing only the interesting paths.

Once past the parsing phase, we can perform a large number of analyses. For our 
purposes in demonstrating the multiprocessing module, we'll look at a simple 
analysis to count occurrences of specific paths.

The first portion, reading from source files, involves the most input processing.  
The Python use of file iterators will translate into lower-level OS requests for 
buffering of data. Each OS request means that the process must wait for the data  
to become available.
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Clearly, we want to interleave the other operations so that they are not waiting for 
I/O to complete. We can interleave operations along a spectrum from individual 
rows to whole files. We'll look at interleaving whole files first, as this is relatively 
simple to implement.

The functional design for parsing Apache CLF files can look as follows:

data = path_filter(access_detail_iter(access_iter(local_gzip 
(filename))))

We've decomposed the larger parsing problem into a number of functions that  
will handle each portion of the parsing problem. The local_gzip() function reads 
rows from locally-cached GZIP files. The access_iter() function creates a simple 
namedtuple object for each row in the access log. The access_detail_iter() 
function will expand on some of the more difficult to parse fields. Finally, the  
path_filter() function will discard some paths and file extensions that aren't  
of much analytical value.

Parsing log files – gathering the rows
Here is the first stage in parsing a large number of files: reading each file and 
producing a simple sequence of lines. As the logfiles are saved in the .gzip format, 
we need to open each file with the gzip.open() function instead of the io.open() 
function or the __builtins__.open() function.

The local_gzip() function reads lines from locally cached files, as shown in the 
following command snippet:

def local_gzip(pattern):

    zip_logs= glob.glob(pattern)

    for zip_file in zip_logs:

        with gzip.open(zip_file, "rb") as log:

            yield (line.decode('us-ascii').rstrip() for line in log)

The preceding function iterates through all files. For each file, the yielded value 
is a generator function that will iterate through all lines within that file. We've 
encapsulated several things, including wildcard file matching, the details of opening 
a logfile compressed with the .gzip format, and breaking a file into a sequence of 
lines without any trailing \n characters.

The essential design pattern here is to yield values that are generator expressions for 
each file. The preceding function can be restated as a function and a mapping that 
applies that function to each file.
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There are several other ways to produce similar output. For example, here is an 
alternative version of the inner for loop in the preceding example. The line_iter() 
function will also emit lines of a given file:

    def line_iter(zip_file):

        log= gzip.open(zip_file, "rb")

        return (line.decode('us-ascii').rstrip() for line in log)

The line_iter() function applies the gzip.open() function and some line cleanup. 
We can use a mapping to apply the line_iter() function to all files that match a 
pattern as follows:

map(line_iter, glob.glob(pattern))

While this alternative mapping is succinct, it has the disadvantage of leaving  
open file objects lying around waiting to be properly garbage-collected when there 
are no more references. When processing a large number of files, this seems like a 
needless bit of overhead. For this reason, we'll focus on the local_gzip() function 
shown previously.

The previous alternative mapping has the distinct advantage of fitting well with the 
way the multiprocessing module works. We can create a worker pool and map 
tasks (such as file reading) to the pool of processes. If we do this, we can read these 
files in parallel; the open file objects will be part of separate processes.

An extension to this design will include a second function to transfer files from 
the web host using FTP. As the files are collected from the web server, they can be 
analyzed using the local_gzip() function.

The results of the local_gzip() function are used by the access_iter() function  
to create namedtuples for each row in the source file that describes a file access.

Parsing log lines into namedtuples
Once we have access to all of the lines of each logfile, we can extract details of  
the access that's described. We'll use a regular expression to decompose the line. 
From there, we can build a namedtuple object.

Here is a regular expression to parse lines in a CLF file:

format_pat= re.compile( 
    r"(?P<host>[\d\.]+)\s+" 
    r"(?P<identity>\S+)\s+" 
    r"(?P<user>\S+)\s+" 
    r"\[(?P<time>.+?)\]\s+" 
    r'"(?P<request>.+?)"\s+' 
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    r"(?P<status>\d+)\s+" 
    r"(?P<bytes>\S+)\s+" 
    r'"(?P<referer>.*?)"\s+' # [SIC] 
    r'"(?P<user_agent>.+?)"\s*' 
)

We can use this regular expression to break each row into a dictionary of nine 
individual data elements. The use of []and " to delimit complex fields such as the 
time, request, referrer, and user_agent parameters are handled gracefully by the 
namedtuple pattern.

Each individual access can be summarized as a namedtuple() function as follows:

Access = namedtuple('Access', ['host', 'identity', 'user', 'time',  
'request', 'status', 'bytes', 'referrer', 'user_agent'])

We've taken pains to assure that the namedtuple function's fields 
match the regular expression group names in the (?P<name>) 
constructs for each portion of the record. By making sure the names 
match, we can very easily transform the parsed dictionary into a tuple 
for further processing.

Here is the access_iter() function that requires each file to be represented  
as an iterator over the lines of the file:

def access_iter(source_iter):

    for log in source_iter:

        for line in log:

            match= format_pat.match(line)

            if match:

                yield Access(**match.groupdict())

The output from the local_gzip() function is a sequence of sequences. The outer 
sequence consists of individual logfiles. For each file, there is an iterable sequence 
of lines. If the line matches the given pattern, it's a file access of some kind. We can 
create an Access namedtuple from the match dictionary.

The essential design pattern here is to build a static object from the results of a 
parsing function. In this case, the parsing function is a regular expression matcher.
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There are some alternative ways to do this. For example, we can revise the use of the 
map() function as follows:

    def access_builder(line):

        match= format_pat.match(line)

        if match:

            return Access(**match.groupdict())

The preceding alternative function embodies just the essential parse and builds an 
Access object processing. It will either return an Access or a None object. This differs 
from the version above that also filters items that don't match the regular expression.

Here is how we can use this function to flatten logfiles into a single stream of the 
Access objects:

    map(access_builder, (line for log in source_iter for line in  
    log))

This shows how we can transform the output from the local_gzip() function into 
a sequence of the Access instances. In this case, we apply the access_builder() 
function to the nested iterator of iterable structure that results from reading a 
collection of files.

Our point here is to show that we have a number of functional styles for parsing 
files. In Chapter 4, Working with Collections we showed very simple parsing. Here, 
we're performing more complex parsing, using a variety of techniques.

Parsing additional fields of an Access object
The initial Access object created previously doesn't decompose some inner 
elements in the nine fields that comprise an access log line. We'll parse those items 
separately from the overall decomposition into high-level fields. It keeps the regular 
expressions for parsing somewhat simpler if we break this down into separate 
parsing operations.

The resulting object is a namedtuple object that will wrap the original Access tuple. 
It will have some additional fields for the details parsed separately:

AccessDetails = namedtuple('AccessDetails', ['access', 'time',  
'method', 'url', 'protocol', 'referrer', 'agent'])
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The access attribute is the original Access object. The time attribute is the 
parsed access.time string. The method, url, and protocol attributes come from 
decomposing the access.request field. The referrer attribute is a parsed URL. 
The agent attribute can also be broken down into fine-grained fields. Here are the 
fields that comprise agent details:

AgentDetails= namedtuple('AgentDetails', ['product', 'system',  
'platform_details_extensions'])

These fields reflect the most common syntax for agent descriptions. There is 
considerable variation in this area, but this particular subset of values seems to be 
reasonably common.

We'll combine three detailed parser functions into a single overall parsing function. 
Here is the first part with the various detail parsers:

def access_detail_iter(iterable):

    def parse_request(request):

        words = request.split()

        return words[0], ' '.join(words[1:-1]), words[-1]

    def parse_time(ts):

        return datetime.datetime.strptime(ts, "%d/%b/%Y:%H:%M:%S %z")

    agent_pat= re.compile(r"(?P<product>\S*?)\s+"

        r"\((?P<system>.*?)\)\s*"

        r"(?P<platform_details_extensions>.*)")

    def parse_agent(user_agent):

        agent_match= agent_pat.match(user_agent)

        if agent_match:

            return AgentDetails(**agent_match.groupdict())

We've written three parsers for the HTTP request, the time stamp, and the user agent 
information. The request is usually a three-word string such as GET /some/path 
HTTP/1.1. The parse_request() function extracts these three space-separated values. 
In the unlikely event that the path has spaces in it, we'll extract the first word and the 
last word as the method and protocol; all the remaining words are part of the path.

Time parsing is delegated to the datetime module. We've simply provided the 
proper format in the parse_time() function.
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Parsing the user agent is challenging. There are many variations; we've chosen  
a common one for the parse_agent() function. If the user agent matches the  
given regular expression, we'll have the attributes of an AgentDetails namedtuple. 
If the user agent information doesn't match the regular expression, we'll simply use 
the None value instead.

We'll use these three parsers to build AccessDetails instances from the given 
Access objects. The main body of the access_detail_iter() function looks  
as follows:

    for access in iterable:

        try:

            meth, uri, protocol = parse_request(access.request)

            yield AccessDetails( 
                access= access, 
                time= parse_time(access.time), 
                method= meth, 
                url= urllib.parse.urlparse(uri), 
                protocol= protocol, 
                referrer = urllib.parse.urlparse(access.referer), 
                agent= parse_agent(access.user_agent) 
             )

        except ValueError as e:

            print(e, repr(access))

We've used a similar design pattern to the previous access_iter() function. A new 
object is built from the results of parsing some input object. The new AccessDetails 
object will wrap the previous Access object. This technique allows us to use 
immutable objects, yet still contain more refined information.

This function is essentially a mapping from an Access object to an AccessDetails 
object. We can imagine changing the design to use map() as follows:

def access_detail_iter2(iterable):

    def access_detail_builder(access):

        try:

            meth, uri, protocol = parse_request(access.request)

            return AccessDetails( 
                access= access, 
                time= parse_time(access.time), 
                method= meth, 
                url= urllib.parse.urlparse(uri), 
                protocol= protocol, 
                referrer = urllib.parse.urlparse(access.referer), 
                agent= parse_agent(access.user_agent) 
                )
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        except ValueError as e:

            print(e, repr(access))

    return filter(None, map(access_detail_builder, iterable))

We've changed the construction of the AccessDetails object to be a function  
that returns a single value. We can map that function to the iterable input stream  
of the Access objects. This also fits nicely with the way the multiprocessing 
module works.

In an object-oriented programming environment, these additional parsers might be 
method functions or properties of a class definition. The advantage of this design 
is that items aren't parsed unless they're needed. This particular functional design 
parses everything, assuming that it's going to be used.

A different function design might rely on the three parser functions to extract and 
parse the various elements from a given Access object as needed. Rather than using 
the details.time attribute, we'd use the parse_time(access.time) parameter. 
The syntax is longer, but the attribute is only parsed as needed.

Filtering the access details
We'll look at several filters for the AccessDetails objects. The first is a collection of 
filters that reject a lot of overhead files that are rarely interesting. The second filter 
will be part of the analysis functions, which we'll look at later.

The path_filter() function is a combination of three functions:

1. Exclude empty paths.
2. Exclude some specific filenames.
3. Exclude files that have a given extension.

An optimized version of the path_filter() function looks as follows:

def path_filter(access_details_iter):

    name_exclude = { 
        'favicon.ico', 'robots.txt', 'humans.txt', 
        'crossdomain.xml' , 
        '_images', 'search.html', 'genindex.html', 
        'searchindex.js', 'modindex.html', 'py-modindex.html', 
    }

    ext_exclude = { 
        '.png', '.js', '.css', 
    }

    for detail in access_details_iter:

        path = detail.url.path.split('/')
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        if not any(path):

            continue

        if any(p in name_exclude for p in path):

            continue

        final= path[-1]

        if any(final.endswith(ext) for ext in ext_exclude):

            continue

        yield detail

For each individual AccessDetails object, we'll apply three filter tests. If the path 
is essentially empty or the part includes one of the excluded names or the path's 
final name has an excluded extension, the item is quietly ignored. If the path doesn't 
match any of these criteria, it's potentially interesting and is part of the results 
yielded by the path_filter() function.

This is an optimization because all of the tests are applied using an imperative style 
for loop body.

The design started with each test as a separate first-class filter-style function.  
For example, we might have a function like the following to handle empty paths:

    def non_empty_path(detail):

        path = detail.url.path.split('/')

        return any(path)

This function simply assures that the path contains a name. We can use the filter() 
function as follows:

filter(non_empty_path, access_details_iter)

We can write similar tests for the non_excluded_names() and non_excluded_ext() 
functions. The entire sequence of filter() functions will look as follows:

filter(non_excluded_ext, 
    filter(non_excluded_names, 
        filter(non_empty_path, access_details_iter)))

This applies each filter() function to the results of the previous filter() 
function. The empty paths are rejected; from this subset, the excluded names and the 
excluded extensions are rejected. We can also state the preceding example as a series 
of assignment statements as follows:

    ne= filter(non_empty_path, access_details_iter)

    nx_name= filter(non_excluded_names, ne)

    nx_ext= filter(non_excluded_ext, nx_name)

    return nx_ext
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This version has the advantage of being slightly easier to expand when we add new 
filter criteria.

The use of generator functions (such as the filter() function) 
means that we aren't creating large intermediate objects. Each of the 
intermediate variables, ne, nx_name, and nx_ext, are proper lazy 
generator functions; no processing is done until the data is consumed 
by a client process.

While elegant, this suffers from a small inefficiency because each function will need 
to parse the path in the AccessDetails object. In order to make this more efficient, 
we will need to wrap a path.split('/') function with the lru_cache attribute.

Analyzing the access details
We'll look at two analysis functions we can use to filter and analyze the individual 
AccessDetails objects. The first function, a filter() function, will pass only specific 
paths. The second function will summarize the occurrences of each distinct path.

We'll define the filter() function as a small function and combine this with the 
built-in filter() function to apply the function to the details. Here is the composite 
filter() function:

def book_filter(access_details_iter):

    def book_in_path(detail):

        path = tuple(l for l in detail.url.path.split('/') if l)

        return path[0] == 'book' and len(path) > 1

    return filter(book_in_path, access_details_iter)

We've defined a rule, the book_in_path() attribute, that we'll apply to each 
AccessDetails object. If the path is not empty and the first-level attribute of the 
path is book, then we're interested in these objects. All other AccessDetails objects 
can be quietly rejected.

Here is the final reduction that we're interested in:

from collections import Counter

def reduce_book_total(access_details_iter):

    counts= Counter()

    for detail in access_details_iter:

        counts[detail.url.path] += 1

    return counts
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This function will produce a Counter() object that shows the frequency of each path 
in an AccessDetails object. In order to focus on a particular set of paths, we'll use 
the reduce_total(book_filter(details)) method. This provides a summary of 
only items that are passed by the given filter.

The complete analysis process
Here is the composite analysis() function that digests a collection of logfiles:

def analysis(filename):

    details= path_filter(access_detail_iter(access_iter(local_gzip 
    (filename))))

    books= book_filter(details)

    totals= reduce_book_total(books)

    return totals

The preceding command snippet will work with a single filename or file pattern. 
It applies a standard set of parsing functions, path_filter(), access_detail_
iter(), access_iter(), and local_gzip(), to a filename or file pattern and returns 
an iterable sequence of the AccessDetails objects. It then applies our analytical 
filter and reduction to that sequence of the AccessDetails objects. The result is a 
Counter object that shows the frequency of access for certain paths.

A specific collection of saved .gzip format logfiles totals about 51 MB. Processing 
the files serially with this function takes over 140 seconds. Can we do better using 
concurrent processing?

Using a multiprocessing pool for 
concurrent processing
One elegant way to make use of the multiprocessing module is to create a 
processing Pool object and assign work to the various processes in that pool.  
We will use the OS to interleave execution among the various processes. If each  
of the processes has a mixture of I/O and computation, we should be able to assure 
that our processor is very busy. When processes are waiting for I/O to complete, 
other processes can do their computation. When an I/O completes, a process will be 
ready to run and can compete with others for processing time.

The recipe for mapping work to a separate process looks as follows:

    import multiprocessing

    with multiprocessing.Pool(4) as workers:

        workers.map(analysis, glob.glob(pattern))
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We've created a Pool object with four separate processes and assigned this Pool 
object to the workers variable. We've then mapped a function, analysis, to an 
iterable queue of work to be done, using the pool of processes. Each process in the 
workers pool will be assigned items from the iterable queue. In this case, the queue 
is the result of the glob.glob(pattern) attribute, which is a sequence of file names.

As the analysis() function returns a result, the parent process that created the Pool 
object can collect those results. This allows us to create several concurrently-built 
Counter objects and merge them into a single, composite result.

If we start p processes in the pool, our overall application will include p+1 processes. 
There will be one parent process and p children. This often works out well because 
the parent process will have little to do after the subprocess pools are started. 
Generally, the workers will be assigned to separate CPUs (or cores) and the parent 
will share a CPU with one of the children in the Pool object.

The ordinary Linux parent/child process rules apply to the subprocesses 
created by this module. If the parent crashes without properly collecting 
final status from the child processes, then "zombie" processes can be left 
running. For this reason, a process Pool object is a context manager. 
When we use a pool via the with statement, at the end of the context, the 
children are properly terminated.

By default, a Pool object will have a number of workers based on the value of  
the multiprocessing.cpu_count() function. This number is often optimal, and 
simply using the with multiprocessing.Pool() as workers: attribute might  
be sufficient.

In some cases, it can help to have more workers than CPUs. This might be true when 
each worker has I/O-intensive processing. Having many worker processes waiting 
for I/O to complete can improve the elapsed running time of an application.

If a given Pool object has p workers, this mapping can cut the processing time to 
almost 1p  of the time required to process all of the logs serially. Pragmatically, there 
is some overhead involved with communication between the parent and child 
processes in the Pool object. Therefore, a four-core processor might only cut the 
processing time in half.

The multiprocessing Pool object has four map-like methods to allocate work to a 
pool: map(), imap(), imap_unordered(), and starmap(). Each of these is a variation 
on the common theme of mapping a function to a pool of processes. They differ in 
the details of allocating work and collecting results.
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The map(function, iterable) method allocates items from the iterable to each 
worker in the pool. The finished results are collected in the order they were allocated 
to the Pool object so that order is preserved.

The imap(function, iterable) method is described as "lazier" than map.  
By default, it sends each individual item from the iterable to the next available 
worker. This might involve more communication overhead. For this reason,  
a chunk size larger than 1 is suggested.

The imap_unordered(function, iterable) method is similar to the imap() 
method, but the order of the results is not preserved. Allowing the mapping to be 
processed out of order means that, as each process finishes, the results are collected. 
Otherwise, the results must be collected in order.

The starmap(function, iterable) method is similar to the itertools.
starmap() function. Each item in the iterable must be a tuple; the tuple is passed 
to the function using the * modifier so that each value of the tuple becomes a 
positional argument value. In effect, it's performing function(*iterable[0]), 
function(*iterable[1]), and so on.

Here is one of the variations on the preceding mapping theme:

    import multiprocessing

    pattern = "*.gz"

    combined= Counter()

    with multiprocessing.Pool() as workers:

        for result in workers.imap_unordered(analysis,  
        glob.glob(pattern)):

            combined.update(result)

We've created a Counter() function that we'll use to consolidate the results from 
each worker in the pool. We created a pool of subprocesses based on the number of 
available CPUs and used the Pool object as a context manager. We then mapped our 
analysis() function to each file in our file-matching pattern. The resulting Counter 
objects from the analysis() function are combined into a single resulting counter.

This takes about 68 seconds. The time to analyze the logs was cut in half using 
several concurrent processes.

We've created a two-tiered map-reduce process with the multiprocessing module's 
Pool.map() function. The first tier was the analysis() function, which performed  
a map-reduce on a single logfile. We then consolidated these reductions in a  
higher-level reduce operation.
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Using apply() to make a single request
In addition to the map() function's variants, a pool also has an apply(function, 
*args, **kw) method that we can use to pass one value to the worker pool. We 
can see that the map() method is really just a for loop wrapped around the apply() 
method, we can, for example, use the following command:

list(workers.apply(analysis, f) for f in glob.glob(pattern))

It's not clear, for our purposes, that this is a significant improvement. Almost 
everything we need to do can be expressed as a map() function.

Using map_async(), starmap_async(), and 
apply_async()
The behavior of the map(), starmap(), and apply() functions is to allocate work to 
a subprocess in the Pool object and then collect the response from the subprocess 
when that response is ready. This can cause the child to wait for the parent to gather 
the results. The _async() function's variations do not wait for the child to finish. 
These functions return an object that can be queried to get the individual results from 
the child processes.

The following is a variation using the map_async() method:

    import multiprocessing

    pattern = "*.gz"

    combined= Counter()

    with multiprocessing.Pool() as workers:

        results = workers.map_async(analysis, glob.glob(pattern))

        data= results.get()

        for c in data:

            combined.update(c)

We've created a Counter() function that we'll use to consolidate the results from 
each worker in the pool. We created a pool of subprocesses based on the number of 
available CPUs and used this Pool object as a context manager. We then mapped 
our analysis() function to each file in our file-matching pattern. The response from 
the map_async() function is a MapResult object; we can query this for results and 
overall status of the pool of workers. In this case, we used the get() method to get 
the sequence of the Counter objects.
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The resulting Counter objects from the analysis() function are combined into a 
single resulting Counter object. This aggregate gives us an overall summary of a 
number of logfiles. This processing is not any faster than the previous example.  
The use of the map_async() function allows the parent process to do additional 
work while waiting for the children to finish.

More complex multiprocessing architectures
The multiprocessing package supports a wide variety of architectures. We can 
easily create multiprocessing structures that span multiple servers and provide 
formal authentication techniques to create a necessary level of security. We can 
pass objects from process to process using queues and pipes. We can share memory 
between processes. We can also share lower-level locks between processes as a way 
to synchronize access to shared resources such as files.

Most of these architectures involve explicitly managing state among several working 
processes. Using locks and shared memory, in particular, are imperative in nature 
and don't fit well with a functional programming approach.

We can, with some care, treat queues and pipes in a functional manner. Our  
objective is to decompose a design into producer and consumer functions. A 
producer can create objects and insert them into a queue. A consumer will take 
objects out of a queue and process them, perhaps putting intermediate results into 
another queue. This creates a network of concurrent processors and the workload is 
distributed among these various processes. Using the pycsp package can simplify 
the queue-based exchange of messages among processes. For more information, visit 
https://pypi.python.org/pypi/pycsp.

This design technique has some advantages when designing a complex application 
server. The various subprocesses can exist for the entire life of the server, handling 
individual requests concurrently.

Using the concurrent.futures module
In addition to the multiprocessing package, we can also make use of the 
concurrent.futures module. This also provides a way to map data to a concurrent 
pool of threads or processes. The module API is relatively simple and similar in 
many ways to the multiprocessing.Pool() function's interface.

https://pypi.python.org/pypi/pycsp
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Here is an example to show just how similar they are:

    import concurrent.futures

    pool_size= 4

    pattern = "*.gz"

    combined= Counter()

    with concurrent.futures.ProcessPoolExecutor 
    (max_workers=pool_size) as workers:

        for result in workers.map(analysis, glob.glob(pattern)):

            combined.update(result)

The most significant change between the preceding example and previous examples 
is that we're using an instance of the concurrent.futures.ProcessPoolExecutor 
object instead of the multiprocessing.Pool method. The essential design pattern 
is to map the analysis() function to the list of filenames using the pool of available 
workers. The resulting Counter objects are consolidated to create a final result.

The performance of the concurrent.futures module is nearly identical to the 
multiprocessing module.

Using concurrent.futures thread pools
The concurrent.futures module offers a second kind of executor that we can use in 
our applications. Instead of creating a concurrent.futures.ProcessPoolExecutor 
object, we can use the ThreadPoolExecutor object. This will create a pool of threads 
within a single process.

The syntax is otherwise identical to using a ProcessPoolExecutor object. The 
performance, however, is remarkably different. The logfile processing is dominated 
by I/O. All of the threads in a process share the same OS scheduling constraints.  
Due to this, the overall performance of multithreaded logfile analysis is about the 
same as processing the logfiles serially.

Using sample logfiles and a small four-core laptop running Mac OS X, these are the 
kinds of results that indicate the difference between threads that share I/O resources 
and processes:

• Using the concurrent.futures thread pool, the elapsed time was  
168 seconds

• Using a process pool, the elapsed time was 68 seconds

In both cases, the Pool object's size was 4. It's not clear which kind of applications 
benefit from a multithreading approach. In general, multiprocessing seems to be best 
for Python applications.
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Using the threading and queue modules
The Python threading package involves a number of constructs helpful for 
building imperative applications. This module is not focused on writing functional 
applications. We can make use of thread-safe queues in the queue module to pass 
objects from thread to thread.

The threading module doesn't have a simple way to distribute work to various 
threads. The API isn't ideally suited to functional programming.

As with the more primitive features of the multiprocessing module, we can try 
to conceal the stateful and imperative nature of locks and queues. It seems easier, 
however, to make use of the ThreadPoolExecutor method in the concurrent.
futures module. The ProcessPoolExecutor.map() method provides us with a 
very pleasant interface to concurrent processing of the elements of a collection.

The use of the map() function primitive to allocate work seems to fit nicely with 
our functional programming expectations. For this reason, it's best to focus on 
the concurrent.futures module as the most accessible way to write concurrent 
functional programs.

Designing concurrent processing
From a functional programming perspective, we've seen three ways to use  
the map() function concept applied to data items concurrently. We can use any  
one of the following:

• multiprocessing.Pool

• concurrent.futures.ProcessPoolExecutor

• concurrent.futures.ThreadPoolExecutor

These are almost identical in the way we interact with them; all three have a map() 
method that applies a function to items of an iterable collection. This fits elegantly 
with other functional programming techniques. The performance is different because 
of the nature of concurrent threads versus concurrent processes.

As we stepped through the design, our log analysis application decomposed into 
two overall areas:

• The lower-level parsing: This is generic parsing that will be used by almost 
any log analysis application

• The higher-level analysis application: This is more specific filtering and 
reduction focused on our application needs
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The lower-level parsing can be decomposed into four stages:

• Reading all the lines from multiple source logfiles. This was the  
local_gzip() mapping from file name to a sequence of lines.

• Creating simple namedtuples from the lines of log entries in a collection of 
files. This was the access_iter() mapping from text lines to Access objects.

• Parsing the details of more complex fields such as dates and URLs. 
This was the access_detail_iter() mapping from Access objects to 
AccessDetails objects.

• Rejecting uninteresting paths from the logs. We can also think of this  
as passing only the interesting paths. This was more of a filter than  
a map operation. This was a collection of filters bundled into the  
path_filter() function.

We defined an overall analysis() function that parsed and analyzed a given 
logfile. It applied the higher-level filter and reduction to the results of the lower-level 
parsing. It can also work with a wild-card collection of files.

Given the number of mappings involved, we can see several ways to decompose  
this problem into work that can be mapped to into a pool of threads or processes. 
Here are some of the mappings we can consider as design alternatives:

• Map the analysis() function to individual files. We use this as a consistent 
example throughout this chapter.

• Refactor the local_gzip() function out of the overall analysis() function. 
We can now map the revised analysis() function to the results of the 
local_gzip() function.

• Refactor the access_iter(local_gzip(pattern)) function out of the 
overall analysis() function. We can map this revised analysis() function 
against the iterable sequence of the Access objects.

• Refactor the access_detail_iter(access-iter(local_gzip(pattern))) 
function into a separate iterable. We will then map the path_filter() 
function and the higher-level filter and reduction against the iterable 
sequence of the AccessDetail objects.

• We can also refactor the lower-level parsing into a function that is separate 
from the higher-level analysis. We can map the analysis filter and reduction 
against the output from the lower-level parsing.

All of these are relatively simple restructurings of the example application. The 
benefit of using functional programming techniques is that each part of the overall 
process can be defined as a mapping. This makes it practical to consider different 
architectures to locate an optimal design.
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In this case, however, we need to distribute the I/O processing to as many CPUs or 
cores as we have available. Most of these potential refactorings will perform all of 
the I/O in the parent process; these will only distribute the computations to multiple 
concurrent processes with little resulting benefit. Then, we want to focus on the 
mappings, as these distribute the I/O to as many cores as possible.

It's often important to minimize the amount of data being passed from process to 
process. In this example, we provided just short filename strings to each worker 
process. The resulting Counter object was considerably smaller than the 10 MB 
of compressed detail data in each logfile. We can further reduce the size of each 
Counter object by eliminating items that occur only once; or we can limit our 
application to only the 20 most popular items.

The fact that we can reorganize the design of this application freely doesn't mean 
we should reorganize the design. We can run a few benchmarking experiments to 
confirm our suspicion that logfile parsing is dominated by the time required to read 
the files.

Summary
In this chapter, we've looked at two ways to support concurrent processing of 
multiple pieces of data:

• The multiprocessing module: Specifically, the Pool class and the various 
kinds of mappings available to a pool of workers.

• The concurrent.futures module: Specifically the ProcessPoolExecutor 
and ThreadPoolExecutor class. These classes also support a mapping that 
will distribute work among workers that are threads or processes.

We've also noted some alternatives that don't seem to fit well with functional 
programming. There are numerous other features of the multiprocessing module, 
but they're not a good fit with functional design. Similarly, the threading and queue 
modules can be used to build multithreaded applications, but the features aren't a 
good fit with functional programs.

In the next chapter, we'll look at the operator module. This can be used to simplify 
some kinds of algorithms. We can use a built-in operator function instead of defining 
a lambda form. We'll also look at some techniques to design flexible decision making 
and allow expressions to be evaluated in a non-strict order.



Conditional Expressions and 
the Operator Module

Functional programming emphasizes lazy or non-strict ordering of operations.  
The idea is to allow the compiler or runtime to do as little work as possible to 
compute the answer. Python tends to impose strict ordering on evaluations.

For example, we used the Python if, elif, and else statements. They're clear  
and readable, but they imply a strict ordering on the evaluation of the conditions.  
We can, to an extent, free ourselves from the strict ordering here, and develop a 
limited kind of non-strict conditional statement. It's not clear if this is helpful but it 
shows some alternative ways to express an algorithm in a functional style.

The first part of this chapter will look at ways we can implement non-strict 
evaluation. This is a tool that's interesting because it can lead to performance 
optimizations.

In the previous chapters, we looked at a number of higher-order functions. In some 
cases, we used these higher-order functions to apply fairly sophisticated functions to 
collections of data. In other cases, we applied simple functions to collections of data.

Indeed, in many cases, we wrote tiny lambda objects to apply a single Python 
operator to a function. For example, we can use the following to define a  
prod() function:

>>> prod= lambda iterable: functools.reduce(lambda x, y: x*y,  
iterable, 1)

>>> prod((1,2,3))

6
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The use of the lambda x,y: x*y parameter seems a bit wordy for multiplication. 
After all, we just want to use the multiplication operator, *. Can we simplify the 
syntax? The answer is yes; the operator module provides us with definitions  
of the built-in operators.

There are a number of features of the operator module that lead to some 
simplification and potential clarification to create higher-order functions. While 
important conceptually, the operator module isn't as interesting as it initially appears.

Evaluating conditional expressions
Python imposes relatively strict ordering on expressions; the notable exceptions are 
the short-circuit operators, and and or. It imposes very strict ordering on statement 
evaluation. This makes it challenging to find different ways to avoid this strict 
evaluation.

It turns out that evaluating condition expressions is one way in which we can 
experiment with non-strict ordering of statements. We'll examine some ways to 
refactor the if and else statements to explore this aspect of non-strict evaluation  
in Python.

The Python if, elif, and else statements are evaluated in a strict order from first to 
last. Ideally, a language might relax this rule so that an optimizing compiler can find 
a faster order for evaluating the conditional expressions. The idea is for us to write 
the expressions in an order that makes sense to a reader, even if the actual evaluation 
order is non-strict.

Lacking an optimizing compiler, this concept is a bit of a stretch for Python. 
Nonetheless, we do have alternative ways to express conditions that involve the 
evaluation of functions instead of the execution of imperative statements. This can 
allow you to make some rearrangement at runtime.

Python does have a conditional if and else expression. This expression form can be 
used when there's a single condition. When we have multiple conditions, however, 
it can get awkwardly complex: we'd have to carefully nest the subexpressions. We 
might wind up with a command, as follows, which is rather difficult to comprehend:

(x if n==1 else (y if n==2 else z))
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We can use dictionary keys and the lambda objects to create a very complex set of 
conditions. Here's a way to express the factorial function as expressions:

def fact(n):

    f= { n == 0: lambda n: 1,

    n == 1: lambda n: 1,

    n == 2: lambda n: 2,

    n > 2: lambda n: fact(n-1)*n }[True]

    return f(n)

This rewrites the conventional if, elif, elif, and else sequence of statements into 
a single expression. We've decomposed it into two steps to make what's happening 
slightly clearer.

In the first step, we'll evaluate the various conditions. One of the given conditions 
will evaluate to True, the others should all evaluate to False. The resulting 
dictionary will have two items in it: a True key with a lambda object and a False key 
with a lambda object. We'll select the True item and assign it to the f variable.

We used lambdas as the values in this mapping so that the value expressions aren't 
evaluated when the dictionary is built. We want to evaluate just one of the value 
expressions. The return statement evaluates the one expression associated with the 
True condition.

Exploiting non-strict dictionary rules
A dictionary's keys have no order. If we try to create a dictionary with multiple  
items that share a common key value, we'll only have one item in the resulting  
dict object. It's not clear which of the duplicated key values will be preserved,  
and it shouldn't matter.

Here's a situation where we explicitly don't care which of the duplicated keys is 
preserved. We'll look at a degenerate case of the max() function, it simply picks the 
largest of two values:

def max(a, b):

    f = {a >= b: lambda: a, b >= a: lambda: b}[True]

    return f()

In the case where a == b, both items in the dictionary will have a key of the True 
condition. Only one of the two will actually be preserved. Since the answer is the same, 
it doesn't matter which is kept and which is treated as a duplicate and overwritten.
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Filtering true conditional expressions
We have a number of ways of determining which expression is True. In the previous 
example, we loaded the keys into a dictionary. Because of the way the dictionary is 
loaded, only one value will be preserved with a key of True.

Here's another variation to this theme, written using the filter() function:

def semifact(n):

    alternatives= [(n == 0, lambda n: 1),

    (n == 1, lambda n: 1),

    (n == 2, lambda n: 2),

    (n > 2, lambda n: semifact(n-2)*n)]

    c, f= next(filter(itemgetter(0), alternatives))

    return f(n)

We defined the alternatives as a sequence of condition and function pairs. When 
we apply the filter() function using the itemgetter(0) parameter, we'll select 
those pairs with a True condition. Of those which are True, we'll select the first item 
in the iterable created by the filter() function. The selected condition is assigned 
to the c variable, the selected function is assigned to the f variable. We can ignore the 
condition (it will be True), and we can evaluate the filter() function.

As with the previous example, we used lambdas to defer evaluation of the functions 
until after the conditions have been evaluated.

This semifact() function is also called double factorial. The definition of the 
semifactorial is similar to the definition of factorial. The important difference is that it 
is the product of alternate numbers instead of all numbers. For example, take a look 
at the following formulas:

5!! 5 3 1= × × , and 7!! 7 5 3 1= × × ×

Using the operator module instead  
of lambdas
When using the max(), min(), and sorted() functions, we have an optional  
key= parameter. The function provided as an argument value modifies the behavior 
of the higher-order function. In many cases, we used simple lambda forms to pick 
items from a tuple. Here are two examples we heavily relied on:

fst = lambda x: x[0]

snd = lambda x: x[1]
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These match built-in functions in other functional programming languages.

We don't really need to write these functions. There's a version available in the 
operator module which describes these functions.

Here's some sample data we can work with:

>>> year_cheese = [(2000, 29.87), (2001, 30.12), (2002, 30.6),  
(2003, 30.66), (2004, 31.33), (2005, 32.62), (2006, 32.73),  
(2007, 33.5), (2008, 32.84), (2009, 33.02), (2010, 32.92)]

This is the annual cheese consumption. We used this example in Chapter 2, 
Introducing Some Functional Features and Chapter 9, More Itertools Techniques.

We can locate the data point with minimal cheese using the following commands:

>>> min(year_cheese, key=snd)

(2000, 29.87)

The operator module gives us an alternative to pick particular elements from  
a tuple. This saves us from using a lambda variable to pick the second item.

Instead of defining our own fst() and snd() functions, we can use the 
itemgetter(0) and the itemgetter(1) parameters, as shown in the  
following command:

>>> from operator import *

>>> max( year_cheese, key=itemgetter(1))

(2007, 33.5)

The itemgetter() function relies on the special method, __getitem__(), to pick 
items out of a tuple (or list) based on their index position.

Getting named attributes when using  
higher-order functions
Let's look at a slightly different collection of data. Let's say we were working with 
namedtuples instead of anonymous tuples. We have two ways to locate the range  
of cheese consumption shown as follows:

>>> from collections import namedtuple

>>> YearCheese = namedtuple("YearCheese", ("year", "cheese"))

>>> year_cheese_2 = list(YearCheese(*yc) for yc in year_cheese)

>>> year_cheese_2
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[YearCheese(year=2000, cheese=29.87), YearCheese(year=2001,  
cheese=30.12), YearCheese(year=2002, cheese=30.6),  
YearCheese(year=2003, cheese=30.66), YearCheese(year=2004,  
cheese=31.33), YearCheese(year=2005, cheese=32.62),  
YearCheese(year=2006, cheese=32.73), YearCheese(year=2007,  
cheese=33.5), YearCheese(year=2008, cheese=32.84),  
YearCheese(year=2009, cheese=33.02), YearCheese(year=2010,  
cheese=32.92)]

We can use lambda forms or we can use the attrgetter() function, as follows:

>>> min(year_cheese_2, key=attrgetter('cheese'))

YearCheese(year=2000, cheese=29.87)

>>> max(year_cheese_2, key=lambda x: x.cheese)

YearCheese(year=2007, cheese=33.5)

What's important here is that with a lambda object, the attribute name is expressed as 
a token in the code. With the attrgetter() function, the attribute name is a character 
string. This could be a parameter, which allows us to be considerably flexible.

Starmapping with operators
The itertools.starmap() function can be applied to an operator and a sequence  
of pairs of values. Here's an example:

>>> d= starmap(pow, zip_longest([], range(4), fillvalue=60))

The itertools.zip_longest() function will create a sequence of pairs such as  
the following:

[(60, 0), (60, 1), (60, 2), (60, 3)]

It does this because we provided two sequences: the [] brackets and the range(4) 
parameter. The fillvalue parameter will be used when the shorter sequence runs 
out of data.

When we use the starmap() function, each pair becomes the argument to the given 
function. In this case, we provided the operator.pow() function, which is the ** 
operator. We've calculated values for [60**0, 60**1, 60**2, 60**3]. The value 
of the d variable is [1, 60, 3600, 216000].

The starmap() function is useful when we have a sequence of tuples. We have a tidy 
equivalence between the map(f, x, y) and starmap(f, zip(x,y)) functions.
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Here's a continuation of the preceding example of the itertools.starmap() function:

>>> p = (3, 8, 29, 44)

>>> pi = sum(starmap(truediv, zip(p, d)))

We've zipped together two sequences of four values. We used the starmap() 
function with the operator.truediv() function, which is the / operator.  
This will compute a sequence of fractions that we sum. The sum is really an 
approximation of π
Here's a simpler version that uses the map(f, x, y) function instead of the 
starmap(f, zip(x,y)) function:

>>> pi = sum(map(truediv, p, d))

>>> pi

3.1415925925925925

In this example, we effectively converted a base 60 fractional value to base 10. The 
sequence of values in the d variable are the appropriate denominators. A technique 
similar to the one explained earlier in this section can be used to convert other bases.

Some approximations involve potentially infinite sums (or products). These can 
be evaluated using similar techniques explained previously in this section. We can 
leverage the count() function in the itertools module to generate an arbitrary 
number of terms in an approximation. We can then use the takewhile() function to 
only use values that contribute a useful level of precision to the answer.

Here's an example of a potentially infinite sequence:

>>> num= map(fact, count())

>>> den= map(semifact, (2*n+1 for n in count()))

>>> terms= takewhile(lambda t: t > 1E-10, map(truediv, num, den))

>>> 2*sum(terms)

3.1415926533011587

The num variable is a potentially infinite sequence of numerators, based on a factorial 
function. The den variable is a potentially infinite sequence of denominators, based 
on the semifactorial (sometimes called the double factorial) function.

To create terms, we used the map() function to apply the operators.truediv() 
function, the / operator, to each pair of values. We wrapped this in a takewhile() 
function so that we only take values while the fraction is greater than some relatively 
small value; in this case, 101 10−× .
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This is a series expansion based on 4 arctan(1)=π . The expansion is ( )0
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An interesting variation to the series expansion theme is to replace the operator.
truediv() function with the fractions.Fraction() function. This will create exact 
rational values that don't suffer from the limitations of floating-point approximations.

All of the Python operators are available in the operators module. This includes 
all of the bit-fiddling operators as well as the comparison operators. In some cases, 
a generator expression may be more succinct or expressive than a rather complex-
looking starmap() function with a function that represents an operator.

The issue is that the operator module provides only a single operator, essentially 
a shorthand for lambda. We can use the operator.add method instead of the 
add=lambda a,b: a+b method. If we have more complex expressions, then the 
lambda object is the only way to write them.

Reducing with operators
We'll look at one more way that we might try to use the operator definitions. We can 
use them with the built-in functools.reduce() function. The sum() function, for 
example, can be defined as follows:

sum= functools.partial(functools.reduce, operator.add)

We created a partially evaluated version of the reduce() function with the first 
argument supplied. In this case, it's the + operator, implemented via the operator.
add() function.

If we have a requirement for a similar function that computes a product, we can 
define it like this:

prod= functools.partial(functools.reduce, operator.mul)

This follows the pattern shown in the preceding example. We have a partially 
evaluated reduce() function with the first argument of * operator, as implemented 
by the operator.mul() function.

It's not clear whether we can do similar things with too many of the other operators. 
We might be able to find a use for the operator.concat() function as well as the 
operator.and() and operator.or() functions. 

The and() and or() functions are the bit-wise & and / operators. 
If we want the proper Boolean operators, we have to use the all() 
and any() functions instead of the reduce() function.
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Once we have a prod() function, this means that the factorial can be defined  
as follows:

fact= lambda n: 1 if n < 2 else n*prod(range(1,n))

This has the advantage of being succinct: it provides a single line definition of 
factorial. It also has the advantage of not relying on recursion but has the potential  
of running afoul Python's stack limit.

It's not clear that this has any dramatic advantages over the many alternatives we 
have in Python. The concept of building a complex function from primitive pieces 
like the partial() and reduce() functions, and the operator module is very 
elegant. In most cases, though, the simple functions in the operator module aren't 
very helpful; we'll almost always want to use more complex lambdas.

Summary
In this chapter, we looked at alternatives to the if, elif, and else statement 
sequence. Ideally, using a conditional expression allows some optimization to be 
done. Pragmatically, Python doesn't optimize, so there's little tangible benefit to the 
more exotic ways to handle conditions.

We also looked at how we can use the operator module with higher order functions 
like max(), min(), sorted(), and reduce(). Using operators can save us from 
having to create a number of small lambdas.

In the next chapter, we'll look at the PyMonad library to express a functional 
programming concept directly in Python. We don't require monads generally 
because Python is an imperative programming language under the hood.

Some algorithms might be expressed more clearly with monads than with stateful 
variable assignments. We'll look at an example where monads lead to a succinct 
expression of a rather complex set of rules. Most importantly, the operator module 
shows off many functional programming techniques.





The PyMonad Library
A monad allows us to impose an order on expression evaluation in an otherwise 
lenient language. We can use a monad to insist that an expression such as a + b + c 
is evaluated in left-to-right order. Generally, there seems to be no point to a monad. 
When we want files to have their content read or written in a specific order, however, 
a monad is a handy way to assure that the read() and write() functions are 
evaluated in a particular order.

Languages that are lenient and have optimizing compilers benefit from monads to 
impose order on evaluation of expressions. Python, for the most part, is strict and 
does not optimize. We have little practical use for monads.

However, the PyMonad module is more than just monads. There are a number of 
functional programming features that have a distinctive implementation. In some 
cases, the PyMonad module can lead to programs which are more succinct and 
expressive than those written using only the standard library modules.

Downloading and installing
The PyMonad module is available on Python Package Index (PyPi). In order to add 
PyMonad to your environment, you'll need to use pip or Easy Install. Here are some 
typical situations:

• If you have Python 3.4 or higher, you have both of these installation  
package tools

• If you have Python 3.x, you may already have either one of the necessary 
installers because you've added packages already

• If you have Python 2.x, you should consider an upgrade to Python 3.4
• If you don't have pip or Easy Install, you'll need to install them first; consider 

upgrading to Python 3.4 to get these installation tools

Visit https://pypi.python.org/pypi/PyMonad/ for more information.

https://pypi.python.org/pypi/PyMonad/
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For Mac OS and Linux developers, the command pip install PyMonad or  
easy_install-3.3 pymonad must be run using the sudo command. When running 
a command such as sudo easy_install-3.3 pymonad, you'll be prompted for your 
password to assure that you have the administrative permissions necessary to do the 
installation. For Windows developers, the sudo command is not relevant, but you do 
need to have administrative rights.

Once the pymonad package is installed, you can confirm it using the following 
commands:

>>> import pymonad

>>> help(pymonad)

This will display the docstring module and confirm that things really are  
properly installed.

Functional composition and currying
Some functional languages work by transforming a multiargument function syntax 
into a collection of single argument functions. This process is called currying—it's 
named after logician Haskell Curry, who developed the theory from earlier concepts.

Currying is a technique for transforming a multiargument function into higher order 
single argument functions. In the simple case, we have a function ( ),f x y z→ ; given 
two arguments x and y, this will return some resulting value, z. We can curry this 
into two functions: ( ) ( )1 2c cf x f y→  and ( )2cf y z→ . Given the first argument value, 
x, the function returns a new one-argument function, ( )1cf x  returns a new one-
argument function, ( )2cf y . This second function can be given an argument, y, and 
will return the resulting value, z.

We can evaluate a curried function in Python as follows: f_c(2)(3). We apply the 
curried function to the first argument value of 2, creating a new function. Then, we 
apply that new function to the second argument value of 3.

This applies recursively to functions of any complexity. If we start with a function 
( ), ,g a b c z→ , we curry this into a function ( ) ( ) ( )1 2 3c c cg a g b g c z→ → → . This is done 

recursively. First, the ( )1cg a  function returns a new function with the b and c 
arguments, ( )2 ,cg b c z→ . Then we can curry the returned two-argument function to 
create ( ) ( )2 3c cg b g c→ .

We can evaluate this curried function with g_c(1)(2)(3). When we apply 1cg  to an 
argument of 1, we get a function; when we apply this returned function to 2, we get 
another function. When we apply the final function to 3, we get the expected result. 
Clearly, formal syntax is bulky, so we use some syntactic sugar to reduce g_c(1)(2)
(3) to something more palatable like g(1,2,3).
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Let's look at a concrete example in Python, for example, we have a function like the 
following one:

from pymonad import curry

@curry

def systolic_bp(bmi, age, gender_male, treatment):

    return 68.15+0.58*bmi+0.65*age+0.94*gender_male+6.44*treatment

This is a simple, multiple-regression-based model for systolic blood pressure. 
This predicts blood pressure from body mass index (BMI), age, gender (1 means 
male), and history of previous treatment (1 means previously treated). For more 
information on the model and how it's derived, visit http://sphweb.bumc.bu.edu/
otlt/MPH-Modules/BS/BS704_Multivariable/BS704_Multivariable7.html.

We can use the systolic_bp() function with all four arguments, as follows:

>>> systolic_bp(25, 50, 1, 0)

116.09

>>> systolic_bp(25, 50, 0, 1)

121.59

A male person with a BMI of 25, age 50, and no previous treatment will likely have a 
blood pressure of 116. The second example shows a similar woman with a history of 
treatment who will likely have a blood pressure of 121.

Because we've used the @curry decorator, we can create intermediate results that are 
similar to partially applied functions. Take a look at the following command snippet:

>>> treated= systolic_bp(25, 50, 0)

>>> treated(0)

115.15

>>> treated(1)

121.59

In the preceding case, we evaluated the systolic_bp(25, 50, 0) method to create 
a curried function and assigned this to the variable treatment. The BMI, age, and 
gender values don't typically change for a given patient. We can now apply the new 
function, treatment, to the remaining argument to get different blood pressure 
expectations based on patient history.

http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Multivariable/BS704_Multivariable7.html
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Multivariable/BS704_Multivariable7.html
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This is similar in some respects to the functools.partial() function. The important 
difference is that currying creates a function that can work in a variety of ways. The 
functools.partial() function creates a more specialized function that can only be 
used with the given set of bound values.

Here's an example of creating some additional curried functions:

>>> g_t= systolic_bp(25, 50)

>>> g_t(1, 0)

116.09

>>> g_t(0, 1)

121.59

This is a gender-based treatment function based on our initial model. We must 
provide gender and treatment values to get a final value from the model.

Using curried higher-order functions
While currying is simple to visualize using ordinary functions, the real value shows 
up when we apply currying to higher-order functions. In the ideal situation, the 
functools.reduce() function would be "curryable" so that we can do this:

sum= reduce(operator.add)

prod= reduce(operator.mul)

The reduce() function, however, isn't curryable by the pymonad library, so this 
doesn't actually work. If we define our own reduce() function, however, we can 
then curry it as shown previously. Here's an example of a home-brewed reduce() 
function that can be used as shown earlier:

import collections.abc

from pymonad import curry

@curry

def myreduce(function, iterable_or_sequence):

    if isinstance(iterable_or_sequence, collections.abc.Sequence):

        iterator= iter(iterable_or_sequence)

    else:

        iterator= iterable_or_sequence

    s = next(iterator)

    for v in iterator:

        s = function(s,v)

    return s



Chapter 14

[ 267 ]

The myreduce() function will behave like the built-in reduce() function. The 
myreduce() function works with an iterable or a sequence object. Given a sequence, 
we'll create an iterator; given an iterable object, we'll simply use it. We initialize the 
result with the first item in the iterator. We apply the function to the ongoing sum  
(or product) and each subsequent item.

It's also possible to wrap the built-in reduce() function to create a 
curryable version. That's only two lines of code; an exercise left for 
you.

Since the myreduce() function is a curried function, we can now use it to create 
functions based on our higher-order function, myreduce():

>>> from operator import *

>>> sum= myreduce(add)

>>> sum([1,2,3])

6

>>> max= myreduce(lambda x,y: x if x > y else y)

>>> max([2,5,3])

5

We defined our own version of the sum() function using the curried reduce applied 
to the add operator. We also defined our own version of the default max() function 
using a lambda object that picks the larger of two values.

We can't easily create the more general form of the max() function this way, because 
currying is focused on positional parameters. Trying to use the key= keyword 
parameter adds too much complexity to make the technique work toward our  
overall goals of succinct and expressive functional programs.

To create a more generalized version of the max() function, we need to step  
outside the key= keyword parameter paradigm that functions such as max(),  
min(), and sorted() rely on. We would have to accept the higher-order function 
as the first argument in the same way as filter(), map(), and reduce() functions 
do. We could also create our own library of more consistent higher-order curried 
functions. These functions would rely exclusively on positional parameters. 
The higher-order function would be provided first so that our own curried 
max(function, iterable) method would follow the pattern set by the map(), 
filter(), and functools.reduce() functions.
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Currying the hard way
We can create curried functions manually, without using the decorator from the 
pymonad library; one way of doing this is to execute the following commands:

def f(x, *args):

    def f1(y, *args):

        def f2(z):

            return (x+y)*z

        if args:

            return f2(*args)

        return f2

    if args:

        return f1(*args)

    return f1

This curries a function, ( ) ( ), ,F x y z x y z→ + × , into a function, f(x), which returns a 
function. Conceptually, ( ) ( ),f x F y z′→ . We then curried the intermediate function to 
create the f1(y) and f2(z) function.

When we evaluate the f(x) function, we'll get a new function, f1, as a result.  
If additional arguments are provided, those arguments are passed to the f1  
function for evaluation, either resulting in a final value or another function.

Clearly, this is potentially error-prone. It does, however, serve to define what 
currying really means and how it's implemented in Python.

Functional composition and the PyMonad 
multiplication operator
One of the significant values of curried functions is the ability to combine  
them via functional composition. We looked at functional composition in  
Chapter 5, Higher-order Functions, and Chapter 11, Decorator Design Techniques.

When we've created a curried function, we can easily perform function composition 
to create a new, more complex curried function. In this case, the PyMonad package 
defines the * operator for composing two functions. To show how this works, we'll 
define two curried functions that we can compose. First, we'll define a function that 
computes the product, and then we'll define a function that computes a specialized 
range of values.
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Here's our first function that computes the product:

import  operator

prod = myreduce(operator.mul)

This is based on our curried myreduce() function that was defined previously.  
It uses the operator.mul() function to compute a "times-reduction" of an iterable: 
we can call a product a times-reduce of a sequence.

Here's our second curried function that will produce a range of values:

@curry

def alt_range(n):

    if n == 0: return range(1,2) # Only 1

    if n % 2 == 0:

        return range(2,n+1,2)

    else:

        return range(1,n+1,2)

The result of the alt_range() function will be even values or odd values. It will 
have only values up to (and including) n, if n is odd. If n is even, it will have only 
even values up to n. The sequences are important for implementing the semifactorial 
or double factorial function, !!n .

Here's how we can combine the prod() and alt_range() functions into a new 
curried function:

>>> semi_fact= prod * alt_range

>>> semi_fact(9)

945

The PyMonad * operator here combines two functions into a composite function, 
named semi_fact. The alt_range() function is applied to the arguments. Then,  
the prod() function is applied to the results of the alt_range function.

By doing this manually in Python, we're effectively creating a new lambda object:

semi_fact= lambda x: prod(alt_range(x))

The composition of curried functions involves somewhat less syntax than creating  
a new lambda object.

Ideally, we would like to use functional composition and curried functions like this:

sumwhile= sum * takewhile(lambda x: x > 1E-7)
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This will define a version of the sum() function that works with infinite sequences, 
stopping the generation of values when the threshold had been met. This doesn't 
seem to work because the pymonad library doesn't seem to handle infinite iterables  
as well as it handles the internal List objects.

Functors and applicative functors
The idea of a functor is a functional representation of a piece of simple data.  
A functor version of the number 3.14 is a function of zero arguments that returns  
this value. Consider the following example:

pi= lambda : 3.14

We created a zero-argument lambda object that has a simple value.

When we apply a curried function to a functor, we're creating a new curried functor. 
This generalizes the idea of "apply a function to an argument to get value" by using 
functions to represent the arguments, the values, and the functions themselves.

Once everything in our program is a function, then all processing is simply a 
variation on the theme of functional composition. The arguments and results 
of curried functions can be functors. At some point, we'll apply a getValue() 
method to a functor object to get a Python-friendly, simple type that we can use in 
uncurried code.

Since all we've done is functional composition, no calculation needs to be done until 
we actually demand a value using the getValue() method. Instead of performing 
a lot of calculations, our program defines a complex object that can produce a value 
when requested. In principle, this composition can be optimized by a clever compiler 
or runtime system.

When we apply a function to a functor object, we're going to use a method similar 
to map() that is implemented as the * operator. We can think of the function * 
functor or map(function, functor) methods as a way to understand the role a 
functor plays in an expression.

In order to work politely with functions that have multiple arguments, we'll use the 
& operator to build composite functors. We'll often see functor & functor method 
to build a functor object from a pair of functors.

We can wrap Python simple types with a subclass of the Maybe functor. The Maybe 
functor is interesting, because it gives us a way to deal gracefully with missing data. 
The approach we used in Chapter 11, Decorator Design Techniques, was to decorate 
built-in functions to make them None aware. The approach taken by the PyMonad 
library is to decorate the data so that it gracefully declines being operated on.
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There are two subclasses of the Maybe functor:

• Nothing

• Just(some simple value)

We use Nothing as a stand-in for the simple Python value of None. This is how we 
represent missing data. We use Just(some simple value) to wrap all other Python 
objects. These functors are function-like representations of constant values.

We can use a curried function with these Maybe objects to tolerate missing data 
gracefully. Here's a short example:

>>> x1= systolic_bp * Just(25) & Just(50) & Just(1) & Just(0)

>>> x1.getValue()

116.09

>>> x2= systolic_bp * Just(25) & Just(50) & Just(1) & Nothing

>>> x2.getValue() is None

True

The * operator is functional composition: we're composing the systolic_bp() 
function with an argument composite. The & operator builds a composite functor  
that can be passed as an argument to a curried function of multiple arguments.

This shows us that we get an answer instead of a TypeError exception. This can 
be very handy when working with large, complex datasets in which data could be 
missing or invalid. It's much nicer than having to decorate all of our functions to 
make them None aware.

This works nicely for curried functions. We can't operate on the Maybe functors in 
uncurried Python code as functors have very few methods.

We must use the getValue() method to extract the simple 
Python value for uncurried Python code.

Using the lazy List() functor
The List() functor can be confusing at first. It's extremely lazy, unlike Python's 
built-in list type. When we evaluate the built-in list(range(10)) method, the 
list() function will evaluate the range() object to create a list with 10 items.  
The PyMonad List() functor, however, is too lazy to even do this evaluation.
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Here's the comparison:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> List(range(10))

[range(0, 10)]

The List() functor did not evaluate the range() object, it just preserved it without 
being evaluated. The PyMonad.List() function is useful to collect functions without 
evaluating them. We can evaluate them later as required:

>>> x= List(range(10))

>>> x

[range(0, 10)]

>>> list(x[0])

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

We created a lazy List object with a range() object. Then we extracted and 
evaluated a range() object at position 0 in that list.

A List object won't evaluate a generator function or range() object; it treats any 
iterable argument as a single iterator object. We can, however, use the * operator  
to expand the values of a generator or the range() object.

Note that there are several meanings for * operator: it is the built-in 
mathematical times operator, the function composition operator defined 
by PyMonad, and the built-in modifier used when calling a function 
to bind a single sequence object as all of the positional parameters of 
a function. We're going to use the third meaning of the * operator to 
assign a sequence to multiple positional parameters.

Here's a curried version of the range() function. This has a lower bound of 1  
instead of 0. It's handy for some mathematical work because it allows us to avoid  
the complexity of the positional arguments in the built-in range() function.

@curry

def range1n(n):

    if n == 0: return range(1,2) # Only 1

    return range(1,n+1)

We simply wrapped the built-in range() function to make it curryable by the 
PyMonad package.
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Since a List object is a functor, we can map functions to the List object.  
The function is applied to each item in the List object. Here's an example:

>>> fact= prod * range1n

>>> seq1 = List(*range(20))

>>> f1 = fact * seq1

>>> f1[:10]

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]

We defined a composite function, fact(), which was built from the prod() and 
range1n() functions shown previously. This is the factorial function, !n . We created 
a List() functor, seq1, which is a sequence of 20 values. We mapped the fact() 
function to the seq1 functor, which created a sequence of factorial values, f1. We 
showed the first 10 of these values earlier.

There is a similarity between the composition of functions and the 
composition of a function and a functor. Both prod*range1n and 
fact*seq1 use functional composition: one combines things that are 
obviously functions, and the other combines a function and a functor.

Here's another little function that we'll use to extend this example:

@curry

def n21(n):

    return 2*n+1

This little n21() function does a simple computation. It's curried, however,  
so we can apply it to a functor like a List() function. Here's the next part of the 
preceding example:

>>> semi_fact= prod * alt_range

>>> f2 = semi_fact * n21 * seq1

>>> f2[:10]

[1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075]

We've defined a composite function from the prod() and alt_range() functions 
shown previously. The function f2 is semifactorial or double factorial, !!n . The value 
of the function f2 is built by mapping our small n21() function applied to the seq1 
sequence. This creates a new sequence. We then applied the semi_fact function to 
this new sequence to create a sequence of 2 1!!n +  values that parallels the sequence 
of !n  values.
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We can now map the / operator to the map() and operator.truediv parallel 
functors:

>>> 2*sum(map(operator.truediv, f1, f2))

3.1415919276751456

The map() function will apply the given operator to both functors, yielding a 
sequence of fractions that we can add.

The f1 & f2 method will create all combinations of values from the two 
List objects. This is an important feature of List objects: they readily 
enumerate all combinations allowing a simple algorithm to compute 
all alternatives and filter the alternatives for the proper subset. This is 
something we don't want; that's why we used the map() function instead 
of the operator.truediv * f1 & f2 method.

We defined a fairly complex calculation using a few functional composition techniques 
and a functor class definition. Here's the full definition for this calculation:

( )0

!2
2 1 !!n

n
n

π ∞

=
=

+∑

Ideally, we prefer not to use a fixed sized List object. We'd prefer to have a lazy and 
potentially infinite sequence of integer values. We could then use a curried version 
of sum() and takewhile() functions to find the sum of values in the sequence 
until the values are too small to contribute to the result. This would require an even 
lazier version of the List() object that could work with the itertools.counter() 
function. We don't have this potentially infinite list in PyMonad 1.3; we're limited to 
a fixed sized List() object.

Monad concepts, the bind() function  
and the Binary Right Shift operator
The name of the PyMonad library comes from the functional programming concept 
of a monad, a function that has a strict order. The underlying assumption behind 
much functional programming is that functional evaluation is liberal: it can be 
optimized or rearranged as necessary. A monad provides an exception that imposes 
a strict left-to-right ordering.
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Python, as we have seen, is strict. It doesn't require monads. We can, however, still 
apply the concept in places where it can help clarify a complex algorithm.

The technology for imposing strict evaluation is a binding between a monad and a 
function that will return a monad. A flat expression will become nested bindings that 
can't be reordered by an optimizing compiler. The bind() function is mapped to the 
>> operator, allowing us to write expressions like this:

Just(some file) >> read header >> read next >> read next

The preceding expression would be converted to the following:

bind(bind(bind(Just(some file), read header), read next), read next)

The bind() functions assure that a strict left-to-right evaluation is imposed on 
this expression when it's evaluated. Also, note that the preceding expression is an 
example of functional composition. When we create a monad with the >> operator, 
we're creating a complex object that will be evaluated when we finally use the 
getValue() method.

The Just() subclass is required to create a simple monad compatible object that 
wraps a simple Python object.

The monad concept is central to expressing a strict evaluation order—in a language 
that's heavily optimized and lenient. Python doesn't require a monad because it uses 
left-to-right strict evaluation. This makes the monad difficult to demonstrate because 
it doesn't really do something completely novel in a Python context. Indeed, the 
monad redundantly states the typical strict rules that Python follows.

In other languages, such as Haskell, a monad is crucial for file input and output 
where strict ordering is required. Python's imperative mode is much like a Haskell 
do block, which has an implicit Haskell >>= operator to force the statements to be 
evaluated in order. (PyMonad uses the bind() function and the >> operator for 
Haskell's >>= operation.)

Implementing simulation with monads
Monads are expected to pass through a kind of "pipeline": a monad will be passed as 
an argument to a function and a similar monad will be returned as the value of the 
function. The functions must be designed to accept and return similar structures.

We'll look at a simple pipeline that can be used for simulation of a process. This 
kind of simulation may be a formal part of some Monte Carlo simulation. We'll take 
the Monte Carlo simulation literally and simulate a casino dice game, Craps. This 
involves what might be thought of as stateful rules for a fairly complex simulation.
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There's a lot of very strange gambling terminology involved. We can't provide much 
background about the various buzzwords involved. In some cases, the origins are 
lost in history.

Craps involves someone rolling the dice (a shooter) and additional bettors. The game 
works like this:

The first roll is called a come out roll. There are three conditions:

1. If the dice total is 7 or 11, the shooter wins. Anyone betting on the pass line 
will be paid off as a winner, and all other bets lose. The game is over, and the 
shooter can play again.

2. If the dice total is 2, 3, or 12, the shooter loses. Anyone betting on the don't 
pass line will win, and all other bets lose. The game is over, and the shooter 
must pass the dice to another shooter.

3. Any other total (that is, 4, 5, 6, 8, 9, or 10) establishes a point. The game 
changes state from the come out roll to the point roll. The game continues.

If a point was established, each point roll is evaluated with three conditions:

• If the dice total is 7, the shooter loses. Indeed, almost all bets are losers except 
for don't pass bets and a special proposition bet. Since the shooter lost, the 
dice are passed to another shooter.

• If the dice totals the original point, the shooter wins. Anyone betting on the 
pass line will be paid off as a winner, and all other bets lose. The game is 
over, and the shooter can play again.

• Any other total continues the game with no resolution.

The rules involve a kind of state change. We can look at this as a sequence of 
operations rather than a state change. There's one function that must be used first. 
Another recursive function is used after that. In this way, it fits the monad design 
pattern nicely.

As a practical matter, a casino allows numerous fairly complex side bets during the 
game. We can evaluate those separately from the essential rules of the game. Many 
of those bets (the propositions, field bets, and buying a number) are bets a player 
simply makes during the point roll phase of the game. There's an additional come and 
don't come pair of bets that establishes a point-within-a-point nested game. We'll stick 
the the basic outline of the game for the following example.

We'll need a source of random numbers:

import random

def rng():

    return (random.randint(1,6), random.randint(1,6))
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The preceding function will generate a pair of dice for us.

Here's our expectation from the overall game:

def craps():

    outcome= Just(("",0, []) ) >> come_out_roll(rng) >> point_roll 
    (rng)

    print(outcome.getValue())

We create an initial monad, Just(("",0, [])), to define the essential type we're 
going to work with. A game will produce a three tuple with an outcome, a point,  
and a sequence of rolls. Initially, it's a default three tuple to define the type we're 
working with.

We pass this monad to two other functions. This will create a resulting monad, 
outcome, with the results of the game. We used the >> operator to connect the 
functions in the specific order they must be executed. In an optimizing language,  
this will prevent the expression from being rearranged.

We get the value of the monad at the end using the getValue() method. Since the 
monad objects are lazy, this request is what triggers the evaluation of the various 
monads to create the required output.

The come_out_roll() function has the rng() function curried as the first argument. 
The monad will become the second argument to this function. The come_out_roll() 
function can roll the dice and apply the come out rules to determine if we have a 
win, a loss, or a point.

The point_roll() function also has the rng() function curried as the first 
argument. The monad will become the second argument. The point_roll() 
function can then roll the dice to see if the bet is resolved. If the bet is unresolved, 
this function will operate recursively to continue looking for resolution.

The come_out_roll() function looks like this:

@curry

def come_out_roll(dice, status):

    d= dice()

    if sum(d) in (7, 11):

        return Just(("win", sum(d), [d]))

    elif sum(d) in (2, 3, 12):

        return Just(("lose", sum(d), [d]))

    else:

        return Just(("point", sum(d), [d]))
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We rolled the dice once to determine if we have a first-roll win, loss, or point.  
We return an appropriate monad value that includes the outcome, a point value,  
and the roll of the dice. The point values for an immediate win and immediate  
loss aren't really meaningful. We could sensibly return a 0 here, since no point  
was really established.

The point_roll() function looks like this:

@curry

def point_roll(dice, status):

    prev, point, so_far = status

    if prev != "point":

        return Just(status)

    d = dice()

    if sum(d) == 7:

        return Just(("craps", point, so_far+[d]))

    elif sum(d) == point:

        return Just(("win", point, so_far+[d]))

    else:

        return Just(("point", point, so_far+[d])) >> point_roll(dice)

We decomposed the status monad into the three individual values of the tuple.  
We could have used small lambda objects to extract the first, second, and third 
values. We could also have used the operator.itemgetter() function to extract  
the tuples' items. Instead, we used multiple assignment.

If a point was not established, the previous state will be "win" or "lose". The game 
was resolved in a single throw, and this function simply returns the status monad.

If a point was established, the dice are rolled and rules applied to the new roll.  
If roll is 7, the game is a loser and a final monad is returned. If the roll is the point, 
the game is a winner and the appropriate monad is returned. Otherwise, a slightly 
revised monad is passed to the point_roll() function. The revised status monad 
includes this roll in the history of rolls.

A typical output looks like this:

>>> craps()

('craps', 5, [(2, 3), (1, 3), (1, 5), (1, 6)])
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The final monad has a string that shows the outcome. It has the point that was 
established and the sequence of dice rolls. Each outcome has a specific payout that 
we can use to determine the overall fluctuation in the bettor's stake.

We can use simulation to examine different betting strategies. We might be searching 
for a way to defeat any house edge built into the game.

There's a small asymmetry in the basic rules of the game. Having 11 as 
an immediate winner is balanced by having 3 as an immediate loser. 
The fact that 2 and 12 are also losers is the basis of the house's edge of 
5.5 percent (1/18 = 5.5) in this game. The idea is to determine which of 
the additional betting opportunities will dilute this edge.

A great deal of clever Monte Carlo simulation can be built with a few simple, 
functional programming design techniques. The monad, in particular, can help 
structure these kinds of calculations when there are complex orders or internal states.

Additional PyMonad features
One of the other features of PyMonad is the confusingly named monoid. This comes 
directly from mathematics and it refers to a group of data elements that have an 
operator, an identity element, and the group is closed with respect to that operator. 
When we think of natural numbers, the add operator, and an identity element 0, this 
is a proper monoid. For positive integers, with an operator *, and an identity value 
of 1, we also have a monoid; strings using | as an operator and an empty string as an 
identity element also qualifies.

PyMonad includes a number of predefined monoid classes. We can extend this 
to add our own monoid class. The intent is to limit a compiler to certain kinds of 
optimizations. We can also use the monoid class to create data structures which 
accumulate a complex value, perhaps including a history of previous operations.

Much of this provides insight into functional programming. To paraphrase the 
documentation, this is an easy way to learn about functional programming in, 
perhaps, a slightly more forgiving environment. Rather than learning an entire 
language and toolset to compile and run functional programs, we can just 
experiment with interactive Python.

Pragmatically, we don't need too many of these features because Python is already 
stateful and offers strict evaluation of expressions. There's no practical reason to 
introduce stateful objects in Python, or strictly-ordered evaluation. We can write 
useful programs in Python by mixing functional concepts with Python's imperative 
implementation. For that reason, we won't delve any more deeply into PyMonad.
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Summary
In this chapter, we looked at how we can use the PyMonad library to express some 
functional programming concepts directly in Python. The module shows many 
important functional programming techniques.

We looked at the idea of currying, a function that allows combinations of arguments 
to be applied to create new functions. Currying a function also allows us to use 
functional composition to create more complex functions from simpler pieces.  
We looked at functors that wrap simple data objects to make them into functions 
which can also be used with functional composition.

Monads are a way to impose a strict evaluation order when working with an 
optimizing compiler and lazy evaluation rules. In Python, we don't have a good use 
case for monads, because Python is an imperative programming language under the 
hood. In some cases, imperative Python may be more expressive and succinct than a 
monad construction.

In the next chapter, we'll look at how we can apply functional programming 
techniques to build web services applications. The idea of HTTP could be 
summarized as response = httpd(request). Ideally, HTTP is stateless, making it 
a perfect match for functional design. However, most web sites will maintain state, 
using cookies to track session state.



A Functional Approach  
to Web Services

We'll step away from Exploratory Data Analysis and look closely at web servers and 
web services. These are, to an extent, a cascade of functions. We can apply a number 
of functional design patterns to the problem of presenting web content. Our goal is to 
look at ways in which we can approach Representational State Transfer (REST). We 
want to build RESTful web services using functional design patterns.

We don't need to invent yet another Python web framework; there are plenty of 
frameworks to choose from. We'll avoid creating a large, general-purpose solution.

We don't want to select among the available frameworks, either. There are many, 
each with a distinct set of features and advantages.

We'll present some principles that can be applied to most of the available frameworks. 
We should be able to leverage functional design patterns for presenting web content. 
This will allow us to build web-based applications that have the advantages of a 
functional design.

For example, when we look at extremely large datasets, or extremely complex 
datasets, we might want a web service which supports subsetting or searching.  
We might want a web site which can download subsets in a variety of formats.  
In this case, we might need to use functional designs to create RESTful web services 
to support these more sophisticated requirements.

The most complex web applications often have stateful sessions that make the site 
easier to use. The session information is updated with data provided via HTML 
forms or fetched from databases, or recalled from caches of previous interactions. 
While the overall interaction involves state changes, the application programming 
can be largely functional. Some of the application functions can be non-strict in their 
use of request data, cache data, and database objects.
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In order to avoid details of a specific web framework, we'll focus on the Web Server 
Gateway Interface (WSGI) design pattern. This will allow us to implement a simple 
web server. A great deal of information is present at the following link:

http://wsgi.readthedocs.org/en/latest/

Some important background of WSGI can be found at

https://www.python.org/dev/peps/pep-0333/

We'll start by looking at the HTTP protocol. From there, we can consider servers 
such as Apache httpd to implement this protocol and see how mod_wsgi becomes 
a sensible extension to a base server. With this background, we can look at the 
functional nature of WSGI and how we can leverage functional design to implement 
sophisticated web search and retrieval tools.

The HTTP request-response model
The essential HTTP protocol is, ideally, stateless. A user agent or client can take  
a functional view of the protocol. We can build a client using the http.client  
or urllib library. An HTTP user agent essentially executes something similar  
to the following:

import urllib.request

with urllib.request.urlopen(""http://slott-softwarearchitect. 
blogspot.com"") as response:

    print(response.read())

A program like wget or curl does this at the command line; the URL is taken from 
the arguments. A browser does this in response to the user pointing and clicking;  
the URL is taken from the user's actions, in particular, the action of clicking on linked 
text or images.

The practical considerations of the internetworking protocols, however, lead to some 
implementation details which are stateful. Some of the HTTP status codes indicate 
that an additional action on the part of the user agent is required.

Many status codes in the 3xx range indicate that the requested resource has 
been moved. The user agent is then required to request a new location based 
on information sent in the Location header. The 401 status code indicates that 
authentication is required; the user agent can respond with an authorization header 
that contains credentials for access to the server. The urllib library implementation 
handles this stateful overhead. The http.client library doesn't automatically follow 
3xx redirect status codes.

http://wsgi.readthedocs.org/en/latest/
https://www.python.org/dev/peps/pep-0333/
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The techniques for a user agent to handle 3xx and 401 codes aren't deeply stateful. 
A simple recursion can be used. If the status doesn't indicate a redirection, it is the 
base case, and the function has a result. If redirection is required, the function can be 
called recursively with the redirected address.

Looking at the other end of the protocol, a static content server should also be 
stateless. There are two layers to the HTTP protocol: the TCP/IP socket machinery 
and a higher layer HTTP structure that depends on the lower level sockets. The 
lower level details are handled by the scoketserver library. The Python http.
server library is one of the libraries that provide a higher level implementation.

We can use the http.server library as follows:

from http.server import HTTPServer, SimpleHTTPRequestHandler

running = True

httpd = HTTPServer(('localhost',8080), SimpleHTTPRequestHandler)

while running:

    httpd.handle_request()

httpd.shutdown()

We created a server object, and assigned it to the httpd variable. We provided the 
address and port number to which we'll listen for connection requests. The TCP/IP 
protocol will spawn a connection on a separate port. The HTTP protocol will read the 
request from this other port and create an instance of the handler.

In this example, we provided SimpleHTTPRequestHandler as the class to instantiate 
with each request. This class must implement a minimal interface, which will send 
headers and then send the body of the response to the client. This particular class 
will serve files from the local directory. If we wish to customize this, we can create  
a subclass, which implements methods such as do_GET() and do_POST() to alter  
the behavior.

Often, we use the serve_forever() method instead of writing our own loop. We've 
shown the loop here to clarify that the server must, generally, be crashed. If we want 
to close the server down politely, we'll require some way in which we can change the 
value of the shutdown variable. The Ctrl + C signal, for example, is commonly used 
for this.
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Injecting a state via cookies
The addition of cookies changes the overall relationship between a client and server 
to become stateful. Interestingly, it involves no change to the HTTP protocol itself. 
The state information is communicated via headers on the request and the reply. The 
user agent will send cookies in request headers that match the host and path. The 
server will send cookies to the user agent in response headers.

The user agent or browser must, therefore, retain a cache of cookie values and 
include appropriate cookies in each request. The web server must accept cookies in 
the request header and send cookies in the response header. The web server doesn't 
need to cache cookies. A server merely uses cookies as additional arguments in a 
request and additional details in a response.

While a cookie can, in principle, contain almost anything, the use of cookies has 
rapidly evolved to contain just an identifier for a session state object. The server can 
then use the cookie information to locate session state in some kind of persistent 
storage. This means the server can also update the session state based on user agent 
requests. It also means the server can discard sessions which are old.

The concept of a "session" exists outside the HTTP protocol. It is commonly defined 
as a series of requests with the same session cookie. When an initial request is made, 
no cookie is available, and a new session is created. Every subsequent request would 
include the cookie. The cookie would identify the session state object on the server; 
this object would have the information required by the server to provide consistent 
web content gracefully.

The REST approach to web services, however, does not rely on cookies. Each REST 
request is distinct and does not fit into an overall session framework. This makes 
it less "user-friendly" than an interactive site that uses cookies to simplify a user's 
interactions.

This also means that each individual REST request is, in principle, separately 
authenticated. In many cases, a simple token is generated by the server to avoid the 
client sending more complex credentials with every request. This leads to having the 
REST traffic secured using Secured Socket Layer (SSL) protocols; the https scheme 
is then used instead of http. We'll call both schemes HTTP throughout this chapter.

Considering a server with a functional design
One core idea behind HTTP is that the daemon's response is a function of the 
request. Conceptually, a web service should have a top-level implementation that 
can be summarized as follows:

response = httpd(request)



Chapter 15

[ 285 ]

However, this is impractical. It turns out that an HTTP request isn't a simple, 
monolithic data structure. It actually has some required parts and some optional 
parts. A request may have headers, there's a method and a path, and there may be 
attachments. The attachments may include forms or uploaded files or both.

To make things more complex, a browser's form data can be sent as a query string 
in the path of a GET request. Alternatively, it can be sent as an attachment to a POST 
request. While there's a possibility for confusion, most web application frameworks 
will create HTML form tags that provide their data via a "method=POST" statement in 
the <form> tag; the form data will then be an attachment.

Looking more deeply into the functional view
Both HTTP response and request have headers and a body. The request can have 
some attached form data. Therefore, we can think of a web server like this:

headers, content = httpd(headers, request, [uploads])

The request headers may include cookie values, which can be seen as adding 
yet more arguments. Additionally, a web server is often dependent on the OS 
environment in which it's running. This OS environment data can be considered as 
yet more arguments being provided as part of the request.

There's a large but reasonably well defined spectrum of content. The Multipurpose 
Internet Mail Extension (MIME) types define the kinds of content that a web service 
might return. This can include plain text, HTML, JSON, XML, or any of the wide 
variety of non-text media that a website might serve.

As we look more closely at the processing required to build a response to an HTTP 
request, we'll see some common features that we'd like to reuse. This idea of reusable 
elements is what leads to the creation of web service frameworks that fill a spectrum 
from simple to sophisticated. The ways that functional designs allow us to reuse 
functions indicate that the functional approach seems very appropriate to build  
web services.

We'll look at functional design of web services by examining how we can create a 
pipeline of the various elements of a service response. We'll do this by nesting the 
functions for request processing so that inner elements are free from the generic 
overheads, which are provided by outer elements. This also allows the outer 
elements to act as filters: invalid requests can yield error responses, allowing the 
inner function to focus narrowly on the application processing.
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Nesting the services
We can look at web request handling as a number of nested contexts. An outer 
context, for example, might cover session management: examining the request to 
determine if this is another request in an existing session or a new session. An inner 
context might provide tokens used for form processing that can detect Cross-Site 
Request Forgeries (CSRF). Another context might handle user authentication within 
a session.

A conceptual view of the functions explained previously is something like this:

response= content(authentication(csrf(session(headers, request,  
[forms]))))

The idea here is that each function can build on the results of the previous function. 
Each function either enriches the request or rejects it because it's invalid. The 
session function, for example, can use headers to determine if this is an existing 
session or a new session. The csrf function will examine form input to ensure 
that proper tokens were used. The CSRF handling requires a valid session. The 
authentication function can return an error response for a session that lacks valid 
credentials; it can enrich the request with user information when valid credentials 
are present.

The content function is free from worrying about sessions, forgeries, and non-
authenticated users. It can focus on parsing the path to determine what kind of 
content should be provided. In a more complex application, the content function 
may include a rather complex mapping from path elements to functions that 
determine the appropriate content.

The nested function view, however, still isn't quite right. The problem is that each 
nested context may also need to tweak the response instead of or in addition to 
tweaking the request.

We really want something more like this:

def session(headers, request, forms):

    pre-process: determine session

    content= csrf(headers, request, forms)

    post-processes the content

    return the content

def csrf(headers, request, forms):

    pre-process: validate csrf tokens

    content=  authenticate(headers, request, forms)

    post-processes the content

    return the content
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This concept points toward a functional design for creating web content via a nested 
collection of functions that provide enriched input or enriched output or both. With 
a little bit of cleverness, we should be able to define a simple, standard interface that 
various functions can use. Once we've standardized an interface, we can combine 
functions in different ways and add features. We should be able to meet our 
functional programming objectives of having succinct and expressive programs that 
provide web content. 

The WSGI standard
The Web Server Gateway Interface (WSGI) defines a relatively simple, standardized 
design pattern for creating a response to a web request. The Python library's wsgiref 
package includes a reference implementation of WSGI.

Each WSGI "application" has the same interface:

def some_app(environ, start_response):

    return content

The environ is a dictionary that contains all of the arguments of the request 
in a single, uniform structure. The headers, the request method, the path, any 
attachments for forms or file uploads will all be in the environment. In addition to 
this, the OS-level context is also provided along with a few items that are part of 
WSGI request handling.

The start_response is a function that must be used to send the status and headers 
of a response. The portion of a WSGI server that has final responsibility for building 
the response will use a start_response function to send the headers and the status 
as well as to build the response text. For some applications, this function might need 
to be wrapped with a higher-order function so that additional headers can be added 
to the response.

The return value is a sequence of strings or string-like file wrappers that will be 
returned to the user agent. If an HTML template tool is used, then the sequence 
may have a single item. In some cases, like the Jinja2 templates, the template can 
be rendered lazily as a sequence of text chunks, interleaving template filling with 
downloading to the user agent.

Due to the way they nest, WSGI applications can also be viewed as a chain. Each 
application will either return an error or will hand the request to another application 
that will determine the result.
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Here's a very simple routing application:

SCRIPT_MAP = {

    ""demo"": demo_app,

    ""static"": static_app,

    """": welcome_app,

}

def routing(environ, start_response):

    top_level= wsgiref.util.shift_path_info(environ)

    app= SCRIPT_MAP.get(top_level, SCRIPT_MAP[''])

    content= app(environ, start_response)

    return content

This app will use the wsgiref.util.shift_path_info() function to tweak the 
environment. This does a "head/tail split" on the items in the request path, available 
in the environ['PATH_INFO'] dictionary. The head of the path—up to the first 
"split"—will be moved into the SCRIPT_NAME item in the environment; the  
PATH_INFO item will be updated to have the tail of the path. The returned value  
will also be the head of the path. In the case where there's no path to parse,  
the return value is None and no environment updates are made.

The routing() function uses the first item on the path to locate an application in the 
SCRIPT_MAP dictionary. We use the SCRIPT_MAP[''] dictionary as a default in case 
the requested path doesn't fit the mapping. This seems a little better than an HTTP 
404 NOT FOUND error.

This WSGI application is a function that chooses between a number of other functions. 
It's a higher-order function, since it evaluates functions defined in a data structure.

It's easy to see how a framework could generalize the path-matching process using 
regular expressions. We can imagine configuring the routing() function with a 
sequence of Regular Expression's (REs) and WSGI applications instead of a mapping 
from a string to the WSGI application. The enhanced routing() function application 
would evaluate each RE looking for a match. In the case of a match, any match.
groups() function could be used to update the environment before calling the 
requested application.

Throwing exceptions during WSGI processing
One central feature of WSGI applications is that each stage along the chain is 
responsible for filtering the requests. The idea is to reject faulty requests as early in the 
processing as possible. Python's exception handling makes this particularly simple.
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We can define a WSGI application that provides static content as follows:

def static_app(environ, start_response):

    try:

        with open(CONTENT_HOME+environ['PATH_INFO']) as static:

            content= static.read().encode(""utf-8"")

            headers= [

                (""Content-Type"",'text/plain; charset=""utf-8""'), 
                (""Content-Length"",str(len(content))), 
            ]

        start_response('200 OK', headers)

        return [content]

    except IsADirectoryError as e:

        return index_app(environ, start_response)

    except FileNotFoundError as e:

        start_response('404 NOT FOUND', [])

        return([repr(e).encode(""utf-8"")])

In this case, we simply tried to open the requested path as a text file. There are  
two common reasons why we can't open a given file, both of which are handled  
as exceptions:

• If the file is a directory, we'll use a different application to present  
directory contents

• If the file is simply not found, we'll return an HTTP 404 NOT FOUND 
response

Any other exceptions raised by this WSGI application will not be caught.  
The application that invoked this should be designed with some generic error 
response capability. If it doesn't handle the exceptions, a generic WSGI failure 
response will be used.

Our processing involves a strict ordering of operations. We must read 
the entire file so that we can create a proper HTTP Content-Length 
header.

Further, we must provide the content as bytes. This means that the Python  
strings must be properly encoded and we must provide the encoding information  
to the user agent. Even the error message, repr(e), is properly encoded before  
being downloaded.
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Pragmatic WSGI applications
The intent of the WSGI standard is not to define a complete web framework; the 
intent is to define a minimum set of standards that allow flexible interoperability 
of web-related processing. A framework can take a wildly different approach than 
an internal architecture to provide web services. However, its outermost interface 
should be compatible with WSGI so that it can be used in a variety of contexts.

Web servers such as Apache httpd and Nginx have adapters, which provide a 
WSGI-compatible interface from the web server to Python applications. For more 
information on WSGI implementations, visit

https://wiki.python.org/moin/WSGIImplementations.

Embedding our applications in a larger server allows us to have a tidy separation 
of concerns. We can use Apache httpd to serve completely static content, such as 
.css, .js, and image files. For HTML pages, though, we can use Apache's mod_wsgi 
interface to hand off requests to a separate Python process, which handles only the 
interesting HTML portions of the web content.

This means that we must either create a separate media server, or define our website 
to have two sets of paths. If we take the second approach, some paths will have the 
completely static content and can be handled by Apache httpd. Other paths will have 
dynamic content, which will be handled by Python.

When working with WSGI functions, it's important to note that we can't modify 
or extend the WSGI interface in any way. For example, it seems like a good idea to 
provide an additional parameter with a sequence of functions that define the chain 
of processing. Each stage would pop the first item from the list as the next step in the 
processing. An additional parameter like this might be typical for functional design, 
but the change in the interface defeats the purpose of WSGI.

A consequence of the WSGI definition is that configuration is either done with  
global variables, the request environment, or with a function, which fetches some 
global configuration objects from a cache. Using module-level globals works for  
small examples. For more complex applications, a configuration cache might be 
required. It might also be sensible to have a WSGI app, which merely updates the 
environ dictionary with configuration parameters and passes control to another  
WSGI application.

https://wiki.python.org/moin/WSGIImplementations
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Defining web services as functions
We'll look at a RESTful web service, which can "slice and dice" a source of data  
and provide downloads as JSON, XML, or CSV files. We'll provide an overall  
WSGI-compatible wrapper but the functions which do the "real work" of the 
application won't be narrowly constrained to fit the WSGI.

We'll use a simple dataset with four subcollections: the Anscombe Quartet. We 
looked at ways to read and parse this data in Chapter 3, Functions, Iterators, and 
Generators". It's a small set of data but it can be used to show the principles of a 
RESTful web service.

We'll split our application into two tiers: a web tier, which will be a simple WSGI 
application, and the rest of the processing, which will be more typical functional 
programming. We'll look at the web tier first so that we can focus on a functional 
approach to provide meaningful results.

We need to provide two pieces of information to the web service:

• The quartet that we want—this is a "slice and dice" operation. For this 
example, it's mostly just a "slice".

• The output format we want.

The data selection is commonly done via the request path. We can request "/
anscombe/I/" or "/anscombe/II/" to pick specific datasets from the quartet.  
The idea is that a URL defines a resource, and there's no good reason for the  
URL to ever change. In this case, the dataset selectors aren't dependent on dates,  
or some organizational approval status or other external factors. The URL is timeless 
and absolute.

The output format is not a first class part of the URL. It's just a serialization  
format—not the data itself. In some cases, the format is requested via the HTTP 
Accept header. This is hard to use from a browser but easy to use from an 
application using a RESTful API. When extracting data from the browser, a query 
string is commonly used to specify the output format. We'll use the "?form=json" 
method at the end of the path to specify the JSON output format.

A URL we can use will look like this:

http://localhost:8080/anscombe/III/?form=csv

This would request a CSV download of the third dataset.
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Creating the WSGI application
First, we'll use a simple URL pattern-matching expression to define the one and only 
routing in our application. In a larger or more complex application, we might have 
more than one such patterns:

import re

path_pat= re.compile(r""^/anscombe/(?P<dataset>.*?)/?$"")

This pattern allows us to define an overall "script" in the WSGI sense at the top level 
of the path. In this case, the script is "anscombe". We'll take the next level of the path 
as a dataset to select from the Anscombe Quartet. The dataset value should be one of 
I, II, III, or IV.

We used a named parameter for the selection criteria. In many cases, RESTful APIs 
are described using a syntax, as follows:

/anscombe/{dataset}/

We translated this idealized pattern into a proper, regular expression, and preserved 
the name of the dataset selector in the path.

Here's the kind of unit test that demonstrates how this pattern works:

test_pattern= """"""

>>> m1= path_pat.match(""/anscombe/I"")

>>> m1.groupdict()

{'dataset': 'I'}

>>> m2= path_pat.match(""/anscombe/II/"")

>>> m2.groupdict()

{'dataset': 'II'}

>>> m3= path_pat.match(""/anscombe/"")

>>> m3.groupdict()

{'dataset': ''}

""""""

We can include the three previously mentioned examples as part of the overall 
doctest using the following command:

__test__ = {

    ""test_pattern"": test_pattern,

}
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This will ensure that our routing works as expected. It's important to be able to 
test this separately from the rest of the WSGI application. Testing a complete web 
server means starting the server process and then trying to connect with a browser 
or a test tool, such as Postman or Selenium. Visit http://www.getpostman.com or 
http://www.seleniumhq.org to get more information on the usage of Postman and 
Selenium. We prefer to test each feature in isolation.

Here's the overall WSGI application, with two lines of command highlighted:

import traceback

import urllib

def anscombe_app(environ, start_response):

    log= environ['wsgi.errors']

    try:

        match= path_pat.match(environ['PATH_INFO'])

        set_id= match.group('dataset').upper()

        query= urllib.parse.parse_qs(environ['QUERY_STRING'])

        print(environ['PATH_INFO'], environ['QUERY_STRING'], 
        match.groupdict(), file=log)

        log.flush()

        dataset= anscombe_filter(set_id, raw_data())

        content, mime= serialize(query['form'][0], set_id, dataset)

        headers= [

            ('Content-Type', mime), 
            ('Content-Length', str(len(content))),        ]

        start_response(""200 OK"", headers)

        return [content]

    except Exception as e:

        traceback.print_exc(file=log)

        tb= traceback.format_exc()

        page= error_page.substitute(title=""Error"",  
        message=repr(e), traceback=tb)

        content= page.encode(""utf-8"")

        headers = [

            ('Content-Type', ""text/html""), 
            ('Content-Length', str(len(content))), 
        ]

        start_response(""404 NOT FOUND"", headers)

        return [content]

http://www.getpostman.com
http://www.seleniumhq.org
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This application will extract two pieces of information from the request: the PATH_
INFO and the QUERY_STRING methods. The PATH_INFO request will define which set 
to extract. The QUERY_STRING request will specify an output format.

The application processing is broken into three functions. A raw_data() function 
reads the raw data from a file. The result is a dictionary with lists of Pair objects. 
The anscombe_filter() function accepts a selection string and the dictionary of 
raw data and returns a single list of Pair objects. The list of pairs is then serialized 
into bytes by the serialize() function. The serializer is expected to produce bytes, 
which can then be packaged with an appropriate header and returned.

We elected to produce an HTTP Content-Length header. This isn't required, but it's 
polite for large downloads Because we decided to emit this header, we are forced to 
materialize the results of the serialization so that we can count the bytes.

If we elected to omit the Content-Length header, we could change the structure 
of this application dramatically. Each serializer could be changed to a generator 
function, which would yield bytes as they are produced. For large datasets, this  
can be a helpful optimization. For the user watching a download, however, it might 
not be so pleasant because the browser can't display how much of the download  
is complete.

All errors are treated as a 404 NOT FOUND error. This could be misleading, since a 
number of individual things might go wrong. A more sophisticated error handling 
would provide more try:/except: blocks to provide more informative feedback.

For debugging purposes, we've provided a Python stack trace in the resulting web 
page. Outside the context of debugging, this is a very bad idea. Feedback from 
an API should be just enough to fix the request and nothing more. A stack trace 
provides too much information to potentially malicious users.

Getting raw data
The raw_data() function is largely copied from Chapter 3, Functions, Iterators,  
and Generators. We included some important changes. Here's what we're using  
for this application:

from Chapter_3.ch03_ex5 import series, head_map_filter, row_iter,  
Pair

def raw_data():

    """"""

    >>> raw_data()['I'] #doctest: +ELLIPSIS

    (Pair(x=10.0, y=8.04), Pair(x=8.0, y=6.95), ...

    """"""
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    with open(""Anscombe.txt"") as source:

        data = tuple(head_map_filter(row_iter(source)))

        mapping = dict((id_str, tuple(series(id_num,data)))

            for id_num, id_str in enumerate(['I', 'II', 'III', 'IV'])

    )

    return mapping

We opened the local data file, and applied a simple row_iter() function to  
return each line of the file parsed into a row of separate files. We applied the  
head_map_filter() function to remove the heading from the file. The result  
created a tuple-of-tuple structure with all of the data.

We transformed the tuple-of-tuple into a more useful dict() function by  
selecting particular series from the source data. Each series will be a pair of  
columns. For series "I," it's columns 0 and 1. For series "II," it's columns 2 and 3.

We used the dict() function with a generator expression for consistency with the 
list() and tuple() functions. While it's not essential, it's sometimes helpful to see  
the similarities with these three data structures and their use of generator expressions.

The series() function creates the individual Pair objects for each x,y pair in the 
dataset. In retrospect, we can see the the output value after modifying this function 
so that the resulting namedtuple class is an argument to this function, not an implicit 
feature of the function. We'd prefer to see the series(id_num,Pair,data) method 
to see where the Pair objects are created. This extension requires rewriting some of 
the examples in Chapter 3, Functions, Iterators, and Generators. We'll leave that as an 
exercise for the reader.

The important change here is that we're showing the formal doctest test case. As 
we noted earlier, web applications—as a whole—are difficult to test. The web server 
must be started and then a web client must be used to run the test cases. Problems 
then have to be resolved by reading the web log, which can be difficult unless 
complete tracebacks are displayed. It's much better to debug as much of the web 
application as possible using ordinary doctest and unittest testing techniques.

Applying a filter
In this application, we're using a very simple filter. The entire filter process is 
embodied in the following function:

def anscombe_filter(set_id, raw_data):

    """"""

    >>> anscombe_filter(""II"", raw_data()) #doctest: +ELLIPSIS
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    (Pair(x=10.0, y=9.14), Pair(x=8.0, y=8.14), Pair(x=13.0, y=8.74),  
    ...

    """"""

    return raw_data[set_id]

We made this trivial expression into a function for three reasons:

• The functional notation is slightly more consistent and a bit more flexible 
than the subscript expression

• We can easily expand the filtering to do more
• We can include separate unit tests in the docstring for this function

While a simple lambda would work, it wouldn't be quite as convenient to test.

For error handling, we've done exactly nothing. We've focused on what's sometimes 
called the "happy path:" an ideal sequence of events. Any problems that arise in 
this function will raise an exception. The WSGI wrapper function should catch all 
exceptions and return an appropriate status message and error response content.

For example, it's possible that the set_id method will be wrong in some way. Rather 
than obsess over all the ways it could be wrong, we'll simply allow Python to throw 
an exception. Indeed, this function follows the Python I advice that, "it's better to 
seek forgiveness than to ask permission." This advice is materialized in code by 
avoiding "permission-seeking": there are no preparatory if statements that seek to 
qualify the arguments as valid. There is only "forgiveness" handling: an exception 
will be raised and handled in the WSGI wrapper. This essential advice applies to the 
preceding raw data and the serialization that we will see now.

Serializing the results
Serialization is the conversion of Python data into a stream of bytes, suitable for 
transmission. Each format is best described by a simple function that serializes just 
that one format. A top-level generic serializer can then pick from a list of specific 
serializers. The picking of serializers leads to the following collection of functions:

serializers = {

    'xml': ('application/xml', serialize_xml),

    'html': ('text/html', serialize_html),

    'json': ('application/json', serialize_json),

    'csv': ('text/csv', serialize_csv),

}

def serialize(format, title, data):
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    """"""json/xml/csv/html serialization.

    >>> data = [Pair(2,3), Pair(5,7)]

    >>> serialize(""json"", ""test"", data)

    (b'[{""x"": 2, ""y"": 3}, {""x"": 5, ""y"": 7}]', 'application/json')

    """"""

    mime, function = serializers.get(format.lower(), ('text/html',  
serialize_html))

    return function(title, data), mime

The overall serialize() function locates a specific serializer and a specific MIME 
type that must be used in the response to characterize the results. It then calls one 
of the specific serializers. We've also shown a doctest test case here. We didn't 
patiently test each serializer, since showing that one works seems adequate.

We'll look at the serializers separately. What we'll see is that the serializers fall into 
two groups: those that produce strings and those that produce bytes. A serializer 
that produces a string will need to have the string encoded as bytes. A serializer that 
produces bytes doesn't need any further work.

For the serializers, which produce strings, we need to do some function composition 
with a standard convert-to-bytes. We can do functional composition using a 
decorator. Here's how we can standardize the conversion to bytes:

from functools import wraps

def to_bytes(function):

    @wraps(function)

    def decorated(*args, **kw):

        text= function(*args, **kw)

        return text.encode(""utf-8"")

    return decorated

We've created a small decorator named @to_bytes. This will evaluate the given 
function and then encode the results using UTF-8 to get bytes. We'll show how this 
is used with JSON, CSV, and HTML serializers. The XML serializer produces bytes 
directly and doesn't need to be composed with this additional function.

We could also do the functional composition in the initialization of the serializers 
mapping. Instead of decorating the function definition, we could decorate the 
reference to the function object:

serializers = {

    'xml': ('application/xml', serialize_xml),

    'html': ('text/html', to_bytes(serialize_html)),
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    'json': ('application/json', to_bytes(serialize_json)),

    'csv': ('text/csv', to_bytes(serialize_csv)),

}

Though this is possible, this doesn't seem to be helpful. The distinction between 
serializers that produce strings and those that produce bytes isn't an important part 
of the configuration.

Serializing data into the JSON or CSV format
The JSON and CSV serializers are similar functions because both rely on Python's 
libraries to serialize. The libraries are inherently imperative, so the function bodies 
are strict sequences of statements.

Here's the JSON serializer:

import json

@to_bytes

def serialize_json(series, data):

    """"""

    >>> data = [Pair(2,3), Pair(5,7)]

    >>> serialize_json(""test"", data)

    b'[{""x"": 2, ""y"": 3}, {""x"": 5, ""y"": 7}]'

    """"""

    obj= [dict(x=r.x, y=r.y) for r in data]

    text= json.dumps(obj, sort_keys=True)

    return text

We created a list of dictionaries structure and used the json.dumps() function 
to create a string representation. The JSON module requires a materialized list 
object; we can't provide a lazy generator function. The sort_keys=True argument 
value is essential for unit testing. However, it's not required for the application and 
represents a bit of overhead.

Here's the CSV serializer:

import csv, io

@to_bytes

def serialize_csv(series, data):

    """"""
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    >>> data = [Pair(2,3), Pair(5,7)]

    >>> serialize_csv(""test"", data)

    b'x,y\\r\\n2,3\\r\\n5,7\\r\\n'

    """"""

    buffer= io.StringIO()

    wtr= csv.DictWriter(buffer, Pair._fields)

    wtr.writeheader()

    wtr.writerows(r._asdict() for r in data)

    return buffer.getvalue()

The CSV module's readers and writers are a mixture of imperative and functional 
elements. We must create the writer, and properly create headings in a strict 
sequence. We've used the _fields attribute of the Pair namedtuple to determine  
the column headings for the writer.

The writerows() method of the writer will accept a lazy generator function.  
In this case, we used the _asdict() method of each Pair object to return a 
dictionary suitable for use with the CSV writer.

Serializing data into XML
We'll look at one approach to XML serialization using the built-in libraries. This will 
build a document from individual tags. A common alternative approach is to use 
Python introspection to examine and map Python objects and class names to XML 
tags and attributes.

Here's our XML serialization:

import xml.etree.ElementTree as XML

def serialize_xml(series, data):

    """"""

    >>> data = [Pair(2,3), Pair(5,7)]

    >>> serialize_xml(""test"", data)

    b'<series name=""test""><row><x>2</x><y>3</y></row><row><x>5</x> 
    <y>7</y></row></series>'

    """"""

    doc= XML.Element(""series"", name=series)

    for row in data:

        row_xml= XML.SubElement(doc, ""row"")

        x= XML.SubElement(row_xml, ""x"")
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        x.text= str(row.x)

        y= XML.SubElement(row_xml, ""y"")

        y.text= str(row.y)

    return XML.tostring(doc, encoding='utf-8')

We created a top-level element, <series>, and placed <row> subelements underneath 
that top element. Within each <row> subelement, we've created <x> and <y> tags and 
assigned text content to each tag.

The interface for building an XML document using the ElementTree library tends 
to be heavily imperative. This makes it a poor fit for an otherwise functional design. 
In addition to the imperative style, note that we haven't created a DTD or XSD. We 
have not properly assigned a namespace to our tags. We also omitted the <?xml 
version=""1.0""?> processing instruction that is generally the first item in an  
XML document.

A more sophisticated serialization library would be helpful. There are many  
to choose from. Visit https://wiki.python.org/moin/PythonXml for a list  
of alternatives.

Serializing data into HTML
In our final example of serialization, we'll look at the complexity of creating an  
HTML document. The complexity arises because in HTML, we're expected to  
provide an entire web page with some context information. Here's one way to  
tackle this HTML problem:

import string

data_page = string.Template(""""""<html> 
<head><title>Series ${title}</title></head> 
<body><h1>Series ${title}</h1> 
<table><thead><tr><td>x</td><td>y</td></tr></thead> 
<tbody> 
${rows} 
</tbody></table></body></html>"""""")

@to_bytes

def serialize_html(series, data):

    """""" 
    >>> data = [Pair(2,3), Pair(5,7)] 
    >>> serialize_html(""test"", data) #doctest: +ELLIPSIS 
    b'<html>...<tr><td>2</td><td>3</td></tr>\\n<tr><td>5</td> 
    <td>7</td></tr>... 
    """"""

https://wiki.python.org/moin/PythonXml


Chapter 15

[ 301 ]

    text= data_page.substitute(title=series, 
        rows=""\n"".join(

            ""<tr><td>{0.x}</td><td>{0.y}</td></tr>"".format(row)

            for row in data)

        )

    return text

Our serialization function has two parts. The first part is a string.Template() 
function that contains the essential HTML page. It has two placeholders where 
data can be inserted into the template. The ${title} method shows where title 
information can be inserted and the ${rows} method shows where the data rows  
can be inserted.

The function creates individual data rows using a simple format string. These are 
joined into a longer string, which is then substituted into the template.

While workable for simple cases like the preceding example, this isn't ideal for  
more complex result sets. There are a number of more sophisticated template tools  
to create HTML pages. A number of these include the ability to embed the looping  
in the template, separate from the function that initializes serialization. Visit 
https://wiki.python.org/moin/Templating for a list of alternatives.

Tracking usage
Many publicly available APIs require the use of an "API Key". The supplier of 
the API requests you to sign up and provide an email address or other contact 
information. In exchange for this, they provide an API Key which activates the API.

The API Key is used to authenticate access. It may also be used to authorize specific 
features. Finally, it's also used to track usage. This may include throttling requests if 
an API Key is used too often in a given time period.

The variations in the business models are numerous. For example, use of the API 
Key is a billable event and charges are incurred. For other businesses, traffic must 
reach some threshold before payments are required.

What's important is non-repudiation of the use of the API. This, in turn, means 
creating API Keys that can act as a user's authentication credentials. The key must be 
difficult to forge and relatively easy to verify.

https://wiki.python.org/moin/Templating
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One easy way to create API Keys is to use a cryptographic random number to 
generate a difficult-to-predict key string. A small function, like the following,  
should be good enough:

import random

rng= random.SystemRandom()

import base64

def make_key_1(rng=rng, size=1):

    key_bytes= bytes(rng.randrange(0,256) for i in range(18*size))

    key_string= base64.urlsafe_b64encode(key_bytes)

    return key_string

We've used the random.SystemRandom class as the class for our secure random 
number generator. This will seed the generator with the os.urandom() bytes, which 
assures a reliably unpredictable seed value. We've created this object separately so 
that it can be reused each time a key is requested. Best practice is to get a number of 
keys from a generator using a single random seed.

Given some random bytes, we used a base 64 encoding to create a sequence of 
characters. Using a multiple of three in the initial sequence of random bytes, we'll 
avoid any trailing "=" signs in the base 64 encoding. We've used the URL safe base 
64 encoding, which won't include the "/" or "+" characters in the resulting string, 
characters that might be confusing if used as part of a URL or query string.

The more elaborate methods won't lead to more random data. The 
use of random.SystemRandom assures that no one can counterfeit 
a key assigned to another user. We're using 18×8 random bits, 
giving us a large number of random keys.

How many random keys? Take a look at the following command and its output:

>>> 2**(18*8)

22300745198530623141535718272648361505980416

The odds of someone successfully forging a duplicate of someone else's key  
are small.

Another choice is to use uuid.uuid4() to create a random Universally Unique 
Identifier (UUID). This will be a 36-character string that has 32 hex digits and 
four "-" punctuation marks. A random UUID is also difficult to forge. A UUID that 
includes data such as username or host IP address is a bad idea because this encodes 
information, which can be decoded and used to forge a key. The reason for using a 
cryptographic random number generator is to avoid encoding any information.
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The RESTful web server will then need a small database with the valid keys and 
perhaps some client contact information. If an API request includes a key that's in the 
database, the associated user is responsible for the request. If the API request doesn't 
include a known key, the request can be rejected with a simple 401 UNAUTHORIZED 
response. Since the key itself is a 24-character string, the database will be rather small 
and can easily be cached in memory.

Ordinary log-scraping might be sufficient to show the usage for a given key. A more 
sophisticated application might record API requests in a separate logfile or database 
to simplify analysis.

Summary
In this chapter, we looked at ways in which we can apply functional design to the 
problem of serving content with REST-based web services. We looked at the ways 
that the WSGI standard leads to somewhat functional overall applications. We 
also looked at how we can embed a more functional design into a WSGI context by 
extracting elements from the request for use by our application functions.

For simple services, the problem often decomposes down into three distinct 
operations: getting the data, searching or filtering, and then serializing the results. 
We tackled this with three functions: raw_data(), anscombe_filter(), and 
serialize(). We wrapped these functions in a simple WSGI-compatible application 
to divorce the web services from the "real" processing around extracting and filtering 
the data.

We also looked at the way that web services functions can focus on the "happy path" 
and assume that all of the inputs are valid. If inputs are invalid, the ordinary Python 
exception handling will raise exceptions. The WSGI wrapper function will catch the 
errors and return appropriate status codes and error content.

We avoided looking at more complex problems associated with uploading data 
or accepting data from forms to update a persistent data store. These are not 
significantly more complex than getting data and serializing the results. They are 
already solved in a better manner.

For simple queries and data sharing, a small web service application can be helpful. 
We can apply functional design patterns and assure that the website code is succinct 
and expressive. For more complex web applications, we should consider using a 
framework that handles the details properly.

In the next chapter, we'll look at a few optimization techniques that are available to 
us. We'll expand on the @lru_cache decorator from Chapter 10, The Functools Module. 
We'll also look at some other optimization techniques that were presented in Chapter 6, 
Recursions and Reductions.





Optimizations and 
Improvements

In this chapter, we'll look at a few optimizations that we can make to create high 
performance functional programs. We'll expand on the @lru_cache decorator 
from Chapter 10, The Functools Module. We have a number of ways to implement the 
memoization algorithm. We'll also discuss how to write our own decorators. More 
importantly, we'll see how we use a Callable object to cache memoized results.

We'll also look at some optimization techniques that were presented in Chapter 
6, Recursions and Reductions. We'll review the general approach to tail recursion 
optimization. For some algorithms, we can combine memoization with a recursive 
implementation and achieve good performance. For other algorithms, memoization 
isn't really very helpful and we have to look elsewhere for performance improvements.

In most cases, small changes to a program will lead to small improvements in 
performance. Replacing a function with a lambda object will have a tiny impact on 
performance. If we have a program that is unacceptably slow, we often have to locate 
a completely new algorithm or data structure. Some algorithms have bad "big-O" 
complexity; nothing will make them magically run faster.

One place to start is http://www.algorist.com. This is a resource that may help to 
locate better algorithms for a given problem.

Memoization and caching
As we saw in Chapter 10, The Functools Module, many algorithms can benefit from 
memoization. We'll start with a review of some previous examples to characterize 
the kinds of functions that can be helped with memoization.

http://www.algorist.com
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In Chapter 6, Recursions and Reductions, we looked at a few common kinds of 
recursions. The simplest kind of recursion is a tail recursion with arguments that 
can be easily matched to values in a cache. If the arguments are integers, strings, or 
materialized collections, then we can compare arguments quickly to determine if the 
cache has a previously computed result.

We can see from these examples that integer numeric calculations such as computing 
factorial or locating a Fibonacci number will be obviously improved. Locating prime 
factors and raising integers to powers are more examples of numeric algorithms that 
apply to integer values.

When we looked at the recursive version of a Fibonacci number calculator, we saw 
that it contained two tail-call recursions. Here's the definition:

1 2n n nF F F− −= +

This can be turned into a loop, but the design change requires some thinking. 
The memoized version of this can be quite fast and doesn't require quite so much 
thinking to design.

The Syracuse function, shown in Chapter 6, Recursions and Reductions, is an example 
of the kind of function used to compute fractal values. It contains a simple rule that's 
applied recursively. Exploring the Collatz conjecture ("does the Syracuse function 
always lead to 1?") requires memoized intermediate results.

The recursive application of the Syracuse function is an example of a function 
with an "attractor," where the value is attracted to 1. In some higher dimensional 
functions, the attractor can be a line or perhaps a fractal. When the attractor is a 
point, memoization can help; otherwise, memoization may actually be a hindrance, 
since each fractal value is unique.

When working with collections, the benefits of caching may vanish. If the collection 
happens to have the same number of integer values, strings, or tuples, then there's 
a chance that the collection is a duplicate and time can be saved. However, if a 
calculation on a collection will be needed more than once, manual optimization is 
best: do the calculation once and assign the results to a variable.

When working with iterables, generator functions, and other lazy objects, caching of 
an overall object is essentially impossible. In these cases, memoization is not going to 
help at all.
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Raw data that includes measurements often use floating point values. Since an 
exact equality comparison between floating point values may not work out well, 
memoizing intermediate results may not work out well either.

Raw data that includes counts, however, may benefit from memoization.  
These are integers, and we can trust exact integer comparisons to (potentially)  
save recalculating a previous value. Some statistical functions, when applied to 
counts, can benefit from using the fractions module instead of floating point 
values. When we replace x/y with the Fraction(x,y) method, we've preserved 
the ability to do exact value matching. We can produce the final result using the 
float(some_fraction) method.

Specializing memoization
The essential idea of memoization is so simple that it can be captured by the  
@lru_cache decorator. This decorator can be applied to any function to implement 
memoization. In some cases, we might be able to improve on the generic idea with 
something more specialized. There are a large number of potentially optimizable 
multivalued functions. We'll pick one here and look at another in a more complex 
case study.

The binomial, 
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Clearly, we should cache the factorial calculations rather than redo all those 
multiplications. However, we may also benefit from caching the overall binomial 
calculation, too.

We'll create a Callable object that contains multiple internal caches. Here's a helper 
function that we'll need:

from functools import reduce

from operator import mul

prod = lambda x: reduce(mul, x)

The prod() function computes the product of an iterable of numbers. It's defined as 
a reduction using the * operator.
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Here's a Callable object with two caches that uses this prod() function:

from collections.abc import Callable

class Binomial(Callable):

    def __init__(self):

        self.fact_cache= {}

        self.bin_cache= {}

    def fact(self, n):

        if n not in self.fact_cache:

            self.fact_cache[n] = prod(range(1,n+1))

        return self.fact_cache[n]

    def __call__(self, n, m):

        if (n,m) not in self.bin_cache:

            self.bin_cache[n,m] = self.fact(n)//(self.fact(m)*self.
fact(n-m))

        return self.bin_cache[n,m]

We created two caches: one for factorial values and one for binomial coefficient 
values. The internal fact() method uses the fact_cache attribute. If the value isn't 
in the cache, it's computed and added to the cache. The external __call__() method 
uses the bin_cache attribute in a similar way: if a particular binomial has already 
been calculated, the answer is simply returned. If not, the internal fact() method is 
used to compute a new value.

We can use the preceding Callable class like this:

>>> binom= Binomial()

>>> binom(52,5)

2598960

This shows how we can create a Callable object from our class and then invoke the 
object on a particular set of arguments. There are a number of ways that a 52-card 
deck can be dealt into 5-card hands. There are 2.6 million possible hands.

Tail recursion optimizations
In Chapter 6, Recursions and Reductions, among many others, we looked at how a 
simple recursion can be optimized into a for loop. The general approach is this:
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• Design the recursion. This means the base case and the recursive cases.  
For example, this is a definition of computing:

( )! 1 !n n n= × −

To design the recursion execute the following commands:

def fact(n):

    if n == 0: return 1

    else: return n*fact(n-1)

• If the recursion has a simple call at the end, replace the recursive case with  
a for loop. The command is as follows:

def facti(n):

    if n == 0: return 1

    f= 1

    for i in range(2,n):

        f= f*i

    return f

When the recursion appears at the end of a simple function, it's described  
as a tail–call optimization. Many compilers will optimize this into a loop.  
Python—lacking this optimization in its compiler—doesn't do this kind  
of tail-call transformation.

This pattern is very common. Performing the tail-call optimization improves 
performance and removes any upper bound on the number of recursions that  
can be done.

Prior to doing any optimization, it's absolutely essential that the function already 
works. For this, a simple doctest string is often sufficient. We might use annotation 
on our factorial functions like this:

def fact(n):

    """Recursive Factorial

    >>> fact(0)

    1

    >>> fact(1)

    1

    >>> fact(7)

    5040
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    """

    if n == 0: return 1

    else: return n*fact(n-1)

We added two edge cases: the explicit base case and the first item beyond the base 
case. We also added another item that would involve multiple iterations. This allows 
us to tweak the code with confidence.

When we have a more complex combination of functions, we might need to execute 
commands like this:

test_example="""

>>> binom= Binomial()

>>> binom(52,5)

2598960

"""

__test__ = {

    "test_example": test_example,

}

The __test__ variable is used by the doctest.testmod() function. All of the 
values in the dictionary associated with the __test__ variable are examined for the 
doctest strings. This is a handy way to test features that come from compositions 
of functions. This is also called integration testing, since it tests the integration of 
multiple software components.

Having working code with a set of tests gives us the confidence to make optimizations. 
We can easily confirm the correctness of the optimization. Here's a popular quote that 
is used to describe optimization:

"Making a wrong program worse is no sin."

                                                                                            -Jon Bentley

This appeared in the Bumper Sticker Computer Science chapter of More Programming 
Pearls, published by Addison-Wesley, Inc. What's important here is that we should 
only optimize code that's actually correct.
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Optimizing storage
There's no general rule for optimization. We often focus on optimizing performance 
because we have tools like the Big O measure of complexity that show us whether 
or not an algorithm is an effective solution to a given problem. Optimizing storage is 
usually tackled separately: we can look at the steps in an algorithm and estimate the 
size of the storage required for the various storage structures.

In many cases, the two considerations are opposed. In some cases, an algorithm that 
has outstandingly good performance requires a large data structure. This algorithm 
can't scale without dramatic increases in the amount of storage required. Our goal is 
to design an algorithm that is reasonably fast and also uses an acceptable amount  
of storage.

We may have to spend time researching algorithmic alternatives to locate  
a way to make the space-time trade off properly. There are some common 
optimization techniques. We can often follow links from Wikipedia:  
http://en.wikipedia.org/wiki/Space–time_tradeoff.

One memory optimization technique we have in Python is to use an iterable.  
This has some properties of a proper materialized collection, but doesn't necessarily 
occupy storage. There are few operations (such as the len() function) that can't 
work on an iterable. For other operations, the memory saving feature can allow a 
program to work with very large collections.

Optimizing accuracy
In a few cases, we need to optimize the accuracy of a calculation. This can be 
challenging and may require some fairly advanced math to determine the limits  
on the accuracy of a given approach.

An interesting thing we can do in Python is replace floating point approximations 
with fractions.Fraction value. For some applications, this can create more 
accurate answers than floating point, because more bits are used for numerator  
and denominator than a floating point mantissa.

It's important to use decimal.Decimal values to work with currency. It's a common 
error to use a float value. When using a float value, additional noise bits are 
introduced because of the mismatch between Decimal values provided as input 
and the binary approximation used by floating point values. Using Decimal values 
prevents the introduction of tiny inaccuracies.

http://en.wikipedia.org/wiki/Space-time_tradeoff
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In many cases, we can make small changes to a Python application to switch from 
float values to Fraction or Decimal values. When working with transcendental 
functions, this change isn't necessarily beneficial. Transcendental functions—by 
definition—involve irrational numbers.

Reducing accuracy based on audience 
requirements
For some calculations, a fraction value may be more intuitively meaningful than 
a floating point value. This is part of presenting statistical results in a way that an 
audience can understand and take action on.

For example, the chi-squared test generally involves computing the 2X  comparison 
between actual values and expected values. We can then subject this comparison 
value to a test against the 2X  cumulative distribution function. When the expected 
and actual values have no particular relationship—we can call this a null 
relationship—the variation will be random; 2X  the value tends to be small. When we 
accept the null hypothesis, then we'll look elsewhere for a relationship. When the 
actual values are significantly different from the expected values, we may reject the 
null hypothesis. By rejecting the null hypothesis, we can explore further to determine 
the precise nature of the relationship.

The decision is often based on the table of the 2X  Cumulative Distribution Function 
(CDF) for selected 2X  values and given degrees of freedom. While the tabulated CDF 
values are mostly irrational values, we don't usually use more than two or three 
decimal places. This is merely a decision-making tool, there's no practical difference 
in meaning between 0.049 and 0.05.

A widely used probability is 0.05 for rejecting the null hypothesis. This is a Fraction 
object less than 1/20. When presenting data to an audience, it sometimes helps to 
characterize results as fractions. A value like 0.05 is hard to visualize. Describing a 
relationship has having 1 chance in 20 can help to characterize the likelihood of  
a correlation.

Case study – making a chi-squared 
decision
We'll look at a common statistical decision. The decision is described in detail at 
http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm.

http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm
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This is a chi-squared decision on whether or not data is distributed randomly.  
In order to make this decision, we'll need to compute an expected distribution and 
compare the observed data to our expectations. A significant difference means there's 
something that needs further investigation. An insignificant difference means we can 
use the null hypothesis that there's nothing more to study: the differences are simply 
random variation.

We'll show how we can process the data with Python. We'll start with some 
backstory—some details that are not part of the case study, but often features  
an Exploratory Data Analysis (EDA) application. We need to gather the raw data 
and produce a useful summary that we can analyze.

Within the production quality assurance operations, silicon wafer defect data is 
collected into a database. We might use SQL queries to extract defect details for 
further analysis. For example, a query could look like this:

SELECT SHIFT, DEFECT_CODE, SERIAL_NUMBER

FROM some tables;

The output from this query could be a CSV file with individual defect details:

shift,defect_code,serial_number
1,None,12345
1,None,12346
1,A,12347
1,B,12348
and so on. for thousands of wafers

We need to summarize the preceding data. We might summarize at the SQL query 
level using the COUNT and GROUP BY statements. We might also summarize at the 
Python application level. While a pure database summary is often described as being 
more efficient, this isn't always true. In some cases, a simple extract of raw data and a 
Python application to summarize can be faster than a SQL summary. If performance 
is important, both alternatives must be measured, rather than hoping that the 
database is fastest.

In some cases, we may be able to get summary data from the database efficiently. 
This summary must have three attributes: the shift, type of defect, and a count of 
defects observed. The summary data looks like this:

shift,defect_code,count
1,A,15
2,A,26
3,A,33
and so on.
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The output will show all of the 12 combinations of shift and defect type.

In the next section, we'll focus on reading the raw data to create summaries. This 
is the kind of context in which Python is particularly powerful: working with raw 
source data.

We need to observe and compare shift and defect counts with an overall expectation. 
If the difference between observed counts and expected counts can be attributed to 
random fluctuation, we have to accept the null hypothesis that nothing interesting 
is going wrong. If, on the other hand, the numbers don't fit with random variation, 
then we have a problem that requires further investigation.

Filtering and reducing the raw data with a 
Counter object
We'll represent the essential defect counts as a collections.Counter parameter. 
We will build counts of defects by shift and defect type from the detailed raw data. 
Here's a function to read some raw data from a CSV file:

import csv

from collections import Counter

from types import SimpleNamespace

def defect_reduce(input):

    rdr= csv.DictReader(input)

    assert sorted(rdr.fieldnames) == ["defect_type", "serial_number",  
    "shift"]

    rows_ns = (SimpleNamespace(**row) for row in rdr)

    defects = ((row.shift, row.defect_type) for row in rows_ns:

        if row.defect_type)

    tally= Counter(defects)

    return tally

The preceding function will create a dictionary reader based on an open file 
provided via the input parameter. We've confirmed that the column names match 
the three expected column names. In some cases, we'll have extra columns in the file; 
in this case, the assertion will be something like all((c in rdr.fieldnames) for 
c in […]). Given a tuple of column names, this will assure that all of the required 
columns are present in the source. We can also use sets to assure that set(rdr.
fieldnames) <= set([...]).
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We created a types.SimpleNamespace parameter for each row. In the preceding 
example, the supplied column names are valid Python variable names that allow us 
to easily turn a dictionary into a namespace. In some cases, we'll need to map column 
names to Python variable names to make this work.

A SimpleNamespace parameter allows us to use slightly simpler syntax to refer  
to items within the row. Specifically, the next generator expression uses references 
such as row.shift and row.defect_type instead of the bulkier row['shift']  
or row['defect_type'] references.

We can use a more complex generator expression to do a map-filter combination. 
We'll filter each row to ignore rows with no defect code. For rows with a defect code, 
we're mapping an expression which creates a two tuple from the row.shift and 
row.defect_type references.

In some applications, the filter won't be a trivial expression such as row.defect_
type. It may be necessary to write a more sophisticated condition. In this case, it 
may be helpful to use the filter() function to apply the complex condition to the 
generator expression that provides the data.

Given a generator that will produce a sequence of (shift, defect) tuples, we can 
summarize them by creating a Counter object from the generator expression. Creating 
this Counter object will process the lazy generator expressions, which will read the 
source file, extract fields from the rows, filter the rows, and summarize the counts.

We'll use the defect_reduce() function to gather and summarize the data  
as follows:

with open("qa_data.csv", newline="" ) as input:

    defects= defect_reduce(input)

print(defects)

We can open a file, gather the defects, and display them to be sure that we've 
properly summarized by shift and defect type. Since the result is a Counter object, 
we can combine it with other Counter objects if we have other sources of data.

The defects value looks like this:

Counter({('3', 'C'): 49, ('1', 'C'): 45, ('2', 'C'): 34,  
('3', 'A'): 33, ('2', 'B'): 31, ('2', 'A'): 26, ('1', 'B'): 21,  
('3', 'D'): 20, ('3', 'B'): 17, ('1', 'A'): 15, ('1', 'D'): 13,  
('2', 'D'): 5})

We have defect counts organized by shift and defect types. We'll look at alternative 
input of summarized data next. This reflects a common use case where data is 
available at the summary level.
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Once we've read the data, the next step is to develop two probabilities so that we 
can properly compute expected defects for each shift and each type of defect. We 
don't want to divide the total defect count by 12, since that doesn't reflect the actual 
deviations by shift or defect type. The shifts may be more or less equally productive. 
The defect frequencies are certainly not going to be similar. We expect some defects 
to be very rare and others to be more common.

Reading summarized data
As an alternative to reading all of the raw data, we can look at processing only 
the summary counts. We want to create a Counter object similar to the previous 
example; this will have defect counts as a value with a key of shift and defect code. 
Given summaries, we simply create a Counter object from the input dictionary.

Here's a function that will read our summary data:

from collections import Counter

import csv

def defect_counts(source):

    rdr= csv.DictReader(source)

    assert rdr.fieldnames == ["shift", "defect_code", "count"]

    convert = map( 
        lambda d: ((d['shift'], d['defect_code']),  
        int(d['count'])),

        rdr)

    return Counter(dict(convert))

We require an open file as the input. We'll create a csv.DictReader() function that 
helps parse the raw CSV data that we got from the database. We included an assert 
statement to confirm that the file really has the expected data.

We defined a lambda object that creates a two tuple with the key and the integer 
conversion of the count. The key is itself a two tuple with the shift and defect 
information. The result will be a sequence such as ((shift,defect), count), 
((shift,defect), count), …). When we map the lambda to the DictReader 
parameter, we'll have a generator function that can emit the sequence of two tuples.

We will create a dictionary from the collection of two tuples and use this dictionary 
to build a Counter object. The Counter object can easily be combined with other 
Counter objects. This allows us to combine details acquired from several sources.  
In this case, we only have a single source.
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We can assign this single source to the variable defects. The value looks like this:

Counter({('3', 'C'): 49, ('1', 'C'): 45, ('2', 'C'): 34,  
('3', 'A'): 33, ('2', 'B'): 31, ('2', 'A'): 26,('1', 'B'): 21,  
('3', 'D'): 20, ('3', 'B'): 17, ('1', 'A'): 15, ('1', 'D'): 13,  
('2', 'D'): 5})

This matches the detail summary shown previously. The source data, however, was 
already summarized. This is often the case when data is extracted from a database 
and SQL is used to do group-by operations.

Computing probabilities from a Counter 
object
We need to compute the probabilities of defects by shift and defects by type.  
In order to compute the expected probabilities, we need to start with some simple 
sums. The first is the overall sum of all defects, which can be calculated by executing 
the following command:

total= sum(defects.values())

This is done directly from the values in the Counter object assigned to the defects 
variable. This will show that there are 309 total defects in the sample set.

We need to get defects by shift as well as defects by type. This means that we'll 
extract two kinds of subsets from the raw defect data. The "by-shift" extract will use 
just one part of the (shift,defect type) key in the Counter object. The "by-type" 
will use the other half of the key pair.

We can summarize by creating additional Counter objects extracted from the  
initial set of the Counter objects assigned to the defects variable. Here's the  
by-shift summary:

shift_totals= sum((Counter({s:defects[s,d]}) for s,d in defects),  
Counter())

We've created a collection of individual Counter objects that have a shift, s, as the 
key and the count of defects associated with that shift defects[s,d]. The generator 
expression will create 12 such Counter objects to extract data for all combinations of 
four defect types and three shifts. We'll combine the Counter objects with a sum() 
function to get three summaries organized by shift.
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We can't use the default initial value of 0 for the sum() function. 
We must provide an empty Counter() function as an initial 
value.

The type totals are created with an expression similar to the one used to create  
shift totals:

type_totals= sum((Counter({d:defects[s,d]}) for s,d in defects),  
Counter())

We created a dozen Counter objects using the defect type, d, as the key instead  
of shift type; otherwise, the processing is identical.

The shift totals look like this:

Counter({'3': 119, '2': 96, '1': 94})

The defect type totals look like this:

Counter({'C': 128, 'A': 74, 'B': 69, 'D': 38})

We've kept the summaries as Counter objects, rather than creating simple dict 
objects or possibly even list instances. We'll generally use them as simple dicts 
from this point forward. However, there are some situations where we will want 
proper Counter objects instead of reductions.

Alternative summary approaches
We've read the data and computed summaries in two separate steps. In some cases, 
we may want to create the summaries while reading the initial data. This is an 
optimization that might save a little bit of processing time. We could write a more 
complex input reduction that emitted the grand total, the shift totals, and the defect 
type totals. These Counter objects would be built one item at a time.

We've focused on using the Counter instances, because they seem to allow us 
flexibility. Any changes to the data acquisition will still create Counter instances  
and won't change the subsequent analysis.

Here's how we can compute the probabilities of defect by shift and by defect type:

from fractions import Fraction

P_shift = dict( (shift, Fraction(shift_totals[shift],total))

for shift in sorted(shift_totals))

P_type = dict((type, Fraction(type_totals[type],total)) for type in  
sorted(type_totals))
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We've created two dictionaries: P_shift and P_type. The P_shift dictionary maps 
a shift to a Fraction object that shows the shift's contribution to the overall number 
of defects. Similarly, the P_type dictionary maps a defect type to a Fraction object 
that shows the type's contribution to the overall number of defects.

We've elected to use Fraction objects to preserve all of the precision of the input 
values. When working with counts like this, we may get probability values that 
make more intuitive sense to people reviewing the data.

We've elected to use dict objects because we've switched modes. At this point in the 
analysis, we're no longer accumulating details; we're using reductions to compare 
actual and observed data.

The P_shift data looks like this:

{'2': Fraction(32, 103), '3': Fraction(119, 309), '1':  
Fraction(94, 309)}

The P_type data looks like this:

{'B': Fraction(23, 103), 'C': Fraction(128, 309),  
'A': Fraction(74, 309), 'D': Fraction(38, 309)}

A value such as 32/103 or 96/309 might be more meaningful to some people than 
0.3106. We can easily get float values from Fraction objects, as we'll see later.

The shifts all seem to be approximately at the same level of defect production. The 
defect types vary, which is typical. It appears that the defect C is a relatively common 
problem, whereas the defect B is much less common. Perhaps the second defect 
requires a more complex situation to arise.

Computing expected values and 
displaying a contingency table
The expected defect production is a combined probability. We'll compute the shift 
defect probability multiplied by the probability based on defect type. This will allow 
us to compute all 12 probabilities from all combinations of shift and defect type. We 
can weight these with the observed numbers and compute the detailed expectation 
for defects.

Here's the calculation of expected values:

expected = dict( 
    ((s,t), P_shift[s]*P_type[t]*total) for t in P_type: 
        for s in P_shift 
    )
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We'll create a dictionary that parallels the initial defects Counter object. This 
dictionary will have a sequence of two tuples with keys and values. The keys will 
be two tuples of shift and defect type. Our dictionary is built from a generator 
expression that explicitly enumerates all combinations of keys from the P_shift  
and P_type dictionaries.

The value of the expected dictionary looks like this:

{('2', 'B'): Fraction(2208, 103), ('2', 'D'): Fraction(1216, 103), 
('3', 'D'): Fraction(4522, 309), ('2', 'A'): Fraction(2368, 103), 
('1', 'A'): Fraction(6956, 309), ('1', 'B'): Fraction(2162, 103), 
('3', 'B'): Fraction(2737, 103), ('1', 'C'): Fraction(12032, 309), 
('3', 'C'): Fraction(15232, 309), ('2', 'C'): Fraction(4096, 103), 
('3', 'A'): Fraction(8806, 309), ('1', 'D'): Fraction(3572, 309)}

Each item of the mapping has a key with shift and defect type. This is associated 
with a Fraction value based on the probability of defect based on shift times, the 
probability of a defect based on defect type times the overall number of defects. 
Some of the fractions are reduced, for example, a value of 6624/309 can be simplified 
to 2208/103.

Large numbers are awkward as proper fractions. Displaying large values as float 
values is often easier. Small values (such as probabilities) are sometimes easier to 
understand as fractions.

We'll print the observed and expected times in pairs. This will help us visualize the 
data. We'll create something that looks like the following to help summarize what 
we've observed and what we expect:

obs exp    obs exp    obs exp    obs exp    

15 22.51    21 20.99    45 38.94    13 11.56    94

26 22.99    31 21.44    34 39.77     5 11.81    96

33 28.50    17 26.57    49 49.29    20 14.63    119

74        69        128        38        309

This shows 12 cells. Each cell has values with the observed number of defects and 
an expected number of defects. Each row ends with the shift totals, and each column 
has a footer with the defect totals.

In some cases, we might export this data in CSV notation and build a spreadsheet. 
In other cases, we'll build an HTML version of the contingency table and leave the 
layout details to a browser. We've shown a pure text version here.
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Here's a sequence of statements to create the contingency table shown previously:

print("obs exp"*len(type_totals))

for s in sorted(shift_totals):

    pairs= ["{0:3d} {1:5.2f}".format(defects[s,t],  
    float(expected[s,t])) for t in sorted(type_totals)]

    print("{0} {1:3d}".format( "".join(pairs), shift_totals[s]))

footers= ["{0:3d}".format(type_totals[t]) for t in  
sorted(type_totals)]

print("{0} {1:3d}".format("".join(footers), total))

This spreads the defect types across each line. We've written enough obs exp 
column titles to cover all defect types. For each shift, we'll emit a line of observed and 
actual pairs, followed by a shift total. At the bottom, we'll emit a line of footers with 
just the defect type totals and the grand total.

A contingency table like this one helps us to visualize the comparison between 
observed and expected values. We can compute a chi-squared value for these two 
sets of values. This will help us decide if the data is random or if there's something 
that deserves further investigation.

Computing the chi-squared value
The 2X  value is based on 

( )2i i
i

i

e o
e
−

∑ , where the e values are the expected values and 
the o values are the observed values.

We can compute the specified formula's value as follows:

diff= lambda e,o: (e-o)**2/e

chi2= sum(diff(expected[s,t], defects[s,t]) for s in shift_totals:

    for t in type_totals

    )

We've defined a small lambda to help us optimize the calculation. This allows us to 
execute the expected[s,t] and defects[s,t] attributes just once, even though the 
expected value is used in two places. For this dataset, the final 2X  value is 19.18.

There are a total of six degrees of freedom based on three shifts and four defect 
types. Since we're considering them independent, we get 2×3=6. A chi-squared table 
shows us that anything below 12.5916 would reflect 1 chance in 20 of the data being 
truly random. Since our value is 19.18, the data is unlikely to be random.
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The cumulative distribution function for 2X  shows that a value of 19.18 has a 
probability of the order of 0.00387: about 4 chances in 1000 of being random. The 
next step is a follow-up study to discover the details of the various defect types and 
shifts. We'll need to see which independent variable has the biggest correlation with 
defects and continue the analysis.

Instead of following up with this case study, we'll look at a different and  
interesting calculation.

Computing the chi-squared threshold
The essence of the 2X  test is a threshold value based on the number of degrees 
of freedom and the level of uncertainty we're willing to entertain in accepting or 
rejecting the null hypothesis. Conventionally, we're advised to use a threshold 
around 0.05 (1/20) to reject the null hypothesis. We'd like there to be only 1 chance 
in 20 that the data is simply random and it appears meaningful. In other words, we'd 
like there to be 19 chances in 20 that the data reflects simple random variation.

The chi-squared values are usually provided in tabular form because the calculation 
involves a number of transcendental functions. In some cases, libraries will provide 
the 2X  cumulative distribution function, allowing us to compute a value rather than 
look one up on tabulation of important values.

The cumulative distribution function for a 2X  value, x, and degrees of freedom, f,  
is defined as follows:
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It's common to the probability of being random as ( )21 ;p F kχ= − . That is, if p > 0.05, 
the data can be understood as random; the null hypothesis is true.

This requires two calculations: the incomplete gamma function, ( ),s zγ , and the 
complete gamma function, ( )xΓ . These can involve some fairly complex math.  
We'll cut some corners and implement two pretty-good approximations that are 
narrowly focused on just this problem. Each of these functions will allow us to look 
at functional design issues.
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Both of these functions will require a factorial calculation, !n . We've seen several 
variations on the fractions theme. We'll use the following one:

@lru_cache(128)

def fact(k):

    if k < 2: return 1

    return reduce(operator.mul, range(2, int(k)+1))

This is 2! i kk i≤ ≤= Π : a product of numbers from 2 to k (inclusive). We've omitted the 
unit test cases.

Computing the partial gamma value
The partial gamma function has a simple series expansion. This means that we're 
going to compute a sequence of values and then do a sum on those values. For more 
information, visit http://dlmf.nist.gov/8.
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This series will have a sequence of terms that—eventually—become too small to be 
relevant. The calculation ( )1 k−  will yield alternating signs:

0 1 2 31 1, 1 1, 1 1, 1 1− = − = − − = − = −

The sequence of terms looks like this with s=1 and z=2:

    2/1, -2/1, 4/3, -2/3, 4/15, -4/45, ..., -2/638512875

At some point, each additional term won't have any significant impact on the result.

When we look back at the cumulative distribution function, ( );F x k , we can consider 
working with fractions.Fraction values. The degrees of freedom, k, will be an 
integer divided by 2. The 2X  value, x, may be either a Fraction or a float value; it 
will rarely be a simple integer value.

When evaluating the terms of γ , the value of 
( )1
!

k

k
−

 will involve integers and can be 
represented as a proper Fraction value. The value of 

s kz +
 could be a Fraction or 

float value; it will lead to irrational values when s k+  is not an integer value. The 
value of s k+  will be a proper Fraction value, sometimes it will have the integer 
values, and sometimes it will have values that involve 1/2.

http://dlmf.nist.gov/8
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The use of Fraction value here—while possible—doesn't seem to be helpful because 
there will be an irrational value computed. However, when we look at the complete 
gamma function given here, we'll see that Fraction values are potentially helpful. In 
this function, they're merely incidental.

Here's an implementation of the previously explained series expansion:

def gamma(s, z):

    def terms(s, z):

        for k in range(100):

            t2= Fraction(z**(s+k))/(s+k)

            term= Fraction((-1)**k,fact(k))*t2

            yield term

        warnings.warn("More than 100 terms")

    def take_until(function, iterable):

        for v in iterable:

            if function(v): return

            yield v

    ε= 1E-8

    return sum(take_until(lambda t:abs(t) < ε, terms(s, z)))

We defined a term() function that will yield a series of terms. We used a for 
statement with an upper limit to generate only 100 terms. We could have used the 
itertools.count() function to generate an infinite sequence of terms. It seems 
slightly simpler to use a loop with an upper bound.

We computed the irrational s kz +  value and created a Fraction value from this value 
by itself. If the value for z is also a Fraction value and not a float value then, the 
value for t2 will be a Fraction value. The value for term() function will then be a 
product of two Fraction objects.

We defined a take_until() function that takes values from an iterable, until a given 
function is true. Once the function becomes true, no more values are consumed from 
the iterable. We also defined a small threshold value, ε, of 810− . We'll take values 
from the term() function until the values are less than ε. The sum of these values is 
an approximation to the partial gamma function.
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Here are some test cases we can use to confirm that we're computing this properly:

• ( ) 21, 2 1 0.8646647eγ −= − ≈

• ( ) 31,3 1 0.9502129eγ −= − ≈

• ( )1 ,2 erf 2 1.6918067
2

γ π  = × ≈ 
 

The error function, erf(), is another interesting function. We won't look into it here 
because it's available in the Python math library.

Our interest is narrowly focused on the chi-squared distribution. We're not generally 
interested in the incomplete gamma function for other mathematical purposes. 
Because of this, we can narrow our test cases to the kinds of values we expect to be 
using. We can also limit the accuracy of the results. Most chi-squared tests involve 
three digits of precision. We've shown seven digits in the test data, which is more 
than we might properly need.

Computing the complete gamma value
The complete gamma function is a bit more difficult. There are a number of different 
approximations. For more information, visit http://dlmf.nist.gov/5. There's 
a version available in the Python math library. It represents a broadly useful 
approximation that is designed for many situations.

We're not actually interested in a general implementation of the complete gamma 
function. We're interested in just two special cases: integer values and halves. For 
these two special cases, we can get exact answers, and don't need to rely on an 
approximation.

For integer values, ( )1 !n nΓ = − . The gamma function for integers can rely on the 
factorial function we defined previously.

For halves, there's a special form:

( )2n !1
2 4 !nn

n
Γ π+ =

This includes an irrational value, so we can only represent this approximately using 
float or Fraction objects.

http://dlmf.nist.gov/5
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Since the chi-squared cumulative distribution function only uses the following two 
features of the complete gamma function, we don't need a general approach. We can 
cheat and use the following two values, which are reasonably precise.

If we use proper Fraction values, then we can design a function with a few  
simple cases: an integer value, a Fraction value with 1 in the denominator,  
and a Fraction value with 2 in the denominator. We can use the Fraction value  
as follows:

sqrt_pi = Fraction(677622787, 382307718)

def Gamma_Half(k):

    if isinstance(k,int):

        return fact(k-1)

    elif isinstance(k,Fraction):

        if k.denominator == 1:

            return fact(k-1)

        elif k.denominator == 2:

            n = k-Fraction(1,2)

            return fact(2*n)/(Fraction(4**n)*fact(n))*sqrt_pi

    raise ValueError("Can't compute Γ({0})".format(k))

We called the function Gamma_Half to emphasize that this is only appropriate for 
whole numbers and halves. For integer values, we'll use the fact() function that 
was defined previously. For Fraction objects with a denominator of 1, we'll use the 
same fact() definition: ( )1 !n nΓ = − .

For the cases where the denominator is 2, we can use the more complex "closed  
form" value. We used an explicit Fraction() function for the value 4 !n n . We've  
also provided a Fraction approximation for the irrational value π .

Here are some test cases:

• ( )2 1Γ =

• ( )5 24Γ =

• 
1 1.7724539
2

Γ π  = ≈ 
 

• 3 0.8862269
2 2

πΓ   = ≈ 
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These can also be shown as proper Fraction values. The irrational values lead to 
large, hard-to-read fractions. We can use something like this:

    >>> g= Gamma_Half(Fraction(3,2))

    >>> g.limit_denominator(2000000)

    Fraction(291270, 328663)

This provides a value where the denominator has been limited to be in the range of 1 
to 2 million; this provides pleasant-looking six-digit numbers that we can use for unit 
test purposes.

Computing the odds of a distribution being 
random
Now that we have the incomplete gamma function, gamma, and complete gamma 
function, Gamma_Half, we can compute the 2X  CDF values. The CDF value shows  
us the odds of a given 2X  value being random or having some possible correlation.

The function itself is quite small:

def cdf(x, k):

    """X² cumulative distribution function.

    :param x: X² value -- generally sum (obs[i]-exp[i])**2/exp[i]

        for parallel sequences of observed and expected values.: 
        param k: degrees of freedom >= 1; generally len(data)-1

    """

    return 1-gamma(Fraction(k,2),  
    Fraction(x/2))/Gamma_Half(Fraction(k,2))

We included some docstring comments to clarify the parameters. We created 
proper Fraction objects from the degrees of freedom and the chi-squared value, 
x. When converting a float value to a Fraction object, we'll create a very large 
fractional result with a large number of entirely irrelevant digits.

We can use Fraction(x/2).limit_denominator(1000) to limit the size of the  
x/2 Fraction method to a respectably small number of digits. This will compute  
a correct CDF value, but won't lead to gargantuan fractions with dozens of digits.

Here are some sample data called from a table of 2X . Visit http://en.wikipedia.
org/wiki/Chi-squared_distribution for more information.

http://en.wikipedia.org/wiki/Chi-squared_distribution
http://en.wikipedia.org/wiki/Chi-squared_distribution
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To compute the correct CDF values execute the following commands:

>>> round(float(cdf(0.004, 1)), 2)

0.95

>>> cdf(0.004, 1).limit_denominator(100)

Fraction(94, 99)

>>> round(float(cdf(10.83, 1)), 3)

0.001

>>> cdf(10.83, 1).limit_denominator(1000)

Fraction(1, 1000)

>>> round(float(cdf(3.94, 10)), 2)

0.95

>>> cdf(3.94, 10).limit_denominator(100)

Fraction(19, 20)

>>> round(float(cdf(29.59, 10)), 3)

0.001

>>> cdf(29.59, 10).limit_denominator(10000)

Fraction(8, 8005)

Given 2X  and a number of degrees of freedom, our CDF function produces the same 
results as a widely used table of values.

Here's an entire row from a 2X  table, computed with a simple generator expression:

>>> chi2= [0.004, 0.02, 0.06, 0.15, 0.46, 1.07, 1.64, 2.71, 3.84,  
6.64, 10.83]

>>> act= [round(float(x), 3) for x in map(cdf, chi2, [1]*len(chi2))]

>>> act

[0.95, 0.888, 0.806, 0.699, 0.498, 0.301, 0.2, 0.1, 0.05, 0.01,  
0.001]

The expected values are as follows:

[0.95, 0.90, 0.80, 0.70, 0.50, 0.30, 0.20, 0.10, 0.05, 0.01, 0.001]

We have some tiny discrepancies in the third decimal place.

What we can do with this is get a probability from a 2X  value. From our example 
shown previously, the 0.05 probability for six degrees of freedom has a 2X  value 
12.5916

>>> round(float(cdf(12.5916, 6)), 2)

0.05
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The actual value we got for 2X  in the example was 19.18. Here's the probability that 
this value is random:

>>> round(float(cdf(19.18, 6)), 5)

0.00387

This probability is 3/775, with the denominator limited to 1000. Those are not good 
odds of the data being random.

Summary
In this chapter, we looked at three optimization techniques. The first technique 
involves finding the right algorithm and data structure. This has more impact on 
performance than any other single design or programming decision. Using the 
right algorithm can easily reduce runtimes from minutes to fractions of a second. 
Changing a poorly used sequence to a properly used mapping, for example, may 
reduce run time by a factor of 200.

We should generally optimize all of our recursions to be loops. This will be faster in 
Python and it won't be stopped by the call stack limit that Python imposes. There are 
many examples of how recursions are flattened into loops in other chapters, primarily, 
Chapter 6, Recursions and Reductions. Additionally, we may be able to improve 
performance in two other ways. First, we can apply memoization to cache results. 
For numeric calculations, this can have a large impact; for collections, the impact may 
be less. Secondly, replacing large materialized data objects with iterables may also 
improve performance by reducing the amount of memory management required.

In the case study presented in this chapter, we looked at the advantage of using 
Python for exploratory data analysis—the initial data acquisition including a little bit 
of parsing and filtering. In some cases, a significant amount of effort is required to 
normalize data from various sources. This is a task at which Python excels.

The calculation of a 2X  value involved three sum() functions: two intermediate 
generator expressions, and a final generator expression to create a dictionary with 
expected values. A final sum() function created the statistic. In under a dozen 
expressions, we created a sophisticated analysis of data that will help us accept  
or reject the null hypothesis.

We also evaluated some complex statistical functions: the incomplete and the 
complete gamma function. The incomplete gamma function involves a potentially 
infinite series; we truncated this and summed the values. The complete gamma 
function has some potential complexity, but it doesn't happen to apply in our case.
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Using a functional approach, we can write succinct and expressive programs that 
accomplish a great deal of processing. Python isn't a properly functional programming 
language. For example, we're required to use some imperative programming 
techniques. This limitation forces away from purely functional recursions. We gain 
some performance advantage, since we're forced to optimize tail recursions into 
explicit loops.

We also saw numerous advantages of adopting Python's hybrid style of functional 
programming. In particular, the use of Python's higher order functions and generator 
expressions give us a number of ways to write high performance programs that are 
often quite clear and simple.
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