

Functional Python Programming

Create succinct and expressive implementations
with functional programming in Python

Steven Lott

BIRMINGHAM - MUMBAI

Functional Python Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1270115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-699-2

www.packtpub.com

Credits

Author
Steven Lott

Reviewers
Oleg Broytman

Rui Carmo

Ian Cordasco

Julien Danjou

Amoatey Harrison

Shivin Kapur

Gong Yi

Commissioning Editor
Ed Gordon

Acquisition Editor
Owen Roberts

Content Development Editor
Sumeet Sawant

Technical Editor
Abhishek R. Kotian

Copy Editors
Roshni Banerjee

Pranjali Chury

Deepa Nambiar

Karuna Narayanan

Nithya P

Project Coordinator
Danuta Jones

Proofreaders
Stephen Copestake

Maria Gould

Bernadette Watkins

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Steven Lott has been programming since the 1970s, when computers were large,
expensive, and rare. As a contract software developer and architect, he has worked
on hundreds of projects, from very small to very large. He's been using Python to
solve business problems for over 10 years. He's particularly adept struggling with
gnarly data representation problems. His other titles include Mastering Object-Oriented
Python and Python for Secret Agents, both by Packt Publishing. After spending years as
a technomad—living in various places on the east coast of the US—he has dropped
the hook in the Chesapeake Bay. He blogs at http://slott-softwarearchitect.
blogspot.com.

http://slott-softwarearchitect.blogspot.com

About the Reviewers

Oleg Broytman is a software developer currently working with web technologies
on Unix/Linux using the Python programming language on the server side and
Javascript on the client side. Oleg started to work with computers even before the
IBM PC era. He worked with DOS for some time and then switched to Unix, mostly
Linux and FreeBSD. For about 25 years, he has been working in the medicine field in
Moscow, Russia.

You can contact him at phd@phdru.name.

I'd like to thank my wife Olga! She supports everything I do any way
I do it (well, mostly!). Her love and support make me happy and
allow me to achieve as much as I do.

Rui Carmo is a systems architect with 20 years' experience in telecoms and Internet,
having worked in software development, product management, mobile network
planning, systems engineering, virtualization, cloud services, and a lot of what the
industry is currently trying to roll into the "DevOps" moniker. He has been coding
in Python for over a decade (starting with Python 2.3) and has gravitated towards
Clojure, Erlang, and Hy (an LISP that leverages the Python AST) in the past few
years due to the intrinsic advantages of functional programming.

He currently lives in the wonderful city of Lisbon, Portugal, with his wife and two
children, and he blogs at http://taoofmac.com. You can find him on GitHub,
Twitter, and Hacker News as @rcarmo.

http://taoofmac.com

Julien Danjou is an open source hacker working at Red Hat. He started his
career as a Debian developer and contributed to a lot of free software (GNU Emacs,
Freedesktop, and so on), writing some software on his own, such as the awesome
window manager.

Nowadays, Julien contributes to OpenStack, an open source cloud platform
entirely written in Python. He has been a Python developer since then, worked on
Hy (an LISP dialect in Python), and written a self-published book titled The Hacker's
Guide to Python in 2014.

Amoatey Harrison is a Python programmer with a passion for building software
systems to solve problems. When he is not programming, he is playing video games,
swimming, or simply hanging out with friends.

After graduating from the Kwame Nkrumah University of Science and Technology
with a degree in computer engineering, he is doing his national service at the GCB
Bank Head Office in Accra, Ghana.

He would like to think of himself as a cool nerd.

Shivin Kapur is an aspiring computer science student who is passionate
about learning new things.

Gong Yi is a software developer working in Shanghai, China. He maintains an
open source project at https://github.com/topikachu/python-ev3, which can
control LEGO® MINDSTORMS® EV3 by Python language.

I thank my wife Zhu Xiaoling for her patience and love, and I thank
my son Yang Yang for being the best thing ever.

https://github.com/topikachu/python-ev3

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Introducing Functional Programming 9

Identifying a paradigm 10
Subdividing the procedural paradigm 11

Using the functional paradigm 12
Using a functional hybrid 14
Looking at object creation 15
The stack of turtles 16

A classic example of functional programming 17
Exploratory Data Analysis 20
Summary 22

Chapter 2: Introducing Some Functional Features 23
First-class functions 24

Pure functions 24
Higher-order functions 25

Immutable data 26
Strict and non-strict evaluation 27
Recursion instead of a explicit loop state 29
Functional type systems 33
Familiar territory 34
Saving some advanced concepts 34
Summary 35

Chapter 3: Functions, Iterators, and Generators 37
Writing pure functions 38
Functions as first-class objects 39
Using strings 41

Table of Contents

[ii]

Using tuples and namedtuples 42
Using generator expressions 43
Exploring the limitations of generators 46
Combining generator expressions 47

Cleaning raw data with generator functions 48
Using lists, dicts, and sets 50

Using stateful mappings 53
Using the bisect module to create a mapping 55
Using stateful sets 56

Summary 57
Chapter 4: Working with Collections 59

An overview of function varieties 60
Working with iterables 60

Parsing an XML file 61
Parsing a file at a higher level 63
Pairing up items from a sequence 65
Using the iter() function explicitly 67
Extending a simple loop 68
Applying generator expressions to scalar functions 71
Using any() and all() as reductions 73
Using len() and sum() 75
Using sums and counts for statistics 76

Using zip() to structure and flatten sequences 78
Unzipping a zipped sequence 80
Flattening sequences 80
Structuring flat sequences 81
Structuring flat sequences—an alternative approach 83

Using reversed() to change the order 84
Using enumerate() to include a sequence number 85
Summary 86

Chapter 5: Higher-order Functions 87
Using max() and min() to find extrema 88
Using Python lambda forms 91
Lambdas and the lambda calculus 93
Using the map() function to apply a function to a collection 93

Working with lambda forms and map() 94
Using map() with multiple sequences 95
Using the filter() function to pass or reject data 96
Using filter() to identify outliers 98
The iter() function with a sentinel value 99

Table of Contents

[iii]

Using sorted() to put data in order 100
Writing higher-order functions 101
Writing higher-order mappings and filters 101

Unwrapping data while mapping 103
Wrapping additional data while mapping 104
Flattening data while mapping 106
Structuring data while filtering 107

Writing generator functions 108
Building higher-order functions with Callables 111

Assuring good functional design 112
Looking at some of the design patterns 114
Summary 116

Chapter 6: Recursions and Reductions 117
Simple numerical recursions 118

Implementing tail-call optimization 119
Leaving recursion in place 120
Handling difficult tail-call optimization 121
Processing collections via recursion 122
Tail-call optimization for collections 123
Reductions and folding – from many to one 124

Group-by reductions – from many to fewer 126
Building a mapping with Counter 127
Building a mapping by sorting 128
Grouping or partitioning data by key values 130
Writing more general group-by reductions 132
Writing higher-order reductions 133
Writing file parsers 135

Parsing CSV files 137
Parsing plain text files with headers 138

Summary 140
Chapter 7: Additional Tuple Techniques 141

Using an immutable namedtuple as a record 142
Building namedtuples with functional constructors 145
Avoiding stateful classes by using families of tuples 145

Assigning statistical ranks 148
Wrapping instead of state changing 149
Rewrapping instead of state changing 150
Computing the Spearman rank-order correlation 152

Polymorphism and Pythonic pattern matching 153
Summary 158

Table of Contents

[iv]

Chapter 8: The Itertools Module 159
Working with the infinite iterators 160

Counting with count() 160
Reiterating a cycle with cycle() 162
Repeating a single value with repeat() 164

Using the finite iterators 165
Assigning numbers with enumerate() 166
Running totals with accumulate() 167
Combining iterators with chain() 169
Partitioning an iterator with groupby() 170
Merging iterables with zip_longest() and zip() 171
Filtering with compress() 171
Picking subsets with islice() 172
Stateful filtering with dropwhile() and takewhile() 173
Two approaches to filtering with filterfalse() and filter() 175
Applying a function to data via starmap() and map() 176

Cloning iterators with tee() 177
The itertools recipes 178
Summary 179

Chapter 9: More Itertools Techniques 181
Enumerating the Cartesian product 182
Reducing a product 182

Computing distances 184
Getting all pixels and all colors 185
Performance analysis 186
Rearranging the problem 188
Combining two transformations 189

Permuting a collection of values 190
Generating all combinations 191
Recipes 194
Summary 195

Chapter 10: The Functools Module 197
Function tools 198
Memoizing previous results with lru_cache 198
Defining classes with total ordering 201

Defining number classes 203
Applying partial arguments with partial() 205
Reducing sets of data with reduce() 206

Combining map() and reduce() 207
Using reduce() and partial() 208

Table of Contents

[v]

Using map() and reduce() to sanitize raw data 209
Using groupby() and reduce() 210

Summary 212
Chapter 11: Decorator Design Techniques 213

Decorators as higher-order functions 213
Using functool's update_wrapper() functions 216

Cross-cutting concerns 217
Composite design 218

Preprocessing bad data 219
Adding a parameter to a decorator 220
Implementing more complex descriptors 223
Recognizing design limitations 223
Summary 227

Chapter 12: The Multiprocessing and Threading Modules 229
What concurrency really means 230
The boundary conditions 231
Sharing resources with process or threads 231
Where benefits will accrue 232

Using multiprocessing pools and tasks 233
Processing many large files 234
Parsing log files – gathering the rows 235
Parsing log lines into namedtuples 236
Parsing additional fields of an Access object 238
Filtering the access details 241
Analyzing the access details 243
The complete analysis process 244

Using a multiprocessing pool for concurrent processing 244
Using apply() to make a single request 247
Using map_async(), starmap_async(), and apply_async() 247
More complex multiprocessing architectures 248
Using the concurrent.futures module 248
Using concurrent.futures thread pools 249
Using the threading and queue modules 250
Designing concurrent processing 250

Summary 252
Chapter 13: Conditional Expressions and the Operator Module 253

Evaluating conditional expressions 254
Exploiting non-strict dictionary rules 255
Filtering true conditional expressions 256

Table of Contents

[vi]

Using the operator module instead of lambdas 256
Getting named attributes when using higher-order functions 257

Starmapping with operators 258
Reducing with operators 260
Summary 261

Chapter 14: The PyMonad Library 263
Downloading and installing 263
Functional composition and currying 264

Using curried higher-order functions 266
Currying the hard way 268

Functional composition and the PyMonad multiplication operator 268
Functors and applicative functors 270

Using the lazy List() functor 271
Monad concepts, the bind() function and the Binary
Right Shift operator 274
Implementing simulation with monads 275
Additional PyMonad features 279
Summary 280

Chapter 15: A Functional Approach to Web Services 281
The HTTP request-response model 282

Injecting a state via cookies 284
Considering a server with a functional design 284
Looking more deeply into the functional view 285
Nesting the services 286

The WSGI standard 287
Throwing exceptions during WSGI processing 288
Pragmatic WSGI applications 290

Defining web services as functions 291
Creating the WSGI application 292
Getting raw data 294
Applying a filter 295
Serializing the results 296
Serializing data into the JSON or CSV format 298
Serializing data into XML 299
Serializing data into HTML 300

Tracking usage 301
Summary 303

Table of Contents

[vii]

Chapter 16: Optimizations and Improvements 305
Memoization and caching 305
Specializing memoization 307
Optimizing storage 311
Optimizing accuracy 311

Reducing accuracy based on audience requirements 312
Case study – making a chi-squared decision 312

Filtering and reducing the raw data with a Counter object 314
Reading summarized data 316
Computing probabilities from a Counter object 317
Alternative summary approaches 318

Computing expected values and displaying a contingency table 319
Computing the chi-squared value 321
Computing the chi-squared threshold 322
Computing the partial gamma value 323
Computing the complete gamma value 325
Computing the odds of a distribution being random 327

Summary 329
Index 331

Preface
Programming languages sometimes fit neatly into tidy categories like imperative
and functional. Imperative languages might further subdivide into those that are
procedural and those that include features for object-oriented programming. The
Python language, however, contains aspects of all of these three language categories.
Though Python is not a purely functional programming language, we can do a great
deal of functional programming in Python.

Most importantly, we can leverage many design patterns and techniques from
other functional languages and apply them to Python programming. These
borrowed concepts can lead us to create succinct and elegant programs. Python's
generator expressions, in particular, avoid the need to create large in-memory data
structures, leading to programs which may execute more quickly because they use
fewer resources.

We can't easily create purely functional programs in Python. Python lacks a number
of features that would be required for this. For example, we don't have unlimited
recursion, lazy evaluation of all expressions, and an optimizing compiler.

Generally, Python emphasizes strict evaluation rules. This means that statements
are executed in order and expressions are evaluated from left to right. While this
deviates from functional purity, it allows us to perform manual optimizations when
writing in Python. We'll take a hybrid approach to functional programming using
Python's functional features when they can add clarity or simplify the code and use
ordinary imperative features for optimization.

There are several key features of functional programming languages that are
available in Python. One of the most important is the idea that functions are
first-class objects. In some languages, functions exist only as a source code
construct: they don't exist as proper data structures at runtime. In Python,
functions can use functions as arguments and return functions as results.

Preface

[2]

Python offers a number of higher-order functions. Functions like map(), filter(),
and functools.reduce() are widely used in this role. Less obvious functions like
sorted(), min(), and max() are also higher-order functions; they have a default
function and, consequently, different syntax from the more common examples.

Functional programs often exploit immutable data structures. The emphasis on
stateless objects permits flexible optimization. Python offers tuples and namedtuples
as complex but immutable objects. We can leverage these structures to adapt some
design practices from other functional programming languages.

Many functional languages emphasize recursion but exploit Tail-Call Optimization
(TCO). Python tends to limit recursion to a relatively small number of stack frames.
In many cases, we can think of a recursion as a generator function. We can then simply
rewrite it to use a yield from statement, doing the tail-call optimization ourselves.

We'll look at the core features of functional programming from a Python point of view.
Our objective is to borrow good ideas from functional programming languages, and
use these ideas to create expressive and succinct applications in Python.

What this book covers
Chapter 1, Introducing Functional Programming, introduces some of the techniques
that characterize functional programming. We'll identify some of the ways to map
these features to Python, and finally, we'll also address some ways that the benefits
of functional programming accrue when we use these design patterns to build
Python applications.

Chapter 2, Introducing Some Functional Features, will delve into six central features
of the functional programming paradigm. We'll look at each in some detail to
see how they're implemented in Python. We'll also point out some features of
functional languages that don't apply well to Python. In particular, many functional
languages have complex type-matching rules required to support compilation
and optimization.

Chapter 3, Functions, Iterators, and Generators, will show how to leverage immutable
Python objects and generator expressions, and adapt functional programming
concepts to the Python language. We'll look at some of the built-in Python
collection and how we can leverage them without departing too far from
functional programming concepts.

Chapter 4, Working with Collections, shows how we can use a number of built-in
Python functions to operate on collections of data. This section will focus on a
number of relatively simple functions such as any() and all(), which will
reduce a collection of values to a single result.

Preface

[3]

Chapter 5, Higher-order Functions, examines the commonly used higher order
functions such as map() and filter(). The chapter also includes a number of other
functions that are also higher-order functions, as well as how we can create our own
higher-order functions.

Chapter 6, Recursions and Reductions, shows how we can design an algorithm using
recursion and then optimize it into a high performance for loop. We'll also look at
some other reductions that are widely used, including the collections.Counter()
function.

Chapter 7, Additional Tuple Techniques, shows a number of ways in which we can use
immutable tuples and namedtuples instead of stateful objects. Immutable objects
have a much simpler interface: we never have to worry about abusing an attribute
and setting an object into some inconsistent or invalid state.

Chapter 8, The Itertools Module, examines a number of functions in the standard
library module. This collection of functions simplifies writing programs that deal
with collections or generator functions.

Chapter 9, More Itertools Techniques, covers the combinatoric functions in the itertools
module. These functions are somewhat less useful. This chapter includes some
examples that illustrate ill-considered uses of these functions and the consequences
of combinatoric explosion.

Chapter 10, The Functools Module, will show how to use some of the functions in
this module for functional programming. A few of the functions in this module
are more appropriate for building decorators, and are left for the next chapter.
The other functions, however, provide several more ways to design and
implement function programs.

Chapter 11, Decorator Design Techniques, shows how we can look at a decorator as
a way to build a composite function. While there is considerable flexibility here,
there are also some conceptual limitations: we'll look at ways in which overly
complex decorators can become confusing rather than helpful.

Chapter 12, The Multiprocessing and Threading Modules, points out an important
consequence of good functional design: we can distribute the processing workload.
Using immutable objects means that we can't corrupt an object because of poorly
synchronized write operations.

Chapter 13, Conditional Expressions and the Operator Module, will show some ways in
which we can break out of Python's strict order of evaluation. There are limitations to
what we can achieve here. We'll also look at the operator module and how the operator
module can lead to some slight clarification of some simple kinds of processing.

Preface

[4]

Chapter 14, The PyMonad Library, examines some of the features of the PyMonad
library. This provides some additional functional programming features. This
also provides a way to learn more about monads. In some functional languages,
monads are an important way to force a particular order for operations that might
get optimized into an undesirable order. Since Python already has strict ordering of
expressions and statements, the monad feature is more instructive than practical.

Chapter 15, A Functional Approach to Web Services, shows how we can think of web
services as a nested collection of functions that transform a request into a reply.
We'll see ways in which we can leverage functional programming concepts for
building responsive, dynamic web content.

Chapter 16, Optimizations and Improvements, includes some additional tips on
performance and optimization. We'll emphasize techniques like memoization
because they're easy to implement and can—in the right context—yield dramatic
performance improvements.

What you need for this book
This book presumes some familiarity with Python 3 and general concepts of
application development. We won't look deeply at subtle or complex features
of Python; we'll avoid much consideration of the internals of the language.

We'll presume some familiarity with functional programming. Since Python is not
a functional programming language, we can't dig deeply into functional concepts.
We'll pick and choose the aspects of functional programming that fit well with
Python and leverage just those that seem useful.

Some of the examples use Exploratory Data Analysis (EDA) as a problem domain to
show the value of functional programming. Some familiarity with basic probability
and statistics will help with this. There are only a few examples that move into more
serious data science.

You'll need to have Python 3.3 or 3.4 installed and running. For more information
on Python, visit http://www.python.org/.

 In Chapter 14, The PyMonad Library, we'll look at installing this additional library.
If you have Python 3.4 ,which includes pip and Easy Install, this will be very easy.
If you have Python 3.3, you might have already installed pip or Easy Install or both.
Once you have an installer, you can add PyMonad. Visit https://pypi.python.
org/pypi/PyMonad/ for more details.

http://www.python.org/
https://pypi.python.org/pypi/PyMonad/
https://pypi.python.org/pypi/PyMonad/

Preface

[5]

Who this book is for
This book is for programmers who want to create succinct, expressive Python
programs by borrowing techniques and design patterns from functional programming
languages. Some algorithms can be expressed elegantly in a functional style; we can—
and should—adapt this to make Python programs more readable and maintainable.

In some cases, a functional approach to a problem will also lead to extremely high
performance algorithms. Python makes it too easy to create large intermediate data
structures, tying up memory and processor time. With functional programming
design patterns, we can often replace large lists with generator expressions that are
equally expressive, but take up much less memory and run much more quickly.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can create a Pool object of
concurrent worker processes, assign tasks to them, and expect the tasks to
be executed concurrently."

A block of code is set as follows:

GIMP Palette
Name: Crayola
Columns: 16
#

Any command-line input or output is written as follows:

def max(a, b):

 f = {a >= b: lambda: a, b >= a: lambda: b}[True]

 return f()

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Introducing Functional
Programming

Functional programming defines a computation using expressions and
evaluation—often encapsulated in function definitions. It de-emphasizes or avoids
the complexity of state change and mutable objects. This tends to create programs
that are more succinct and expressive. In this chapter, we'll introduce some of the
techniques that characterize functional programming. We'll identify some of the
ways to map these features to Python. Finally, we'll also address some ways in
which the benefits of functional programming accrue when we use these design
patterns to build Python applications.

Python has numerous functional programming features. It is not a purely functional
programming language. It offers enough of the right kinds of features that it confers
to the benefits of functional programming. It also retains all optimization power
available from an imperative programming language.

We'll also look at a problem domain that we'll use for many of the examples in
this book. We'll try to stick closely to Exploratory Data Analysis (EDA) because its
algorithms are often good examples of functional programming. Furthermore, the
benefits of functional programming accrue rapidly in this problem domain.

Our goal is to establish some essential principles of functional programming. The
more serious Python code will begin in Chapter 2, Introducing Some Functional Features.

We'll focus on Python 3 features in this book. However, some of the
examples might also work in Python 2.

Introducing Functional Programming

[10]

Identifying a paradigm
It's difficult to be definitive on what fills the universe of programming paradigms.
For our purposes, we will distinguish between just two of the many programming
paradigms: Functional programming and Imperative programming. One important
distinguishing feature between these two is the concept of state.

In an imperative language, like Python, the state of the computation is reflected by
the values of the variables in the various namespaces. The values of the variables
establish the state of a computation; each kind of statement makes a well-defined
change to the state by adding or changing (or even removing) a variable. A language
is imperative because each statement is a command, which changes the state in
some way.

Our general focus is on the assignment statement and how it changes state. Python
has other statements, such as global or nonlocal, which modify the rules for
variables in a particular namespace. Statements like def, class, and import change
the processing context. Other statements like try, except, if, elif, and else act
as guards to modify how a collection of statements will change the computation's
state. Statements like for and while, similarly, wrap a block of statements so that the
statements can make repeated changes to the state of the computation. The focus of
all these various statement types, however, is on changing the state of the variables.

Ideally, each statement advances the state of the computation from an initial
condition toward the desired final outcome. This "advances the computation"
assertion can be challenging to prove. One approach is to define the final state,
identify a statement that will establish this final state, and then deduce the
precondition required for this final statement to work. This design process can be
iterated until an acceptable initial state is derived.

In a functional language, we replace state—the changing values of variables—with
a simpler notion of evaluating functions. Each function evaluation creates a new
object or objects from existing objects. Since a functional program is a composition
of a function, we can design lower-level functions that are easy to understand, and
we will design higher-level compositions that can also be easier to visualize than a
complex sequence of statements.

Function evaluation more closely parallels mathematical formalisms. Because of
this, we can often use simple algebra to design an algorithm, which clearly handles
the edge cases and boundary conditions. This makes us more confident that the
functions work. It also makes it easy to locate test cases for formal unit testing.

Chapter 1

[11]

It's important to note that functional programs tend to be relatively succinct,
expressive, and efficient when compared to imperative (object-oriented or procedural)
programs. The benefit isn't automatic; it requires a careful design. This design effort is
often easier than functionally similar procedural programming.

Subdividing the procedural paradigm
We can subdivide imperative languages into a number of discrete categories.
In this section, we'll glance quickly at the procedural versus object-oriented
distinction. What's important here is to see how object-oriented programming
is a subset of imperative programming. The distinction between procedural and
object-orientation doesn't reflect the kind of fundamental difference that functional
programming represents.

We'll use code examples to illustrate the concepts. For some, this will feel like
reinventing a wheel. For others, it provides a concrete expression of abstract concepts.

For some kinds of computations, we can ignore Python's object-oriented features and
write simple numeric algorithms. For example, we might write something like the
following to get the range of numbers:

s = 0
for n in range(1, 10):
 if n % 3 == 0 or n % 5 == 0:
 s += n
print(s)

We've made this program strictly procedural, avoiding any explicit use of Python's
object features. The program's state is defined by the values of the variables s and n.
The variable, n, takes on values such that 1 ≤ n < 10. As the loop involves an ordered
exploration of values of n, we can prove that it will terminate when n == 10. Similar
code would work in C or Java using their primitive (non-object) data types.

We can exploit Python's Object-Oriented Programming (OOP) features and create
a similar program:

m = list()
for n in range(1, 10):
 if n % 3 == 0 or n % 5 == 0:
 m.append(n)
print(sum(m))

This program produces the same result but it accumulates a stateful collection
object, m, as it proceeds. The state of the computation is defined by the values
of the variables m and n.

Introducing Functional Programming

[12]

The syntax of m.append(n) and sum(m) can be confusing. It causes some
programmers to insist (wrongly) that Python is somehow not purely Object-oriented
because it has a mixture of the function()and object.method() syntax. Rest
assured, Python is purely Object-oriented. Some languages, like C++, allow the use
of primitive data type such as int, float, and long, which are not objects. Python
doesn't have these primitive types. The presence of prefix syntax doesn't change the
nature of the language.

To be pedantic, we could fully embrace the object model, the subclass, the list class,
and add a sum method:

class SummableList(list):
 def sum(self):
 s= 0
 for v in self.__iter__():
 s += v
 return s

If we initialize the variable, m, with the SummableList() class instead of the
list() method, we can use the m.sum() method instead of the sum(m) method.
This kind of change can help to clarify the idea that Python is truly and completely
object-oriented. The use of prefix function notation is purely syntactic sugar.

All three of these examples rely on variables to explicitly show the state of the
program. They rely on the assignment statements to change the values of the
variables and advance the computation toward completion. We can insert the
assert statements throughout these examples to demonstrate that the expected
state changes are implemented properly.

The point is not that imperative programming is broken in some way. The point is
that functional programming leads to a change in viewpoint, which can, in many
cases, be very helpful. We'll show a function view of the same algorithm. Functional
programming doesn't make this example dramatically shorter or faster.

Using the functional paradigm
In a functional sense, the sum of the multiples of 3 and 5 can be defined in two parts:

• The sum of a sequence of numbers
• A sequence of values that pass a simple test condition, for example, being

multiples of three and five

Chapter 1

[13]

The sum of a sequence has a simple, recursive definition:

def sum(seq):
 if len(seq) == 0: return 0
 return seq[0] + sum(seq[1:])

We've defined the sum of a sequence in two cases: the base case states that the
sum of a zero length sequence is 0, while the recursive case states that the sum
of a sequence is the first value plus the sum of the rest of the sequence. Since the
recursive definition depends on a shorter sequence, we can be sure that it will
(eventually) devolve to the base case.

The + operator on the last line of the preceding example and the initial value of 0 in
the base case characterize the equation as a sum. If we change the operator to * and
the initial value to 1, it would just as easily compute a product. We'll return to this
simple idea of generalization in the following chapters.

Similarly, a sequence of values can have a simple, recursive definition, as follows:

def until(n, filter_func, v):
 if v == n: return []
 if filter_func(v): return [v] + until(n, filter_func, v+1)
 else: return until(n, filter_func, v+1)

In this function, we've compared a given value, v, against the upper bound, n.
If v reaches the upper bound, the resulting list must be empty. This is the base
case for the given recursion.

There are two more cases defined by the given filter_func() function. If the value
of v is passed by the filter_func() function, we'll create a very small list, containing
one element, and append the remaining values of the until() function to this list. If
the value of v is rejected by the filter_func() function, this value is ignored and the
result is simply defined by the remaining values of the until() function.

We can see that the value of v will increase from an initial value until it reaches n,
assuring us that we'll reach the base case soon.

Here's how we can use the until() function to generate the multiples of 3 or 5.
First, we'll define a handy lambda object to filter values:

mult_3_5= lambda x: x%3==0 or x%5==0

(We will use lambdas to emphasize succinct definitions of simple functions.
Anything more complex than a one-line expression requires the def statement.)

Introducing Functional Programming

[14]

We can see how this lambda works from the command prompt in the
following example:

>>> mult_3_5(3)

True

>>> mult_3_5(4)

False

>>> mult_3_5(5)

True

This function can be used with the until() function to generate a sequence
of values, which are multiples of 3 or 5.

The until() function for generating a sequence of values works as follows:

>>> until(10, lambda x: x%3==0 or x%5==0, 0)

[0, 3, 5, 6, 9]

We can use our recursive sum() function to compute the sum of this sequence of
values. The various functions, such as sum(), until(), and mult_3_5() are defined
as simple recursive functions. The values are computed without restoring to use
intermediate variables to store state.

We'll return to the ideas behind this purely functional recursive function definition
in several places. It's important to note here that many functional programming
language compilers can optimize these kinds of simple recursive functions. Python
can't do the same optimizations.

Using a functional hybrid
We'll continue this example with a mostly functional version of the previous example
to compute the sum of the multiples of 3 and 5. Our hybrid functional version might
look like the following:

print(sum(n for n in range(1, 10) if n%3==0 or n%5==0))

We've used nested generator expressions to iterate through a collection of values
and compute the sum of these values. The range(1, 10) method is an iterable
and, consequently, a kind of generator expression; it generates a sequence of
values { }|1 10n n≤ < . The more complex expression, n for n in range(1, 10)
if n%3==0 or n%5==0, is also an iterable expression. It produces a set of values

(){ }|1 10 mod3 0 mod5 0n n n n≤ < ∧ = ∨ = . A variable, n, is bound to each value, more as
a way of expressing the contents of the set than as an indicator of the state of the
computation. The sum() function consumes the iterable expression, creating a final
object, 23.

Chapter 1

[15]

The bound variable doesn't change once a value is bound to
it. The variable, n, in the loop is essentially a shorthand for the
values available from the range() function.

The if clause of the expression can be extracted into a separate function, allowing us
to easily repurpose this with other rules. We could also use a higher-order function
named filter() instead of the if clause of the generator expression. We'll save this
for Chapter 5, Higher-order Functions.

As we work with generator expressions, we'll see that the bound variable is at the
blurry edge of defining the state of the computation. The variable, n, in this example
isn't directly comparable to the variable, n, in the first two imperative examples.
The for statement creates a proper variable in the local namespace. The generator
expression does not create a variable in the same way as a for statement does:

>>> sum(n for n in range(1, 10) if n%3==0 or n%5==0)

23

>>> n

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'n' is not defined

Because of the way Python uses namespaces, it might be possible to write a function
that can observe the n variable in a generator expression. However, we won't. Our
objective is to exploit the functional features of Python, not to detect how those
features have an object-oriented implementation under the hood.

Looking at object creation
In some cases, it might help to look at intermediate objects as a history of the
computation. What's important is that the history of a computation is not fixed.
When functions are commutative or associative, then changes to the order
of evaluation might lead to different objects being created. This might have
performance improvements with no changes to the correctness of the results.

Consider this expression:

>>> 1+2+3+4

10

We are looking at a variety of potential computation histories with the same result.
Because the + operator is commutative and associative, there are a large number of
candidate histories that lead to the same result.

Introducing Functional Programming

[16]

Of the candidate sequences, there are two important alternatives, which are
as follows:

>>> ((1+2)+3)+4

10

>>> 1+(2+(3+4))

10

In the first case, we fold in values working from left to right. This is the way Python
works implicitly. Intermediate objects 3 and 6 are created as part of this evaluation.

In the second case, we fold from right-to-left. In this case, intermediate objects 7 and
9 are created. In the case of simple integer arithmetic, the two results have identical
performance; there's no optimization benefit.

When we work with something like the list append, we might see some
optimization improvements when we change the association rules.

Here's a simple example:

>>> import timeit

>>> timeit.timeit("((([]+[1])+[2])+[3])+[4]")

0.8846941249794327

>>> timeit.timeit("[]+([1]+([2]+([3]+[4])))")

1.0207440659869462

In this case, there's some benefit in working from left to right.

What's important for functional design is the idea that the + operator (or add()
function) can be used in any order to produce the same results. The + operator
has no hidden side effects that restrict the way this operator can be used.

The stack of turtles
When we use Python for functional programming, we embark down a path that
will involve a hybrid that's not strictly functional. Python is not Haskell, OCaml,
or Erlang. For that matter, our underlying processor hardware is not functional;
it's not even strictly object-oriented—CPUs are generally procedural.

Chapter 1

[17]

All programming languages rest on abstractions, libraries, frameworks and virtual
machines. These abstractions, in turn, may rely on other abstractions, libraries,
frameworks and virtual machines. The most apt metaphor is this: the world is
carried on the back of a giant turtle. The turtle stands on the back of another giant
turtle. And that turtle, in turn, is standing on the back of yet another turtle.

It's turtles all the way down.
 – Anonymous

There's no practical end to the layers of abstractions.

More importantly, the presence of abstractions and virtual machines doesn't
materially change our approach to designing software to exploit the functional
programming features of Python.

Even within the functional programming community, there are more pure and less
pure functional programming languages. Some languages make extensive use of
monads to handle stateful things like filesystem input and output. Other languages
rely on a hybridized environment that's similar to the way we use Python. We write
software that's generally functional with carefully chosen procedural exceptions.

Our functional Python programs will rely on the following three stacks
of abstractions:

• Our applications will be functions—all the way down—until we hit
the objects

• The underlying Python runtime environment that supports our functional
programming is objects—all the way down—until we hit the turtles

• The libraries that support Python are a turtle on which Python stands

The operating system and hardware form their own stack of turtles. These details
aren't relevant to the problems we're going to solve.

A classic example of functional
programming
As part of our introduction, we'll look at a classic example of functional programming.
This is based on the classic paper Why Functional Programming Matters by John Hughes.
The article appeared in a paper called Research Topics in Functional Programming, edited
by D. Turner, published by Addison-Wesley in 1990.

Introducing Functional Programming

[18]

Here's a link to the paper Research Topics in Functional Programming:

http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

This discussion of functional programming in general is profound. There are several
examples given in the paper. We'll look at just one: the Newton-Raphson algorithm
for locating the roots of a function. In this case, the function is the square root.

It's important because many versions of this algorithm rely on the explicit state
managed via loops. Indeed, the Hughes paper provides a snippet of the Fortran
code that emphasizes stateful, imperative processing.

The backbone of this approximation is the calculation of the next approximation
from the current approximation. The next_() function takes x, an approximation
to the sqrt(n) method and calculates a next value that brackets the proper root.
Take a look at the following example:

def next_(n, x):

 return (x+n/x)/2

This function computes a series of values ()1 / / 2i i ia a n a+ = + . The distance between the
values is halved each time, so they'll quickly get to converge on the value such that

/a n a= , which means a n= . We don't want to call the method next() because this
name would collide with a built-in function. We call it the next_() method so that
we can follow the original presentation as closely as possible.

Here's how the function looks when used in the command prompt:

>>> n= 2
>>> f= lambda x: next_(n, x)
>>> a0= 1.0
>>> [round(x,4) for x in (a0, f(a0), f(f(a0)), f(f(f(a0))),)]
[1.0, 1.5, 1.4167, 1.4142]

We've defined the f() method as a lambda that will converge on 2 . We started with
1.0 as the initial value for 0a . Then we evaluated a sequence of recursive evaluations:

()1 0a f a= , ()()2 0a f f a= and so on. We evaluated these functions using a generator
expression so that we could round off each value. This makes the output easier to read
and easier to use with doctest. The sequence appears to converge rapidly on 2 .

We can write a function, which will (in principle) generate an infinite sequence of ia
values converging on the proper square root:

def repeat(f, a):
 yield a
 for v in repeat(f, f(a)):
 yield v

http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

Chapter 1

[19]

This function will generate approximations using a function, f(), and an initial
value, a. If we provide the next_() function defined earlier, we'll get a sequence of
approximations to the square root of the n argument.

The repeat() function expects the f() function to have a single
argument, however, our next_() function has two arguments. We can
use a lambda object, lambda x: next_(n, x), to create a partial
version of the next_() function with one of two variables bound.
The Python generator functions can't be trivially recursive, they must
explicitly iterate over the recursive results, yielding them individually.
Attempting to use a simple return repeat(f, f(a)) will end
the iteration, returning a generator expression instead of yielding the
sequence of values.

We have two ways to return all the values instead of returning a generator
expression, which are as follows:

• We can write an explicit for loop as follows:
for x in some_iter: yield x.

• We can use the yield from statement as follows:
yield from some_iter.

Both techniques of yielding the values of a recursive generator function are
equivalent. We'll try to emphasize yield from. In some cases, however, the yield
with a complex expression will be more clear than the equivalent mapping or
generator expression.

Of course, we don't want the entire infinite sequence. We will stop generating values
when two values are so close to each other that we can call either one the square root
we're looking for. The common symbol for the value, which is close enough, is the
Greek letter Epsilon, ε, which can be thought of as the largest error we will tolerate.

In Python, we'll have to be a little clever about taking items from an infinite sequence
one at a time. It works out well to use a simple interface function that wraps a
slightly more complex recursion. Take a look at the following code snippet:

def within(ε, iterable):

 def head_tail(ε, a, iterable):

 b= next(iterable)

 if abs(a-b) <= ε: return b

 return head_tail(ε, b, iterable)

 return head_tail(ε, next(iterable), iterable)

Introducing Functional Programming

[20]

We've defined an internal function, head_tail(), which accepts the tolerance, ε, an
item from the iterable sequence, a, and the rest of the iterable sequence, iterable.
The next item from the iterable bound to a name b. If a b ε− ≤ , then the two values
that are close enough together that we've found the square root. Otherwise, we use
the b value in a recursive invocation of the head_tail() function to examine the
next pair of values.

Our within() function merely seeks to properly initialize the internal head_tail()
function with the first value from the iterable parameter.

Some functional programming languages offer a technique that will put a value back
into an iterable sequence. In Python, this might be a kind of unget() or previous()
method that pushes a value back into the iterator. Python iterables don't offer this kind
of rich functionality.

We can use the three functions next_(), repeat(), and within() to create a square
root function, as follows:

def sqrt(a0, ε, n):

 return within(ε, repeat(lambda x: next_(n,x), a0))

We've used the repeat() function to generate a (potentially) infinite sequence
of values based on the next_(n,x) function. Our within() function will stop
generating values in the sequence when it locates two values with a difference
less than ε.

When we use this version of the sqrt() method, we need to provide an initial seed
value, a0, and an ε value. An expression like sqrt(1.0, .0001, 3) will start with
an approximation of 1.0 and compute the value of 3 to within 0.0001. For most
applications, the initial a0 value can be 1.0. However, the closer it is to the actual
square root, the more rapidly this method converges.

The original example of this approximation algorithm was shown in the Miranda
language. It's easy to see that there are few profound differences between Miranda
and Python. The biggest difference is Miranda's ability to construct cons, a value
back into an iterable, doing a kind of unget. This parallelism between Miranda
and Python gives us confidence that many kinds of functional programming can be
easily done in Python.

Exploratory Data Analysis
Later in this book, we'll use the field of EDA as a source for concrete examples
of functional programming. This field is rich with algorithms and approaches to
working with complex datasets; functional programming is often a very good fit
between the problem domain and automated solutions.

Chapter 1

[21]

While details vary from author to author, there are several widely accepted stages of
EDA. These include the following:

• Data preparation: This might involve extraction and transformation for
source applications. It might involve parsing a source data format and doing
some kinds of data scrubbing to remove unusable or invalid data. This is an
excellent application of functional design techniques.

• Data exploration: This is a description of the available data. This usually
involves the essential statistical functions. This is another excellent place to
explore functional programming. We can describe our focus as univariate
and bivariate statistics but that sounds too daunting and complex. What this
really means is that we'll focus on mean, median, mode, and other related
descriptive statistics. Data exploration may also involve data visualization.
We'll skirt this issue because it doesn't involve very much functional
programming. I'll suggest that you use a toolkit like SciPy.
Visit the following link to get more information how SciPY works
and its usage:
https://www.packtpub.com/big-data-and-business-intelligence/
learning-scipy-numerical-and-scientific-computing or https://
www.packtpub.com/big-data-and-business-intelligence/learning-
python-data-visualization

• Data modeling and machine learning: This tends to be proscriptive
as it involves extending a model to new data. We're going to skirt
this because some of the models can become mathematically complex.
If we spend too much time on these topics, we won't be able to focus on
functional programming.

• Evaluation and comparison: When there are alternative models, each must
be evaluated to determine which is a better fit for the available data. This
can involve ordinary descriptive statistics of model outputs. This can benefit
from functional design techniques.

The goal of EDA is often to create a model that can be deployed as a decision support
application. In many cases, a model might be a simple function. A simple functional
programming approach can apply the model to new data and display results for
human consumption.

https://www.packtpub.com/big-data-and-business-intelligence/learning-scipy-numerical-and-scientific-computing
https://www.packtpub.com/big-data-and-business-intelligence/learning-scipy-numerical-and-scientific-computing
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization

Introducing Functional Programming

[22]

Summary
We've looked at programming paradigms with an eye toward distinguishing the
functional paradigm from two common imperative paradigms. Our objective in
this book is to explore the functional programming features of Python. We've noted
that some parts of Python don't allow purely functional programming; we'll be
using some hybrid techniques that meld the good features of succinct, expressive
functional programming with some high-performance optimizations in Python.

In the next chapter, we'll look at five specific functional programming techniques
in detail. These techniques will form the essential foundation for our hybridized
functional programming in Python.

Introducing Some Functional
Features

Most of the features of functional programming are already first-class parts of Python.
Our goal in writing functional Python is to shift our focus away from imperative
(procedural or object-oriented) techniques to the maximum extent possible.

We'll look at each of the following functional programming topics:

• First-class and higher-order functions, which are also known as
pure functions.

• Immutable Data.
• Strict and non-strict evaluation. We can also call this eager vs.

lazy evaluation.
• Recursion instead of an explicit loop state.
• Functional type systems.

This should reiterate some concepts from the first chapter. Firstly, that purely
functional programming avoids the complexities of explicit state maintained via
variable assignment. Secondly, that Python is not a purely functional language.

We don't offer a rigorous definition of functional programming. Instead, we'll
locate some common features that are indisputably important. We'll steer clear
of the blurry edges.

Introducing Some Functional Features

[24]

First-class functions
Functional programming is often succinct and expressive. One way to achieve
this is by providing functions as arguments and return values for other functions.
We'll look at numerous examples of manipulating functions.

For this to work, functions must be first-class objects in the runtime environment.
In programming languages such as C, a function is not a runtime object. In Python,
however, functions are objects that are created (usually) by the def statements
and can be manipulated by other Python functions. We can also create a function
as a callable object or by assigning lambda to a variable.

Here's how a function definition creates an object with attributes:

>>> def example(a, b, **kw):

... return a*b

...

>>> type(example)

<class 'function'>

>>> example.__code__.co_varnames

('a', 'b', 'kw')

>>> example.__code__.co_argcount

2

We've created an object, example, that is of class function(). This object has
numerous attributes. The __code__ object associated with the function object has
attributes of its own. The implementation details aren't important. What is important
is that functions are first-class objects, and can be manipulated just like all other
objects. We previously displayed the values of two of the many attributes of a
function object.

Pure functions
To be expressive, a function used in a functional programming design will be free
from the confusion created by side effects. Using pure functions can also allow some
optimizations by changing evaluation order. The big win, however, stems from pure
functions being conceptually simpler and much easier to test.

To write a pure function in Python, we have to write local-only code. This means
we have to avoid the global statements. We need to look closely at any use of
nonlocal; while it is a side effect in another scope, it's confined to a nested function
definition. This is an easy standard to meet. Pure functions are a common feature of
Python programs.

Chapter 2

[25]

There isn't a trivial way to guarantee a Python function is free from side effects. It is
easy to carelessly break the pure function rule. If we ever want to worry about our
ability to follow this rule, we could write a function that uses the dis module to scan
a given function's __code__.co_code compiled code for global references. It could
report on use of internal closures, and the __code__.co_freevars tuple method as
well. This is a rather complex solution to a rare problem; we won't pursue it further.

A Python lambda is a pure function. While this isn't a highly recommended style,
it's certainly possible to create pure functions via lambda values.

Here's a function created by assigning lambda to a variable:

>>> mersenne = lambda x: 2**x-1

>>> mersenne(17)

131071

We created a pure function using lambda and assigned this to the variable mersenne.
This is a callable object with a single argument value that returns a single value.
Because lambda's can't have assignment statements, they're always pure functions
and suitable for functional programming.

Higher-order functions
We can achieve expressive, succinct programs using higher-order functions.
These are functions that accept a function as an argument or return a function as
a value. We can use higher-order functions as a way to create composite functions
from simpler functions.

Consider the Python max() function. We can provide a function as an argument
and modify how the max() function behaves.

Here's some data we might want to process:

>>> year_cheese = [(2000, 29.87), (2001, 30.12), (2002, 30.6), (2003,
30.66),(2004, 31.33), (2005, 32.62), (2006, 32.73), (2007, 33.5),
(2008, 32.84), (2009, 33.02), (2010, 32.92)]

We can apply the max() function as follows:

>>> max(year_cheese)

(2010, 32.92)

The default behavior is to simply compare each tuple in the sequence. This will
return the tuple with the largest value on position 0.

Introducing Some Functional Features

[26]

Since the max() function is a higher-order function, we can provide another function
as an argument. In this case, we'll use lambda as the function; this is used by the
max() function, as follows:

>>> max(year_cheese, key=lambda yc: yc[1])

(2007, 33.5)

In this example, the max() function applies the supplied lambda and returns the
tuple with the largest value in position 1.

Python provides a rich collection of higher-order functions. We'll see examples
of each of Python's higher-order functions in later chapters, primarily in Chapter 5,
Higher-order Functions. We'll also see how we can easily write our own higher-order
functions.

Immutable data
Since we're not using variables to track the state of a computation, our focus needs to
stay on immutable objects. We can make extensive use of tuples and namedtuples
to provide more complex data structures that are immutable.

The idea of immutable objects is not foreign to Python. There can be a performance
advantage to using immutable tuples instead of more complex mutable objects.
In some cases, the benefits come from rethinking the algorithm to avoid the costs
of object mutation.

We will avoid class definitions (almost) entirely. It can seem like it's anathema to
avoid objects in an Object-Oriented Programming (OOP) language. Functional
programming simply doesn't need stateful objects. We'll see this throughout this book.
There are reasons for defining callable objects; it is a tidy way to provide namespace
for closely-related functions, and it supports a pleasant level of configurability.

We'll look at a common design pattern that works well with immutable objects: the
wrapper() function. A list of tuples is a fairly common data structure. We will often
process this list of tuples in one of the two following ways:

• Using Higher-order Functions: As shown earlier, we provided lambda as
an argument to the max() function: max(year_cheese, key=lambda yc:
yc[1])

• Using the Wrap-Process-Unwrap pattern: In a functional context, we should
call this the unwrap(process(wrap(structure))) pattern

Chapter 2

[27]

For example, look at the following command snippet:

>>> max(map(lambda yc: (yc[1],yc), year_cheese))

(33.5, (2007, 33.5))

>>> _[1]

(2007, 33.5)

This fits the three-part pattern, although it might not be obvious how well it fits.

First, we wrap, using map(lambda yc: (yc[1],yc), year_cheese). This will
transform each item into a two tuple with a key followed by the original item.
In this example, the comparison key is merely yc[1].

Second, do the processing using the max() function. Since each piece of data has
been simplified to a two tuple with position zero used for comparison, we don't
really need the higher-order function feature of the max() function. The default
behavior of the max() function is exactly what we require.

Finally, we unwrap using the subscript [1]. This will pick the second element
of the two tuple selected by the max() function.

This kind of wrap and unwrap is so common that some languages have special
functions with names like fst() and snd() that we can use as a function prefix
instead of a syntactic suffix of [0] or [1]. We can use this idea to modify our
wrap-process-unwrap example, as follows:

snd= lambda x: x[1]

snd(max(map(lambda yc: (yc[1],yc), year_cheese)))

We defined a snd() function to pick the second item from a tuple. This provides
us with an easier-to-read version of unwrap(process(wrap())). We used
map(lambda... , year_cheese) to wrap our raw data items. We used max()
function as the processing and, finally, the snd() function to extract the second
item from the tuple.

In Chapter 13, Conditional Expressions and the Operator Module, we'll look at some
alternatives to lambda functions like fst() and snd().

Strict and non-strict evaluation
Functional programming's efficiency stems, in part, from being able to defer a
computation until it's required. The idea of lazy or non-strict evaluation is very
helpful. It's so helpful that Python already offers this feature.

Introducing Some Functional Features

[28]

In Python, the logical expression operators and, or, and if-then-else are all
non-strict. We sometimes call them short-circuit operators because they don't need
to evaluate all arguments to determine the resulting value.

The following command snippet shows the and operator's non-strict feature:

>>> 0 and print("right")

0

>>> True and print("right")

right

When we execute the preceding command snippet, the left-hand side of the and
operator is equivalent to False; the right-hand side is not evaluated. When the
left-hand side is equivalent to True, the right-hand side is evaluated.

Other parts of Python are strict. Outside the logical operators, an expression is
evaluated eagerly from left-to-right. A sequence of statement lines is also evaluated
strictly in order. Literal lists and tuples require eager evaluation.

When a class is created, the method functions are defined in a strict order. In the case
of a class definition, the method functions are collected into a dictionary (by default)
and order is not maintained after they're created. If we provide two methods with
the same name, the second one is retained because of the strict evaluation order.

Python's generator expressions and generator functions, however, are lazy. These
expressions don't create all possible results immediately. It's difficult to see this
without explicitly logging the details of a calculation. Here is an example of the
version of the range() function that has the side effect of showing the numbers
it creates:

>>> def numbers():

... for i in range(1024):

... print("=", i)

... yield i

If this function were eager, it would create all 1,024 numbers. Since it's lazy, it only
creates numbers as requested.

The older Python 2 range() function was eager and created an
actual list of object with all of the requested numbers. Python 2 has
an xrange() function that is lazy and matches the semantics of the
Python 3 range() function.

Chapter 2

[29]

We can use this noisy numbers() function in a way that will show lazy evaluation.
We'll write a function that evaluates some, but not all, of the values from this iterator:

>>> def sum_to(n):

... sum= 0

... for i in numbers():

... if i == n: break

... sum += i

... return sum

The sum_to() function will not evaluate the entire result of the numbers() function.
It will break after only consuming a few values from the numbers() function. We can
see this consumption of values in the following log:

>>> sum_to(5)

= 0

= 1

= 2

= 3

= 4

= 5

10

As we'll see later, Python generator functions have some properties that make them
a little awkward for simple functional programming. Specifically, a generator can
only be used once in Python. We have to be cautious how we use the lazy Python
generator expressions.

Recursion instead of a explicit loop state
Functional programs don't rely on loops and the associated overhead of tracking the
state of loops. Instead, functional programs try to rely on the much simpler approach
of recursive functions. In some languages, the programs are written as recursions, but
Tail-Call Optimization (TCO) by the compiler changes them to loops. We'll introduce
some recursion here and examine it closely in Chapter 6, Recursions and Reductions.

Introducing Some Functional Features

[30]

We'll look at a simple iteration to test a number for being prime. A prime number
is a natural number, evenly divisible by only 1 and itself. We can create a naïve and
poorly performing algorithm to determine if a number has any factors between two
and the number. This algorithm has the advantage of simplicity; it works acceptably
for solving Project Euler problems. Read up on Miller-Rabin primality tests for a
much better algorithm.

We'll use the term coprime to mean that two numbers have only 1 as their common
factor. The numbers 2 and 3, for example, are coprime. The numbers 6 and 9,
however, are not coprime because they have 3 as a common factor.

If we want to know if a number, n, is prime, we actually ask this: is the number n
coprime to all prime numbers, p, such that 2p n< . We can simplify this using all
integers, p, such that 22 p n≤ < .

Sometimes, it helps to formalize this as follows:

() () ()()2 1 mod 0prime n x x n and n x = ∀ ≤ < + ≠

The expression could look as follows in Python:

not any(n%p==0 for p in range(2,int(math.sqrt(n))+1))

A more direct conversion from mathematical formalism to Python would use
all(n%p != 0...) but that requires strict evaluation of all values of p. The not
any version can terminate early if a True value is found.

This simple expression has a for loop inside it: it's not a pure example of stateless
functional programming. We can reframe this into a function that works with a
collection of values. We can ask whether the number, n, is coprime within any
value in the range)2,1 n + ?". This uses the symbols, [), to show a half-open interval:
the lower values are included, and the upper value is not included. This is typical
behavior of the Python range() function. We will also restrict ourselves to the
domain of natural numbers. The square root values, for example, are implicitly
truncated to integers.

We can think of the definition of prime as the following:

())()prime coprime , 2,1n n n= ¬ + , given n > 1.

When defining a recursive function over a simple range of values, the base case can
be an empty range. A nonempty range is handled recursively by processing one value
combined with a range that's narrower by one value. We might formalize it as follows:

Chapter 2

[31]

[)() () [)()
True

coprime , ,
mod 0 coprime , 1,

a b
n a b

n a n a b a b
 == ≠ ∧ + <

if
if

This version is relatively easy to confirm by examining the two cases, which are
given as follows:

• If the range is empty, a b= , we evaluate something like:
[)()coprime 131071, 363,363 . The range contains no values, so the return is

a trivial True.

• If the range is not empty, we ask something like [)()coprime 131071, 2,363 .
This decomposes into () [)()131071 mod 2 0 coprime 131071, 3,363≠ ∧ . For this
example, we can see that the first clause is True, and we'll evaluate the
second clause recursively.

As an exercise for the reader: this recursion can be redefined to count down instead
of up, using [a,b-1) in the second case.

As a side note, some folks like to think of the empty interval as a ≥ b, not a=b.
This is needless, since a is incremented by 1 and we can easily guarantee that
a≤b, initially. There's no way for a to somehow leap past b by some error in the
function; we don't need to over-specify the rules for an empty interval.

Here is a Python code snippet that implements this definition of prime:

def isprimer(n):
 def isprime(k, coprime):
 """Is k relatively prime to the value coprime?"""
 if k < coprime*coprime: return True
 if k % coprime == 0: return False
 return isprime(k, coprime+2)
 if n < 2: return False
 if n == 2: return True
 if n % 2 == 0: return False
 return isprime(n, 3)

This shows a recursive definition of an isprime() function. The half-open
interval)2,1 n + is reduced to just the low-end argument, a, which is renamed
coprime in this function to clarify its purpose. The base case is implemented as
n < coprime*coprime; the range of values from coprime to 1+math.sqrt(n)
would be empty.

Introducing Some Functional Features

[32]

The non-strict and operation is implemented by splitting it out into a separate if
statement, if n % coprime == 0. The return statement is the recursive call with
a different coprime test value.

Because the recursion is the tail end of the function, this is an example of
Tail recursion.

This function is embedded in a function that establishes the boundary condition
that n is an odd number greater than 2. There's no point in testing any even number
for being prime, since 2 is the only even prime.

What's important in this example is that the two cases of this recursive function
are quite simple to design. Making the range of values an explicit argument to
the internal isprime() function allows us to call the function recursively with
argument values that reflect a steadily shrinking interval.

While this is often extremely succinct and very expressive, we have to be a little
cautious about using recursion in Python. There are two problems that arise.
They are stated as follows:

• Python imposes a recursion limit to detect recursive functions with
improperly defined base cases

• Python does have a compiler to do Tail-Call Optimization (TCO)

The default recursion limit is 1,000, which is adequate for many algorithms.
It's possible to change this with the sys.setrecursionlimit() function.
It's not wise to raise this arbitrarily since it might lead to exceeding the OS
memory limitations and crashing the Python interpreter.

If we try a recursive isprimer() function on a number over 1,000,000, we'll run foul
of the recursion limit. If we used a somehow smarter isprimer() function that only
checked prime factors instead of all factors, we'd be stopped at the 1,000th prime
number, 7,919, limiting our prime testing to numbers below 62,710,561.

Some functional programming languages can optimize simple recursive functions
such as our isprimer() function. An optimizing compiler can transform the
recursive evaluation of the isprimer(n, coprime+1) method into a low-overhead
loop. The optimization tends to make a hash of call stacks; debugging optimized
programs becomes difficult. Python doesn't perform this optimization. Performance
and memory are sacrificed for clarity and simplicity.

In Python, when we use a generator expression instead of a recursive function,
we essentially do the tail-call optimization manually. We don't rely on a compiler
for some functional language to do this optimization.

Chapter 2

[33]

Here is TCO done as a generator expression:

def isprime(p):
 if p < 2: return False
 if p == 2: return True
 if p % 2 == 0: return False
 return not any(p==0 for p in range(3,int(math.sqrt(n))+1,2))

This function includes many of the functional programming principles, but it uses
a generator expression instead of a pure recursion.

We'll often optimize a purely recursive function to use
an explicit for loop in a generator expression.

This algorithm is slow for large primes. For composite numbers, the function often
returns a value quickly. If used on a value such as 61

61 2 1M = − , it will take a few
minutes to show that this is prime. Clearly, the slowness comes from checking
1,518,500,249 individual candidate factors.

Functional type systems
Some functional programming languages such as Haskell and Scala are statically
compiled, and depend on declared types for functions and their arguments.
In order to provide the kind of flexibility Python already has, these languages
have sophisticated type matching rules so that a generic function can be written,
which works for a variety of related types.

In Object-Oriented Python, we often use the class inheritance hierarchy instead of
sophisticated function type matching. We rely on Python to dispatch an operator
to a proper method based on simple name matching rules.

Since Python already has the desired levels of flexibility, the type matching rules
for a compiled functional language aren't relevant. Indeed, we could argue that
the sophisticated type matching is a workaround imposed by static compilation.
Python doesn't need this workaround because it's a dynamic language.

In some cases, we might have to resort to using isinstance(a, tuple) to detect if
an argument value is tuple or an individual value. This will be as rare in functional
programs as it is in Object-Oriented Programs.

Introducing Some Functional Features

[34]

Familiar territory
One of the ideas that emerge from the previous list of topics is that most functional
programming is already present in Python. Indeed, most functional programming is
already a very typical and common part of Object-Oriented Programming.

As a very specific example, a fluent Application Program Interface (API) is a very
clear example of functional programming. If we take time to create a class with
return self() in each method function, we can use it as follows:

some_object.foo().bar().yet_more()

We can just as easily write several closely-related functions that work as follows:

yet_more(bar(foo(some_object)))

We've switched the syntax from traditional object-oriented suffix notation to a more
functional prefix notation. Python uses both notations freely, often using a prefix
version of a special method name. For example, the len() function is generally
implemented by the class.__len__() special method.

Of course, the implementation of the class shown above might involve a highly
stateful object. Even then, a small change in viewpoint might reveal a functional
approach that can lead to more succinct or more expressive programming.

The point is not that imperative programming is broken in some way, or that
functional programming offers such a vastly superior technology. The point is
that functional programming leads to a change in viewpoint that can—in many
cases—be very helpful.

Saving some advanced concepts
We will set some more advanced concepts aside for consideration in later chapters.
These concepts are part of the implementation of a purely functional language.
Since Python isn't purely functional, our hybrid approach won't require deep
consideration of these topics.

We will identify these up-front for the benefit of folks who already know a functional
language such as Haskell and are learning Python. The underlying concerns are
present in all programming languages but we'll tackle them differently in Python.
In many cases, we can and will drop into imperative programming rather than use
a strictly functional approach.

Chapter 2

[35]

The topics are as follows:

• Referential transparency: When looking at lazy evaluation and the various
kinds of optimization that are possible in a compiled language, the idea
of multiple routes to the same object is important. In Python, this isn't as
important because there aren't any relevant compile-time optimizations.

• Currying: The type systems will employ currying to reduce multiple-argument
functions to single-argument functions. We'll look at currying in some depth in
Chapter 11, Decorator Design Techniques.

• Monads: These are purely functional constructs that allow us to structure a
sequential pipeline of processing in a flexible way. In some cases, we'll resort
to imperative Python to achieve the same end. We'll also leverage the elegant
PyMonad library for this. We'll defer this to Chapter 14, The PyMonad Library.

Summary
In this chapter, we've identified a number of features that characterize the functional
programming paradigm. We started with first-class and higher-order functions.
The idea is that a function can be an argument to a function or the result of a
function. When functions become the object of additional programming,
we can write some extremely flexible and generic algorithms.

The idea of immutable data is sometimes odd in an imperative and object-oriented
programming language such as Python. When we start to focus on functional
programming, however, we see a number of ways that state changes can be
confusing or unhelpful. Using immutable objects can be a helpful simplification.

Python focuses on strict evaluation: all sub-expressions are evaluated from
left-to-right through the statement. Python, however, does perform some
non-strict evaluation. The or, and, and if-else logical operators are non-strict:
all subexpressions are not necessarily evaluated. Similarly, a generator function is
also non-strict. We can also call this eager vs. lazy. Python is generally eager but we
can leverage generator functions to create lazy evaluation.

While functional programming relies on recursion instead of explicit loop state,
Python imposes some limitations here. Because of the stack limitation and the lack
of an optimizing compiler, we're forced to manually optimize recursive functions.
We'll return to this topic in Chapter 6, Recursions and Reductions.

Introducing Some Functional Features

[36]

Although many functional languages have sophisticated type systems, we'll rely
on Python's dynamic type resolution. In some cases, it means we'll have to write
manual coercion among types. It might also mean that we'll have to create class
definitions to handle very complex situations. For the most part, however,
Python's built-in rules will work very elegantly.

In the next chapter, we'll look at the core concepts of pure functions and how
these fit with Python's built-in data structures. Given this foundation, we can
look at higher-order functions available in Python and how we can define our
own higher-order functions.

Functions, Iterators,
and Generators

The core of functional programming is the use of pure functions to map values from
the input domain to the output range. A pure function has no side effects, a relatively
easy threshold for us to achieve in Python.

Avoiding side effects also means reducing our dependence on variable assignment
to maintain the state of our computations. We can't purge the assignment statement
from the Python language, but we can reduce our dependence on stateful objects.
This means we need to choose among the available Python built-in data structures
to select those that don't require stateful operations.

This chapter will present several Python features from a functional viewpoint,
as follows:

• Pure Functions, free of side effects
• Functions as objects that can be passed as arguments or returned as results
• The use of Python strings using object-oriented suffix notation and

prefix notation
• Using tuples and namedtuples as a way to create stateless objects
• Using iterable collections as our primary design tool for

functional programming

We'll look at generators and generator expressions, since these are ways to work with
collections of objects. As we noted in Chapter 2, Introducing Some Functional Features,
there are some boundary issues while trying to replace all generator expressions with
recursions. Python imposes a recursion limit, and doesn't automatically handle TCO:
we must optimize recursions manually using a generator expression.

Functions, Iterators, and Generators

[38]

We'll write generator expressions that will perform the following tasks:

• Conversions
• Restructuring
• Complex calculations

We'll make a quick survey of many of the built-in Python collections, and how we
can work with collections while pursuing a functional paradigm. This might change
our approach to working with lists, dicts, and sets. Writing functional Python
encourages us to focus on tuples and immutable collections. In the next chapter,
we'll emphasize more functional ways to work with specific kinds of collections.

Writing pure functions
A pure function has no side effects: there are no global changes to variables. If we
avoid the global statement, we will almost meet this threshold. We also need to
avoid changing the state mutable objects. We'll look at a number of ways of ensuring
these two aspects of pure functions. A reference to a value in the Python global using
a free variable is something we can rework into a proper parameter. In most cases,
it's quite easy.

Here is an example where the usage of the global statement is explained:

 def some_function(a, b, t):
 return a+b*t+global_adjustment

We can refactor this function to make the global_adjustment variable into a proper
parameter. We would need to change each reference to this function, which might
have a large ripple effect through a complex application. A global reference will be
visible as a free variable in the body of a function. There will be neither a parameter
nor an assignment for this variable, making it reasonably clear that it's global.

There are many internal Python objects, which are stateful. Instances of the file
class, and all file-like objects, are examples of stateful objects in common use. We
observe that the most commonly used stateful objects in Python generally behave
as context managers. Not all developers make use of the available context managers
but many objects implement the required interface. In a few cases, stateful objects
don't completely implement the context manager interface; in these cases, there's
often a close() method. We can use the contextlib.closing() function to
provide these objects with the proper context manager interface.

Chapter 3

[39]

We can't easily eliminate all stateful Python objects, except from small programs.
Therefore, we must manage state while still exploiting the strengths of functional
design. Toward this end, we should always use the with statement to encapsulate
stateful file objects into a well-defined scope.

Always use file objects in a with context.

We should always avoid global file objects, global database connections, and the
associated state issues. The global file object is a very common pattern for handling
open files. We might have a function as shown in the following command snippet:

def open(iname, oname):
 global ifile, ofile
 ifile= open(iname, "r")
 ofile= open(oname, "w")

Given this context, numerous other functions can use the ifile and ofile variables,
hoping they properly refer to the global files, which are left open for the application
to use.

This is not a very good design, and we need to avoid it. The files should be proper
parameters to functions, and the open files should be nested in a with statement to
assure that their stateful behavior is handled properly.

This design pattern also applies to databases. A database connection object can
generally be provided as a formal argument to the application's functions. This
is contrary to the way some popular web frameworks work that rely on a global
database connection in an effort to make the database a transparent feature of the
application. Additionally, a multithreaded web server might not benefit from sharing
a single database connection. This suggests that there are some benefits of a hybrid
approach that uses functional design with a few isolated stateful features.

Functions as first-class objects
It shouldn't come as a surprise that Python functions are first-class objects. In Python,
functions are objects with a number of attributes. The reference manual lists a
number of special member names that apply to functions. Since functions are objects
with attributes, we can extract the docstring function or the name of a function,
using special attributes such as __doc__ or __name__. We can also extract the body
of the function via the __code__ attribute. In compiled languages, this introspection
is relatively complex because of the source information that needs to be retained. In
Python, it's quite simple.

Functions, Iterators, and Generators

[40]

We can assign functions to variables, pass functions as arguments, and return functions
as values. We can easily use these techniques to write higher-order functions.

Since functions are objects, Python already has many features required to be a
functional programming language.

Additionally, a callable object also helps us to create functions, which are first-class
objects. We can even consider the callable class definition as a higher-order function.
We do need to be judicious in how we use the __init__() method of a callable object;
we should avoid setting stateful class variables. One common application is to use an
__init__() method to create objects that fit the Strategy design pattern.

A class following the Strategy design pattern depends on another object to provide
an algorithm or parts of an algorithm. This allows us to inject algorithmic details at
runtime, rather than compiling the details into the class.

Here is an example of a callable object with an embedded Strategy object:

import collections
class Mersenne1(collections.Callable):
 def __init__(self, algorithm):
 self.pow2= algorithm
 def __call__(self, arg):
 return self.pow2(arg)-1

This class uses __init__() to save a reference to another function. We're not
creating any stateful instance variables.

The function given as a Strategy object must raise 2 to the given power. The three
candidate objects that we can plug into this class are as follows:

def shifty(b):
 return 1 << b
def multy(b):
 if b == 0: return 1
 return 2*multy(b-1)
def faster(b):
 if b == 0: return 1
 if b%2 == 1: return 2*faster(b-1)
 t= faster(b//2)
 return t*t

The shifty() function raises 2 to the desired power using a left shift of the bits.
The multy() function uses a naive recursive multiplication. The faster() function
uses a divide and conquer strategy that will perform ()2log b multiplications instead
of b multiplications.

Chapter 3

[41]

We can create instances of our Mersenne1 class with an embedded strategy
algorithm, as follows:

m1s= Mersenne1(shifty)
m1m= Mersenne1(multy)
m1f= Mersenne1(faster)

This shows how we can define alternative functions that produce the same result but
use different algorithms.

Python allows us to compute 89
89 2 1M = − , since this

doesn't even come close to the recursion limits in Python.
This is quite a large prime number, with 27 digits.

Using strings
Since Python strings are immutable, they're an excellent example of functional
programming objects. A Python string module has a number of methods, all of
which produce a new string as the result. These methods are pure functions with
no side effects.

The syntax for string method functions is postfix, where most functions are
prefix. This means that complex string operations can be hard to read when
they're commingled with conventional functions.

When scraping data from a web page, we might have a cleaner function that applies
a number of transformations to a string to clean up the punctuation and return a
Decimal object for use by the rest of the application. This will involve a mixture of
prefix and postfix syntax.

It might look like the following command snippet:

from decimal import *
def clean_decimal(text):
 if text is None: return text
 try:
 return Decimal(text.replace("$", "").replace(",", ""))
 except InvalidOperation:
 return text

This function does two replacements on the string to remove $ and , string values.
The resulting string is used as an argument to the Decimal class constructor, which
returns the desired object.

Functions, Iterators, and Generators

[42]

To make this more consistent, we can consider defining our own prefix functions for
the string method functions, as follows:

def replace(data, a, b):
 return data.replace(a,b)

This can allow us to use Decimal(replace(replace(text, "$", ""), ",", ""))
with consistent-looking prefix syntax. In this case, we simply rearrange the existing
argument values, allowing us an additional technique. We can do this for trivial
cases, such as the follows:

>>> replace=str.replace
>>> replace("$12.45","$","")

12.45

It's not clear if this kind of consistency is a significant improvement over the mixed
prefix and postfix notation. The issue with functions of multiple arguments is that
the arguments wind up in various places in the expression.

A slightly better approach might be to define a more meaningful prefix function to
strip punctuation, such as the following command snippet:

def remove(str, chars):
 if chars: return remove(str.replace(chars[0], ""), chars[1:])
 return str

This function will recursively remove each of the characters from the char variable.
We can use it as Decimal(remove(text, "$,")) to make the intent of our string
cleanup more clear.

Using tuples and namedtuples
Since Python tuples are immutable objects, they're another excellent example
of objects suitable for functional programming. A Python tuple has very few
method functions, so almost everything is done through functions using prefix
syntax. There are a number of use cases for tuples, particularly when working
with list-of-tuple, tuple-of-tuple and generator-of-tuple constructs.

Of course, namedtuples add an essential feature to a tuple: a name that we can use
instead of an index. We can exploit namedtuples to create objects that are accretions
of data. This allows us to write pure functions based on stateless objects, yet keep
data bound into tidy object-like packages.

Chapter 3

[43]

We'll almost always use tuples (and namedtuples) in the context of a collection of
values. If we're working with single values, or a tidy group of exactly two values, we'll
usually use named parameters to a function. When working with collections, however,
we might need to have iterable-of-tuples or iterable-of-namedtuple constructs.

The decision to use a tuple or namedtuple object is entirely a matter of convenience.
We might be working with a sequence of values as a three tuple of the form (number,
number, number) assuming that the triple is in red, green, and blue order.

We can use functions to pick a three-tuple apart, as shown in the following
command snippet:

red = lambda color: color[0]
green = lambda color: color[1]
blue = lambda color: color[2]

Or, we might introduce the following command line:

Color = namedtuple("Color", ("red", "green", "blue", "name"))

This allows us to use item.red instead of red(item).

The functional programming application of tuples centers on the iterable-of-tuple
design pattern. We'll look closely at a few iterable-of-tuple techniques. We'll look
at the namedtuple techniques in Chapter 7, Additional Tuple Techniques.

Using generator expressions
We've shown some examples of generator expressions already. We'll show many
more later in the chapter. We'll introduce some more sophisticated generator
techniques in this section.

We need to mention a small bit of Python syntax here. It's common to see generator
expressions used to create the list or dict literals via a list comprehension or a
dict comprehension. For our purposes, a list display (or comprehension) is just one
use of generator expressions. We can try to make a distinction between generator
expressions outside a display and generator expressions inside a display, but
there's nothing to be gained by this. The syntax is the same except for the enclosing
punctuation and the semantics are indistinguishable.

Functions, Iterators, and Generators

[44]

A display includes the enclosing literal syntax: [x**2 for x in range(10)]; this
example is a list comprehension, which creates a list object from the enclosed generator
expression. In this section, we're going to focus on the generator expression. We'll
occasionally create a display as part of demonstrating how the generator works.
Displays have the disadvantage of creating (potentially large) collection objects.
A generator expression is lazy and creates objects only as required.

We have to provide two important caveats on generator expressions, as follows:

• Generators appear to be sequence-like except for a function such as the len()
function that needs to know the size of the collection.

• Generators can be used only once. After that, they appear empty.

Here is a generator function that we'll use for some examples:

def pfactorsl(x):
 if x % 2 == 0:
 yield 2
 if x//2 > 1:
 yield from pfactorsl(x//2)
 return
 for i in range(3,int(math.sqrt(x)+.5)+1,2):
 if x % i == 0:
 yield i
 if x//i > 1:
 yield from pfactorsl(x//i)
 return
 yield x

We're locating the prime factors of a number. If the number, x, is even, we'll yield 2
and then recursively yield all factors of x÷2.

For odd numbers, we'll step through odd values greater than or equal to 3, to locate
a candidate factor of the number. When we locate a factor, we'll yield that factor, i,
and then recursively yield all factors of x÷i.

In the event that we can't locate a factor, the number must be prime, so we can
yield that.

We handle 2 as a special case to cut the number of iterations in half. All prime numbers,
except 2, are odd.

Chapter 3

[45]

We've used one important for loop in addition to recursion. This allows us to easily
handle numbers that have as many as 1,000 factors. This number is at least as large
as 1,0002 , a number with 300 digits. Since the for variable, i, is not used outside
the indented body of the loop, the stateful nature of the i variable won't lead to
confusion if we make any changes to the body of the loop.

In effect, we've done tail-call optimization, the recursive calls that count from 3 to x .
The for loop saves us from deeply recursive calls that test every single number in
the range.

The other two for loops exist merely to consume the results of a recursive function
that is iterable.

In a recursive generator function, be careful of the return statement.
Do not use the following command line:
return recursive_iter(args)

It returns only a generator object; it doesn't evaluate the function to
return the generated values. Use either of the following:
for result in recursive_iter(args):
yield result

OR yield from recursive_iter(args)

As an alternative, the following command is a more purely recursive version:

def pfactorsr(x):
 def factor_n(x, n):
 if n*n > x:
 yield x
 return
 if x % n == 0:
 yield n
 if x//n > 1:
 yield from factor_n(x//n, n)
 else:
 yield from factor_n(x, n+2)
 if x % 2 == 0:
 yield 2
 if x//2 > 1:
 yield from pfactorsr(x//2)
 return
 yield from factor_n(x, 3)

Functions, Iterators, and Generators

[46]

We defined an internal recursive function, factor_n(), to test factors, n, in the range
3 n x≤ ≤ . If the candidate factor, n, is outside the range, then x is prime. Otherwise,
we'll see if n is a factor of x. If so, we'll yield n and all factors of

x
n . If n is not a factor,

we'll evaluate the function recursively using n+2. This recursion to test each value
of ()2, 2 2, 2 2 2,...n n n+ + + + + + can be optimized into a for loop, as shown in the
previous example.

The outer function handles some edge cases. As with other prime-related processing,
we handle 2 as a special case. For even numbers, we'll yield 2 and then evaluate
pfactorsr() recursively for x÷2. All other prime factors must be odd numbers greater
than or equal to 3. We'll evaluate the factors_n() function starting with 3 to test these
other candidate prime factors.

The purely recursive function can only locate prime
factors of numbers up to about 4,000,000. Above this,
Python's recursion limit will be reached.

Exploring the limitations of generators
We noted that there are some limitations of generator expressions and
generator functions. The limitations can be observed by executing the
following command snippet:

>>> from ch02_ex4 import *
>>> pfactorsl(1560)
<generator object pfactorsl at 0x1007b74b0>
>>> list(pfactorsl(1560))
[2, 2, 2, 3, 5, 13]
>>> len(pfactorsl(1560))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: object of type 'generator' has no len()

In the first example, we saw that generator functions are not strict. They're lazy,
and don't have a proper value until we consume the generator functions. This isn't a
limitation, per se; this is the whole reason that generator expressions fit with functional
programming in Python.

In the second example, we materialized a list object from the generator function.
This is handy for seeing the output and writing unit test cases.

In the third example, we saw one limitation of generator functions: there's no len().

Chapter 3

[47]

The other limitation of generator functions is that they can only be used once.
For example, look at the following command snippet:

>>> result= pfactorsl(1560)
>>> sum(result)
27
>>> sum(result)
0

The first evaluation of the sum() method performed evaluation of the generator.
The second evaluation of the sum() method found that the generator was now
empty. We can only consume the values once.

Generators have a stateful life in Python. While they're very nice for some aspects
of functional programming, they're not quite perfect.

We can try to use the itertools.tee() method to overcome the once-only limitation.
We'll look at this in depth in Chapter 8, The Itertools Module. Here is a quick example of
its usage:

import itertools
def limits(iterable):
 max_tee, min_tee = itertools.tee(iterable, 2)
 return max(max_tee), min(min_tee)

We created two clones of the parameter generator expression, max_tee() and
min_tee(). This leaves the original iterator untouched, a pleasant feature that allows
us to do very flexible combinations of functions. We can consume these two clones to
get maxima and minima from the iterable.

While appealing, we'll see that this doesn't work out well in the long run. Once
consumed, an iterable will not provide any more values. When we want to compute
multiple kinds of reductions—for example, sums, counts, minimums, maximums—we
need to design with this one-pass-only limitation in mind.

Combining generator expressions
The essence of functional programming comes from the ways we can easily combine
generator expressions and generator functions to create very sophisticated composite
processing sequences. When working with generator expressions, we can combine
generators in several ways.

One common way to combine generator functions is when we create a composite
function. We might have a generator that computes (f(x) for x in range()).
If we want to compute g(f(x)), we have several ways to combine two generators.

Functions, Iterators, and Generators

[48]

We can tweak the original generator expression as follows:

g_f_x = (g(f(x)) for x in range())

While technically correct, this defeats any idea of reuse. Rather than reusing an
expression, we rewrite it.

We can also substitute one expression within another expression, as follows:

g_f_x = (g(y) for y in (f(x) for x in range()))

This has the advantage of allowing us to use simple substitution. We can revise
this slightly to emphasize reuse, using the following commands:

f_x= (f(x) for x in range())
g_f_x= (g(y) for y in f_x)

This has the advantage of leaving the initial expression, (f(x) for x in range()),
essentially untouched. All we did was assign the expression to a variable.

The resulting composite function is also a generator expression, which is also lazy.
This means that extracting the next value from g_f_x will extract one value from
f_x, which will extract one value from the source range() function.

Cleaning raw data with generator
functions
One of the tasks that arise in exploratory data analysis is cleaning up raw source
data. This is often done as a composite operation applying several scalar functions
to each piece of input data to create a usable data set.

Let's look at a simplified set of data. This data is commonly used to show techniques
in exploratory data analysis. It's called Anscombe's Quartet, and it comes from
the article, Graphs in Statistical Analysis, by F. J. Anscombe that appeared in
American Statistician in 1973. Following are the first few rows of a downloaded
file with this dataset:

Anscombe's quartet
I II III IV
x y x y x y x y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

Chapter 3

[49]

Sadly, we can't trivially process this with the csv module. We have to do a little bit
of parsing to extract the useful information from this file. Since the data is properly
tab-delimited, we can use the csv.reader() function to iterate through the various
rows. We can define a data iterator as follows:

import csv
def row_iter(source):
 return csv.reader(source, delimiter="\t")

We simply wrapped a file in a csv.reader function to create an iterator over rows.
We can use this iterator in the following context:

with open("Anscombe.txt") as source:
 print(list(row_iter(source)))

The problem with this is that the first three items in the resulting iterable aren't data.
The Anacombe's quartet file looks as follows when opened:

[["Anscombe's quartet"], ['I', 'II', 'III', 'IV'],
['x', 'y', 'x', 'y', 'x', 'y', 'x', 'y'],

We need to filter these rows from the iterable. Here is a function that will neatly
excise three expected title rows, and return an iterator over the remaining rows:

def head_split_fixed(row_iter):
 title= next(row_iter)
 assert len(title) == 1 and title[0] == "Anscombe's quartet"
 heading= next(row_iter)
 assert len(heading) == 4 and heading == ['I', 'II', 'III', 'IV']
 columns= next(row_iter)
 assert len(columns) == 8 and columns == ['x', 'y', 'x', 'y', 'x',
 'y', 'x', 'y']
 return row_iter

This function plucks three rows from the iterable. It asserts that each row has
an expected value. If the file doesn't meet these basic expectations, it's a symptom
that the file was damaged or perhaps our analysis is focused on the wrong file.

Since both the row_iter() and the head_split_fixed() functions expect an
iterable as an argument value, they can be trivially combined as follows:

with open("Anscombe.txt") as source:
 print(list(head_split_fixed(row_iter(source))))

We've simply applied one iterator to the results of another iterator. In effect, this
defines a composite function. We're not done, of course; we still need to convert the
strings values to the float values and we also need to pick apart the four parallel
series of data in each row.

Functions, Iterators, and Generators

[50]

The final conversions and data extractions are more easily done with higher-order
functions such as map() and filter(). We'll return to those in Chapter 5,
Higher-order Functions.

Using lists, dicts, and sets
A Python sequence object, like a list, is iterable. However, it has some additional
features. We'll think of it as a materialized iterable. We've used the tuple() function
in several examples to collect the output of a generator expression or generator
function into a single tuple object. We can also materialize a sequence to create
a list object.

In Python, a list display offers simple syntax to materialize a generator: we just add the
[] brackets. This is ubiquitous to the point where the distinction between generator
expression and list comprehension is a subtlety of little practical importance.

The following is an example to enumerate the cases:

>>> range(10)
range(0, 10)
>>> [range(10)]
[range(0, 10)]
>>> [x for x in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The first example is a generator function.

The range(10) function is lazy; it won't produce the 10 values
until evaluated in a context that iterates through the values.

The second example shows a list composed of a single generator function.
To evaluate this, we'll have to use nested loops. Something like this [x for
gen in [range(10)] for x in gen].

The third example shows a list comprehension built from a generator expression
that includes a generator function. The function, range(10), is evaluated by a
generator expression, x for x in range(10). The resulting values are collected
into a list object.

We can also use the list() function to build a list from an iterable or a generator
expression. This also works for set(), tuple(), and dict().

Chapter 3

[51]

The list(range(10)) function evaluated the generator expression.
The [range(10)] list literal does not evaluate the generator function.

While there's shorthand syntax for list, dict, and set using [] and {},there's
no shorthand syntax for a tuple. To materialize a tuple, we must use the tuple()
function. For this reason, it often seems most consistent to use the list(), tuple(),
and set() functions as the preferred syntax.

In the data cleansing example, we used a composite function to create a list of four
tuples. The function looked as follows:

with open("Anscombe.txt") as source:
 data = head_split_fixed(row_iter(source))
 print(list(data))

We assigned the results of the composite function to a name, data. The data looks
as follows:

[['10.0', '8.04', '10.0', '9.14', '10.0', '7.46', '8.0', '6.58'],
['8.0', '6.95', '8.0', '8.14', '8.0', '6.77', '8.0', '5.76'], ...
['5.0', '5.68', '5.0', '4.74', '5.0', '5.73', '8.0', '6.89']]

We need to do a little bit more processing to make this useful. First, we need to pick
pairs of columns from the eight tuple. We can select pair of columns with a function,
as shown in the following command snippet:

from collections import namedtuple
Pair = namedtuple("Pair", ("x", "y"))
def series(n, row_iter):
 for row in row_iter:
 yield Pair(*row[n*2:n*2+2])

This function picks two adjacent columns based on a number between 0 and 3.
It creates a namedtuple object from those two columns. This allows us to pick
the x or y value from each row.

We can now create a tuple-of-tuples collection as follows:

with open("Anscombe.txt") as source:
 data = tuple(head_split_fixed(row_iter(source)))
 sample_I= tuple(series(0,data))
 sample_II= tuple(series(1,data))
 sample_III= tuple(series(2,data))
 sample_IV= tuple(series(3,data))

Functions, Iterators, and Generators

[52]

We applied the tuple() function to a composite function based on the head_split_
fixed() and row_iter() methods. This will create an object that we can reuse in
several other functions. If we don't materialize a tuple object, only the first sample
will have any data. After that, the source iterator will be exhausted and all other
attempts to access it would yield empty sequestionsnces.

The series() function will pick pairs of items to create the Pair objects. Again, we
applied an overall tuple() function to materialize the resulting tuple-of-namedtuple
sequences so that we can do further processing on each one.

The sample_I sequence looks like the following command snippet:

(Pair(x='10.0', y='8.04'), Pair(x='8.0', y='6.95'),
Pair(x='13.0', y='7.58'), Pair(x='9.0', y='8.81'),
Etc.
Pair(x='5.0', y='5.68'))

The other three sequences are similar in structure. The values, however,
are quite different.

The final thing we'll need to do is create proper numeric values from the strings
that we've accumulated so that we can compute some statistical summary values.
We can apply the float() function conversion as the last step. There are many
alternative places to apply the float() function, and we'll look at some choices
in Chapter 5, Higher-order Functions.

Here is an example describing the usage of float() function:

 mean = sum(float(pair.y) for pair in sample_I)/len(sample_I)

This will provide the mean of the y value in each Pair object. We can gather a
number of statistics as follows:

for subset in sample_I, sample_II, sample_III, sample_III:
 mean = sum(float(pair.y) for pair in subset)/len(subset)
 print(mean)

We computed a mean for the y values in each pair built from the source database.
We created a common tuple-of-namedtuple structure so that we can have reasonably
clear references to members of the source dataset. Using pair.y is a bit less obscure
than pair[1].

Chapter 3

[53]

To reduce memory use—and increase performance—we prefer to use generator
expressions and functions as much as possible. These iterate through collections in a
lazy (or non-strict) manner, computing values only when required. Since iterators can
only be used once, we're sometimes forced to materialize a collection as a tuple (or
list) object. Materializing a collection costs memory and time, so we do it reluctantly.

Programmers familiar with Clojure can match Python's lazy generators with the
lazy-seq and lazy-cat functions. The idea is that we can specify a potentially
infinite sequence, but only take values from it as needed.

Using stateful mappings
Python offers several stateful collections; the various mappings include the dict class
and a number of related mappings defined in the collections module. We need to
emphasize the stateful nature of these mappings and use them carefully.

For our purposes in learning functional programming techniques in Python, there
are two use cases for mapping: a stateful dictionary that accumulates a mapping
and a frozen dictionary. In the first example of this chapter, we showed a frozen
dictionary that was used by the ElementTree.findall() method. Python doesn't
provide an easy-to-use definition of an immutable mapping. The collections.abc.
Mapping abstract class is immutable but it's not something we can use trivially.
We'll dive into details in Chapter 6, Recursions and Reductions.

Instead of the formality of using the collections.abc.Mapping abstract class, we
can fall back on confirming that the variable ns_map appears exactly once on the left
side of an assignment statement, methods such as ns_map.update() or ns_map.
pop() are never used, and the del statement isn't used with map items.

The stateful dictionary can be further decomposed into two typical use cases; they
are as follows:

• A dictionary built once and never updated. In this case, we will exploit
the hashed keys feature of the dict class to optimize performance. We can
create a dictionary from any iterable sequence of (key, value) two tuples
via dict(sequence).

• A dictionary built incrementally. This is an optimization we can use to
avoid materializing and sorting a list object. We'll look at this in Chapter 6,
Recursions and Reductions. We'll look at the collections.Counter class
as a sophisticated reduction. Incremental building is particularly helpful
for memoization. We'll defer memoization until Chapter 16, Optimizations
and Improvements.

Functions, Iterators, and Generators

[54]

The first example, building a dictionary once, stems from an application with three
operating phases: gather some input, create a dict object, and then process input
based on the mappings in the dictionary. As an example of this kind of application,
we might be doing some image processing and have a specific palette of colors,
represented by names and (R, G, B) tuples. If we use the GNU Image Manipulation
Program (GIMP) GNU General Public License (GPL) file format, the color palette
might look like the following command snippet:

 GIMP Palette
 Name: Small
 Columns: 3
 #
 0 0 0 Black
 255 255 255 White
 238 32 77 Red
 28 172 120 Green
 31 117 254 Blue

The details of parsing this file are the subject of Chapter 6, Recursions and Reductions.
What's important is the results of the parsing.

First, we'll assume that we're using the following Color namedtuple:

from collections import namedtuple
Color = namedtuple("Color", ("red", "green", "blue", "name"))

Second, we'll assume that we have a parser that produces an iterable of Color
objects. If we materialize it as a tuple, it would look like the following:

(Color(red=239, green=222, blue=205, name='Almond'),
Color(red=205, green=149, blue=117, name='Antique Brass'),
Color(red=253, green=217, blue=181, name='Apricot'),
Color(red=197, green=227, blue=132, name='Yellow Green'),
Color(red=255, green=174, blue=66, name='Yellow Orange'))

In order to locate a given color name quickly, we will create a frozen dictionary
from this sequence. This is not the only way to get fast lookups of a color by name.
We'll look at another option later.

To create a mapping from a tuple, we will use the process(wrap(iterable))
design pattern. The following command shows how we can create the color
name mapping:

name_map= dict((c.name, c) for c in sequence)

Chapter 3

[55]

Where the sequence variable is the iterable of the Color objects shown previously,
the wrap() element of the design pattern simply transforms each Color object , c,
into the two tuple (c.name, c). The process() element of the design uses dict()
initialization to create a mapping from name to Color. The resulting dictionary looks
as follows:

{'Caribbean Green': Color(red=28, green=211, blue=162,
name='Caribbean Green'),
'Peach': Color(red=255, green=207, blue=171, name='Peach'),
'Blizzard Blue': Color(red=172, green=229, blue=238, name='Blizzard
Blue'),

The order is not guaranteed, so you may not see Caribbean Green first.

Now that we've materialized the mapping, we can use this dict() object in some
later processing for repeated transformations from color name to (R, G, B) color
numbers. The lookup will be blazingly fast because a dictionary does a rapid
transformation from key to hash value followed by lookup in the dictionary.

Using the bisect module to create a mapping
In the previous example, we created a dict mapping to achieve a fast mapping from
a color name to a Color object. This isn't the only choice; we can use the bisect
module instead. Using the bisect module means that we have to create a sorted
object, which we can then search. To be perfectly compatible with the dict mapping,
we can use collections.abc.Mapping as the base class.

The dict mapping uses a hash to locate items almost immediately. However,
this requires allocating a fairly large block of memory. The bisect mapping does a
search, which doesn't require as much memory, but performance can be described
as immediate.

A static mapping class looks like the following command snippet:

import bisect
from collections.abc import Mapping
class StaticMapping(Mapping):
 def __init__(self, iterable):
 self._data = tuple(iterable)
 self._keys = tuple(sorted(key for key, _ in self._data))

 def __getitem__(self, key):
 ix= bisect.bisect_left(self._keys, key)
 if ix != len(self._keys) and self._keys[ix] == key:
 return self._data[ix][1]

Functions, Iterators, and Generators

[56]

 raise ValueError("{0!r} not found".format(key))
 def __iter__(self):
 return iter(self._keys)
 def __len__(self):
 return len(self._keys)

This class extends the abstract superclass collections.abc.Mapping. It provides
an initialization and implementations for three functions missing from the abstract
definition. The __getitem__() method uses the bisect.bisect_left() function to
search the collection of keys. If the key is found, the appropriate value is returned. The
__iter__() method returns an iterator, as required by the superclass. The __len__()
method, similarly, provides the required length of the collection.

Another option is to start with the source code for the collections.OrderedDict
class, change the superclass to Mapping instead of MutableMapping, and remove all
of the methods that implement mutability. For more details on which methods to
keep and which to discard, refer to the Python Standard Library, section 8.4.1.

Visit the following link for more details:

https://docs.python.org/3.3/library/collections.abc.html#collections-
abstract-base-classes

This class might not seem to embody too many functional programming principles.
Our goal here is to support a larger application that minimizes the use of stateful
variables. This class saves a static collection of key-value pairs. As an optimization,
it materializes two objects.

An application that creates an instance of this class is using a materialized object to
perform rapid lookups of the keys. The superclass does not support updates to the
object. The collection, as a whole, is stateless. It's not as fast as the built-in dict class,
but it uses less memory and, through the formality of being a subclass of Mapping,
we can be assured that this object is not used to contain a processing state.

Using stateful sets
Python offers several stateful collections, including the set collection. For our
purposes, there are two use cases for a set: a stateful set that accumulates items,
and a frozenset that is used to optimize searches for an item.

We can create a frozenset from an iterable in the same way as we create a tuple
object from an iterable fronzenset(some_iterable) method; this will create a
structure that has the advantage of a very fast in operator. This can be used in
an application that gatheres data, creates a set, and then uses that frozenset to
process some other data items.

https://docs.python.org/3.3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3.3/library/collections.abc.html#collections-abstract-base-classes

Chapter 3

[57]

We might have a set of colors that we will use as a kind of chroma-key: we will use
this color to create a mask that will be used to combine two images. Pragmatically,
a single color isn't appropriate but a small set of very similar colors works best.
In this case, we'll examine each pixel of an image file to see if the pixel is in the
chroma-key set or not. For this kind of processing, the chroma-key colors are loaded
into a frozenset before processing the target images. For more information, read
about chroma-key processing from the following link:

http://en.wikipedia.org/wiki/Chroma_key

As with mappings—specifically the Counter class—there are some algorithms that
can benefit from a memoized set of values. Some functions benefit from memoization
because a function is a mapping between domain values and range values, a job
for which a mapping works nicely. A few algorithms benefit from a memoized set,
which is stateful and grows as data is processed.

We'll return to memoization in Chapter 16, Optimizations and Improvements.

Summary
In this chapter, we looked closely at writing pure functions: free of side effects.
The bar is low here, since Python forces us to use the global statement to write
impure functions. We looked at generator functions and how we can use these
as the backbone of functional programming.

We also examined the built-in collection classes to show how they're used in the
functional paradigm. While the general ideal behind functional programming is
to limit the use of stateful variables, the collection objects are generally stateful
and, for many algorithms, also essential. Our goal is to be judicious in our use of
Python's nonfunctional features.

In the next two chapters, we'll look at higher-order functions: functions that
accept functions as arguments as well as returning functions. We'll start with
an exploration of the built-in higher-order functions. In later chapters, we'll look
at techniques for defining our own higher-order functions. We'll also look at
the itertools and functools modules and their higher-order functions in
later chapters.

http://en.wikipedia.org/wiki/Chroma_key

Working with Collections
Python offers a number of functions that process whole collections. They can
be applied to sequences (lists or tuples), sets, mappings, and iterable results
of generator expressions. We'll look at some of Python's collection-processing
functions from a functional programming viewpoint.

We'll start out by looking at iterables and some simple functions that work with
iterables. We'll look at some additional design patterns to handle iterables and
sequences with recursion as well as explicit for loops. We'll look at how we can
apply a scalar() function to a collection of data with a generator expression.

In this chapter, we'll show examples of how to use the following functions to
work with collections:

• any() and all()
• len() and sum() and some higher-order statistical processing related

to these functions
• zip() and some related techniques to structure and flatten lists of data
• reversed()

• enumerate()

The first four functions can all be called reductions; they reduce a collection to
a single value. The other three functions (zip(), reversed(), and enumerate())
are mappings; they produce a new collection from an existing collection(s). In the
next chapter, we'll look at some mapping() and reduction() functions that use
an additional function as an argument to customize their processing.

In this chapter, we'll start out by looking at ways to process data using generator
expressions. Then, we'll apply different kinds of collection-level functions to show
how they can simplify the syntax of iterative processing. We'll also look at some
different ways of restructuring data.

Working with Collections

[60]

In the next chapter, we'll focus on using higher-order collection functions to do
similar kinds of processing.

An overview of function varieties
We need to distinguish between two broad species of functions, as follows:

• Scalar functions apply to individual values and compute an individual result.
Functions such as abs(), pow(), and the entire math module are examples of
scalar functions.

• Collection() functions work with iterable collections.

We can further subdivide the collection functions into three subspecies:

• Reduction: This uses a function that is used to fold values in the collection
together, resulting in a single final value. We can call this an aggregate
function, as it produces a single aggregate value for an input collection.

• Mapping: This applies a function to all items of a collection; the result is
a collection of the same size.

• Filter: This applies a function to all items of a collection that rejects some
items and passes others. The result is a subset of the input. A filter might do
nothing, which means that the output matches the input; this is an improper
subset, but it still fits the broader definition of subset.

We'll use this conceptual framework to characterize ways in which we use the
built-in collection functions.

Working with iterables
As we noted in the previous chapters, we'll often use Python's for loop to work
with collections. When working with materialized collections such as tuples, lists,
maps, and sets, the for loop involves an explicit management of state. While this
strays from purely functional programming, it reflects a necessary optimization for
Python. If we assure that state management is localized to an iterator object that's
created as part of the for statement evaluation, we can leverage this feature without
straying too far from pure, functional programming. For example, if we use the for
loop variable outside the indented body of loop, we've strayed too far from purely
functional programming.

We'll return to this in Chapter 6, Recursion and Reduction. It's an important topic, and
we'll just scratch the surface here with a quick example of working with generators.

Chapter 4

[61]

One common application of for loop iterable processing is the
unwrap(process(wrap(iterable))) design pattern. A wrap() function will first
transform each item of an iterable into a two tuples with a derived sort key or other
value and then the original immutable item. We can then process these two tuples
based on the wrapped value. Finally, we'll use an unwrap() function to discard the
value used to wrap, which recovers the original item.

This happens so often in a functional context that we have two functions that are
used heavily for this; they are as follows:

fst = lambda x: x[0]
snd = lambda x: x[1]

These two functions pick the first and second values from a tuple, and both are
handy for the process() and unwrap() functions.

Another common pattern is wrap(wrap(wrap())). In this case, we're starting
with simple tuples and then wrapping them with additional results to build
up larger and more complex tuples. A common variation on this theme is
extend(extend(extend())) where the additional values build new, more
complex namedtuple instances without actually wrapping the original tuples.
We can summarize both of these as the Accretion design pattern.

We'll apply the Accretion design to work with a simple sequence of latitude and
longitude values. The first step will convert the simple points (lat, lon) on a path
into pairs of legs (begin, end). Each pair in the result will be ((lat, lon), (lat, lon)).

In the next sections, we'll show how to create a generator function that will iterate over
the content of a file. This iterable will contain the raw input data that we will process.

Once we have the data, later sections will show how to decorate each leg with the
haversine distance along the leg. The final result of the wrap(wrap(iterable())))
processing will be a sequence of three tuples: ((lat, lon), (lat, lon), distance). We
can then analyze the results for the longest, shortest distance, bounding rectangle,
and other summaries of the data.

Parsing an XML file
We'll start by parsing an XML (short for Extensible Markup Language) file to get
the raw latitude and longitude pairs. This will show how we can encapsulate some
not-quite functional features of Python to create an iterable sequence of values.
We'll make use of the xml.etree module. After parsing, the resulting ElementTree
object has a findall() method that will iterate through the available values.

Working with Collections

[62]

We'll be looking for constructs such as the following code snippet:

<Placemark><Point>
<coordinates>-76.33029518659048,37.54901619777347,0</coordinates>
</Point></Placemark>

The file will have a number of <Placemark> tags, each of which has a point and
coordinate structure within it. This is typical of Keyhole Markup Language (KML)
files that contain geographic information.

Parsing an XML file can be approached at two levels of abstraction. At the lower
level, we need to locate the various tags, attribute values, and content within the
XML file. At a higher level, we want to make useful objects out of the text and
attribute values.

The lower-level processing can be approached in the following way:

import xml.etree.ElementTree as XML
def row_iter_kml(file_obj):
 ns_map= {
 "ns0": "http://www.opengis.net/kml/2.2",
 "ns1": "http://www.google.com/kml/ext/2.2"}
 doc= XML.parse(file_obj)
 return (comma_split(coordinates.text)
 for coordinates in
 doc.findall("./ns0:Document/ns0:Folder/ns0:Placemark/
 ns0:Point/ns0:coordinates", ns_map))

This function requires a file that was already opened, usually via a with statement.
However, it can also be any of the file-like objects that the XML parser can handle.
The function includes a simple static dict object, ns_map, that provides the namespace
mapping information for the XML tags we'll be searching. This dictionary will be used
by the XML ElementTree.findall() method.

The essence of the parsing is a generator function that uses the sequence of tags
located by doc.findall(). This sequence of tags is then processed by a comma_
split() function to tease the text value into its comma-separated components.

The comma_split() function is the functional version of the split() method
of a string, which is as follows:

def comma_split(text):
 return text.split(",")

We've used the functional wrapper to emphasize a slightly more uniform syntax.

Chapter 4

[63]

The result of this function is an iterable sequence of rows of data. Each row will be a
tuple composed of three strings: latitude, longitude, and altitude of a waypoint
along this path. This isn't directly useful yet. We'll need to do some more processing
to get latitude and longitude as well as converting these two numbers into useful
floating-point values.

This idea of an iterable sequence of tuples as results of lower-level parsing allows
us to process some kinds of data files in a simple and uniform way. In Chapter 3,
Functions, Iterators, and Generators, we looked at how Comma Separated Values
(CSV) files are easily handled as rows of tuples. In Chapter 6, Recursions and
Reductions, we'll revisit the parsing idea to compare these various examples.

The output from the preceding function looks like the following code snippet:

[['-76.33029518659048', '37.54901619777347', '0'],
['-76.27383399999999', '37.840832', '0'],
['-76.459503', '38.331501', '0'],
and so on
['-76.47350299999999', '38.976334', '0']]

Each row is the source text of the <ns0:coordinates> tag split using , that's part
of the text content. The values are the East-West longitude, North-South latitude,
and altitude. We'll apply some additional functions to the output of this function
to create a usable set of data.

Parsing a file at a higher level
Once we've parsed the low-level syntax, we can restructure the raw data into
something usable in our Python program. This kind of structuring applies to XML,
JavaScript Object Notation (JSON), CSV, and any of the wide variety of physical
formats in which data is serialized.

We'll aim to write a small suite of generator functions that transforms the parsed
data into a form our application can use. The generator functions include some
simple transformations on the text that's found by the row_iter_kml() function,
which are as follows:

• Discarding altitude, or perhaps keeping only latitude and longitude
• Changing the order from (longitude, latitude) to (latitude, longitude)

We can make these two transformations have more syntactic uniformity by defining
a utility function as follows:

def pick_lat_lon(lon, lat, alt):
 return lat, lon

Working with Collections

[64]

We can use this function as follows:

def lat_lon_kml(row_iter):
 return (pick_lat_lon(*row) for row in row_iter)

This function will apply the pick_lat_lon() function to each row. We've used
*row to assign each element of the row three tuple to separate parameters of the
pick_lat_lon() function. The function can then extract and reorder the two
relevant values from each three tuple.

It's important to note that a good functional design allows us to freely replace any
function with its equivalent, which makes refactoring quite simple. We've tried
to achieve this goal when we provide alternative implementations of the various
functions. In principle, a clever functional language compiler might do some
replacements as part of an optimization pass.

We'll use the following kind of processing to parse the file and build a structure
we can use, such as the following code snippet:

with urllib.request.urlopen("file:./Winter%202012-2013.kml") as
source:
 v1= tuple(lat_lon_kml(row_iter_kml(source)))
print(v1)

We've used the urllib command to open a source. In this case, it's a local file.
However, we can also open a KML file on a remote server. Our objective with
using this kind of file opening is to assure that our processing is uniform no
matter what the source of the data is.

We've shown the two functions that do low-level parsing of the KML source.
The row_iter_kml(source) expression produces a sequence of text columns.
The lat_lon_kml() function will extract and reorder the latitude and longitude
values. This creates an intermediate result that sets the stage for further processing.
The subsequent processing is independent of the original format.

When we run this, we see results like the following:

(('37.54901619777347', '-76.33029518659048'),
('37.840832', '-76.27383399999999'), ('38.331501', '-76.459503'),
('38.330166', '-76.458504'), ('38.976334', '-76.47350299999999'))

We've extracted just the latitude and longitude values from a complex XML
file using an almost purely functional approach. As the result is an iterable, we can
continue to use functional programming techniques to process each point that we
retrieve from the file.

Chapter 4

[65]

We've explicitly separated low-level XML parsing from higher-level reorganization
of the data. The XML parsing produced a generic tuple of string structure. This
is compatible with the output from the CSV parser. When working with SQL
databases, we'll have a similar iterable of tuple structures. This allows us to write
code for higher-level processing that can work with data from a variety of sources.

We'll show a series of transformations to rearrange this data from a collection of
strings to a collection of waypoints along a route. This will involve a number of
transformations. We'll need to restructure the data as well as convert from strings
to floating-point values. We'll also look at a few ways to simplify and clarify the
subsequent processing steps. We'll use this data set in later chapters because it's
reasonably complex.

Pairing up items from a sequence
A common restructuring requirement is to make start-stop pairs out of points in
a sequence. Given a sequence, { }0 1 2, , ,..., nS s s s s= , we want to create a paired
sequence () () (){ }0 1 1 2 1

ˆ , , , ,..., ,n nS s s s s s s−= . When doing time-series analysis, we might
be combining more widely separated values. In this example, it's adjacent values.

A paired sequence will allow us to use each pair to compute distances from point to
point using a trivial application of a haversine function. This technique is also used
to convert a path of points into a series of line segments in a graphics application.

Why pair up items? Why not do something like this?

begin= next(iterable)
for end in iterable:
 compute_something(begin, end)
 begin = end

This, clearly, will process each leg of the data as a begin-end pair. However,
the processing function and the loop that restructures the data are tightly bound,
making reuse more complex than necessary. The algorithm for pairing is hard to
test in isolation because it's bound to the compute_something() function.

This combined function also limits our ability to reconfigure the application. There's
no easy way to inject an alternative implementation of the compute_something()
function. Additionally, we've got a piece of explicit state, the begin variable, which
makes life potentially complex. If we try to add features to the body of loop, we can
easily fail to set the begin variable correctly if a point is dropped from consideration.
A filter() function introduces an if statement that can lead to an error in
updating the begin variable.

Working with Collections

[66]

We achieve better reuse by separating this simple pairing function. This, in the
long run, is one of our goals. If we build up a library of helpful primitives such
as this pairing function, we can tackle problems more quickly and confidently.

There are many ways to pair up the points along the route to create start and
stop information for each leg. We'll look at a few here and then revisit this in
Chapter 5, Higher-order Functions and again in Chapter 8, The Itertools Module.

Creating pairs can be done in a purely functional way using a recursion.
The following is one version of a function to pair up the points along a route:

def pairs(iterable):
 def pair_from(head, iterable_tail):
 nxt= next(iterable_tail)
 yield head, nxt
 yield from pair_from(nxt, iterable_tail)
 try:
 return pair_from(next(iterable), iterable)
 except StopIteration:
 return

The essential function is the internal pair_from() function. This works with the
item at the head of an iterable plus the iterable itself. It yields the first pair, pops
the next item from the iterable, and then invokes itself recursively to yield any
additional pairs.

We've invoked this function from the pairs() function. The pairs() function
ensures that the initialization is handled properly and the terminating exception
is silenced properly.

Python iterable recursion involves a for loop to properly consume
and yield the results from the recursion. If we try to use a simpler-
looking return pair_from(nxt, iterable_tail) method,
we'll see that it does not properly consume the iterable and yield
all of the values.
Recursion in a generator function requires yield from a statement
to consume the resulting iterable. For this, use yield from
recursive_iter(args).
Something like return recursive_iter(args) will return
only a generator object; it doesn't evaluate the function to return
the generated values.

Chapter 4

[67]

Our strategy for performing tail-call optimization is to replace the recursion with a
generator expression. We can clearly optimize this recursion into a simple for loop.
The following is another version of a function to pair up the points along a route:

def legs(lat_lon_iter):

 begin= next(lat_lon_iter)

 for end in lat_lon_iter:

 yield begin, end

 begin= end

The version is quite fast and free from stack limits. It's independent of any
particular type of sequence, as it will pair up anything emitted by a sequence
generator. As there's no processing function inside loop, we can reuse the
legs() function as needed.

We can think of this function as one that yields the following kind of sequence
of pairs:

list[0:1], list[1:2], list[2:3], ..., list[-2:]

Another view of this function is as follows:

zip(list, list[1:])

While informative, these other two formulations only work for sequence objects.
The legs() and pairs() functions work for any iterable, including sequence objects.

Using the iter() function explicitly
The purely functional viewpoint is that all of our iterables can be processed with
recursive functions, where the state is merely the recursive call stack. Pragmatically,
Python iterables will often involve evaluation of other for loops. There are two
common situations: collections and iterables. When working with a collection,
an iterator object is created by the for statement. When working with a generator
function, the generator function is the iterator and maintains its own internal state.
Often, these are equivalent from a Python programming perspective. In rare cases,
generally those situations where we have to use an explicit next() function, the two
won't be precisely equivalent.

Our legs() function shown previously has an explicit next() function call to get the
first value from the iterable. This works wonderfully well with generator functions,
expressions, and other iterables. It doesn't work with sequence objects such as tuples
or lists.

Working with Collections

[68]

The following are three examples to clarify the use of the next() and iter()
functions:

>>> list(legs(x for x in range(3)))
[(0, 1), (1, 2)]
>>> list(legs([0,1,2]))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in legs
TypeError: 'list' object is not an iterator
>>> list(legs(iter([0,1,2])))
[(0, 1), (1, 2)]

In the first case, we applied the legs() function to an iterable. In this case, the
iterable was a generator expression. This is the expected behavior based on our
previous examples in this chapter. The items are properly paired up to create two
legs from three waypoints.

In the second case, we tried to apply the legs() function to a sequence. This resulted
in an error. While a list object and an iterable are equivalent when used in a for
statement, they aren't equivalent everywhere. A sequence isn't an iterator; it doesn't
implement the next() function. The for statement handles this gracefully, however,
by creating an iterator from a sequence automatically.

To make the second case work, we need to explicitly create an iterator from a list
object. This permits the legs() function to get the first item from the iterator over
the list items.

Extending a simple loop
We have two kinds of extensions we might factor into a simple loop. We'll look
first at a filter extension. In this case, we might be rejecting values from further
consideration. They might be data outliers, or perhaps source data that's improperly
formatted. Then, we'll look at mapping source data by performing a simple
transformation to create new objects from the original objects. In our case, we'll be
transforming strings to floating-point numbers. The idea of extending a simple
loop with a mapping, however, applies to situations. We'll look at refactoring the
above pairs() function. What if we need to adjust the sequence of points to discard
a value? This will introduce a filter extension that rejects some data values.

As the loop we're designing simply returns pairs without performing any additional
application-related processing, the complexity is minimal. Simplicity means we're
somewhat less likely to confuse the processing state.

Chapter 4

[69]

Adding a filter extension to this design might look something like the following
code snippet:

def legs_filter(lat_lon_iter):
 begin= next(lat_lon_iter)
 for end in lat_lon_iter:
 if #some rule for rejecting:
 continue
 yield begin, end
 begin= end

We have plugged in a processing rule to reject certain values. As the loop remains
succinct and expressive, we are confident that the processing will be done properly.
Also, we can easily write a test for this function, as the results work for any iterable,
irrespective of the long-term destination of the pairs.

The next refactoring will introduce additional mapping to a loop. Adding mappings
is common when a design is evolving. In our case, we have a sequence of string
values. We need to convert these to floating-point values for later use. This is a
relatively simple mapping that shows the design pattern.

The following is one way to handle this data mapping, through a generator
expression that wraps a generator function:

print(tuple(legs((float(lat), float(lon))
for lat,lon in lat_lon_kml())))

We've applied the legs() function to a generator expression that creates float
values from the output of the lat_lon_kml() function. We can read this in the
opposite order as well. The lat_lon_kml() function's output is transformed
into a pair of float values, which is then transformed into a sequence of legs.

This is starting to get complex. We've got a large number of nested functions here.
We're applying float(), legs(), and tuple() to a data generator. One common
refactoring of complex expressions is to separate the generator expression from
any materialized collection. We can do the following to simplify the expression:

flt= ((float(lat), float(lon)) for lat,lon in lat_lon_kml())
print(tuple(legs(flt)))

We've assigned the generator function to a variable named flt. This variable
isn't a collection object; we're not using a list comprehension to create an object.
We've merely assigned the generator expression to a variable name. We've then
used the flt variable in another expression.

Working with Collections

[70]

The evaluation of the tuple() method actually leads to a proper object being built so
that we can print the output. The flt variable's objects are created only as needed.

There are other refactoring's we might like to do. In general, the source of the data is
something we often want to change. In our example, the lat_lon_kml() function is
tightly bound in the rest of the expression. This makes reuse difficult when we have
a different data source.

In the case where the float() operation is something we'd like to parameterize
so that we can reuse it, we can define a function around the generator expression.
We'll extract some of the processing into a separate function merely to group the
operations. In our case, the string-pair to float-pair is unique to a particular source
data. We can rewrite a complex float-from-string expression into a simpler function
such as follows:

def float_from_pair(lat_lon_iter):
 return ((float(lat), float(lon)) for lat,lon in lat_lon_iter)

The float_from_pair() function applies the float() function to the first and
second values of each item in the iterable, yielding a two tuple of floats created from
an input value. We've relied on Python's for statement to decompose the two tuple.

We can use this function in the following context:

legs(float_from_pair(lat_lon_kml()))

We're going to create legs that are built from float values that come from a KML
file. It's fairly easy to visualize the processing, as each stage in the process is a simple
prefix function.

When parsing, we often have sequences of string values. For numeric applications,
we'll need to convert strings to float, int, or Decimal values. This often involves
inserting a function such as the float_from_pair() function into a sequence of
expressions that clean up the source data.

Our previous output was all strings; it looked like the following code snippet:

(('37.54901619777347', '-76.33029518659048'),
('37.840832', '-76.27383399999999'), ...
('38.976334', '-76.47350299999999'))

We'll want data like the following code snippet, where we have floats:

(((37.54901619777347, -76.33029518659048),
(37.840832, -76.273834)), ((37.840832, -76.273834), …
((38.330166, -76.458504), (38.976334, -76.473503)))

Chapter 4

[71]

We'll need to create a pipeline of simpler transformation functions. Above, we arrived
at flt= ((float(lat), float(lon)) for lat,lon in lat_lon_kml()). We can
exploit the substitution rule for functions and replace a complex expression such as
(float(lat), float(lon)) for lat,lon in lat_lon_kml()) with a function
that has the same value, in this case, float_from_pair(lat_lon_kml()). This kind
of refactoring allows us to be sure that a simplification has the same effect as a more
complex expression.

There are some simplifications that we'll look at in Chapter 5, Higher-order Functions.
We will revisit this in Chapter 6, Recursions and Reductions to see how to apply these
simplifications to the file-parsing problem.

Applying generator expressions to scalar
functions
We'll look cat a more complex kind of generator expression to map data values from
one kind of data to another. In this case, we'll apply a fairly complex function to
individual data values created by a generator.

We'll call these non-generator functions scalar, as they work with simple scalar
values. To work with collections of data, a scalar function will be embedded in a
generator expression.

To continue the example started earlier, we'll provide a haversine function and then
use a generator expression to apply a scalar haversine() function to a sequence of
pairs from our KML file.

The haversine() function looks like following:

from math import radians, sin, cos, sqrt, asin

MI= 3959
NM= 3440
KM= 6371

def haversine(point1, point2, R=NM):
 lat_1, lon_1= point1
 lat_2, lon_2= point2

 Δ_lat = radians(lat_2 - lat_1)
 Δ_lon = radians(lon_2 - lon_1)
 lat_1 = radians(lat_1)
 lat_2 = radians(lat_2)

Working with Collections

[72]

 a = sin(Δ_lat/2)**2 + cos(lat_1)*cos(lat_2)*sin(Δ_lon/2)**2
 c = 2*asin(sqrt(a))

 return R * c

This is a relatively simple implementation copied from the World Wide Web.

The following is how we might use our collection of functions to examine some KML
data and produce a sequence of distances:

 trip= ((start, end, round(haversine(start, end),4))
 for start,end in legs(float_from_pair(lat_lon_kml())))
 for start, end, dist in trip:
 print(start, end, dist)

The essence of the processing is the generator expression assigned to the trip
variable. We've assembled three tuples with a start, end, and the distance from start
to end. The start and end pairs come from the legs() function. The legs() function
works with floating-point data built from the latitude-longitude pairs
extracted from a KML file.

The output looks like the following command snippet:

(37.54901619777347, -76.33029518659048) (37.840832, -76.273834)
17.7246
(37.840832, -76.273834) (38.331501, -76.459503) 30.7382
(38.331501, -76.459503) (38.845501, -76.537331) 31.0756
(36.843334, -76.298668) (37.549, -76.331169) 42.3962
(37.549, -76.331169) (38.330166, -76.458504) 47.2866
(38.330166, -76.458504) (38.976334, -76.473503) 38.8019

Each individual processing step has been defined succinctly. The overview, similarly,
can be expressed succinctly as a composition of functions and generator expressions.

Clearly, there are several further processing steps we might like to apply to
this data. First, of course, is to use the format() method of a string to produce
better-looking output.

More importantly, there are a number of aggregate values we'd like to extract from
this data. We'll call these values reductions of the available data. We'd like to reduce
the data to get the maximum and minimum latitude—for example, to show the
extreme North and South ends of this route. We'd like to reduce the data to get
the maximum distance in one leg as well as the total distance for all legs.

Chapter 4

[73]

The problem we'll have using Python is that the output generator in the trip
variable can only be used once. We can't easily perform several reductions of this
detailed data. We can use itertools.tee() to work with the iterable several times.
It seems wasteful, however, to read and parse the KML file for each reduction.

We can make our processing more efficient by materializing intermediate results.
We'll look at this in the next section. Then, we can see how to compute multiple
reductions of the available data.

Using any() and all() as reductions
The any() and all() functions provide boolean reduction capabilities. Both functions
reduce a collection of values to a single True or False. The all() function assures that
all values are True. The any() function assures that at least one value is True.

These functions are closely related to a universal quantifier and an existential
quantifier used to express mathematical logic. We might, for example, want to assert
that all elements in a given collection have some property. One formalism for this
might look like following:

() ()Primex SomeSet x∀ ∈

We'd read this as: for all x in SomeSet, the function ()Prime x is true. We've put a
quantifier in front of the logical expression.

In Python, we switch the order of the items slightly to transcribe the logic expression
as follows:

all(isprime(x) for x in someset)

This will evaluate each argument value (isprime(x)) and reduce the collection
of values to a single True or False.

The any() function is related to the existential quantifier. If we want to assert that
no value in a collection is prime, we might have something like one of the two
equivalent expressions:

() () () ()Prime Primex SomeSet x x SomeSet x¬ ∀ ∈ ≡ ∃ ∈ ¬

The first states that it is not the case that all elements in SomeSet are prime. The second
version asserts that there exists one element in SomeSet that is not prime. These two are
equivalent—that is, if not all elements are prime, then one element must be non-prime.

Working with Collections

[74]

In Python, we can switch the order of the terms and transcribe these to working code
as follows:

not all(isprime(x) for x in someset)
any(not isprime(x) for x in someset)

As they're equivalent, there are two reasons for preferring one over the other:
performance and clarity. The performance is nearly identical, so it boils down
to clarity. Which of these states the condition the most clearly?

The all() function can be described as an and reduction of a set of values.
The result is similar to folding the and operator between the given sequence
of values. The any() function, similarly, can be described as an or reduction.
We'll return to this kind of general-purpose reduce when we look at the reduce()
function in Chapter 10, The Functools Module.

We also need to look at the degenerate case of these functions. What if the sequence
has 0 elements? What are the values of all(()) or all([])?

If we ask, "Are all elements in an empty set prime?", then what's the answer?
As there are no elements, the question is a bit difficult to answer.

If we ask "Are all elements in an empty set prime and all elements in SomeSet
prime?", we have a hint as to how we have to proceed. We're performing an and
reduction of an empty set and an and reduction of SomeSet.

() () () ()Prime Primex x x SomeSet x∀ ∈∅ ∧ ∀ ∈

It turns out that the and operator can be distributed freely. We can rewrite this to a
union of the two sets, which is then evaluated for being prime:

() ()Primex SomeSet x∀ ∈∅∪

Clearly, S S∪∅ ≡ . If we union an empty set, we get the original set. The empty set
can be called the union identify element. This parallels the way 0 is the additive
identity element: 0a a+ = .

Similarly, any(()) must be the or identity element, which is False. If we think of
the multiplicative identify element, 1, where 1b b× = , then all(()) must be True.

Chapter 4

[75]

We can demonstrate that Python follows these rules:

>>> all(())
True
>>> any(())
False

Python gives us some very nice tools to perform processing that involves logic.
We have the built-in and, or, and not operators. However, we also have these
collection-oriented any() and all() functions.

Using len() and sum()
The len() and sum() functions provide two simple reductions: a count of the
elements and the sum of the elements in a sequence. These two functions are
mathematically similar, but their Python implementation is quite different.

Mathematically, we can observe this cool parallelism. The len() function returns
the sum of 1's for each value in a collection, X: 01

x X x X
x

∈ ∈
=∑ ∑ .

The sum() function returns the sum of x for each value in a collection, X:
1

x X x X
x x

∈ ∈
=∑ ∑ .

The sum() function works for any iterable. The len() function doesn't apply to
iterables; it only applies to sequences. This little asymmetry in the implementation
of these functions is a little awkward around the edges of statistical algorithms.

For empty sequences, both of these functions return a proper additive identity
element of 0.

>>> sum(())
0

Of course, sum(()) returns an integer 0. When other numeric types are used,
the integer 0 will be coerced to the proper type for the available data.

Working with Collections

[76]

Using sums and counts for statistics
The definitions of the arithmetic mean have an appealingly trivial definition based
on sum() and len(), which is as follows:

def mean(iterable):
 return sum(iterable)/len(iterable)

While elegant, this doesn't actually work for iterables. This definition only works
for sequences.

Indeed, we have a hard time performing a simple computation of mean or standard
deviation based on iterables. In Python, we must either materialize a sequence object,
or resort to somewhat more complex operations.

We have a fairly elegant expression of mean and standard deviation in the
following definitions:

import math
s0= len(data) # sum(1 for x in data) # x**0
s1= sum(data) # sum(x for x in data) # x**1
s2= sum(x*x for x in data)

mean= s1/s0
stdev= math.sqrt(s2/s0 - (s1/s0)**2)

These three sums, s0, s1, and s2, have a tidy, parallel structure. We can easily
compute the mean from two of the sums. The standard deviation is a bit more
complex, but it's still based on the three sums.

This kind of pleasant symmetry also works for more complex statistical functions
such as correlation and even least-squares linear regression.

The moment of correlation between two sets of samples can be computed from their
standardized value. The following is a function to compute the standardized value:

def z(x, μ_x, σ_x):
 return (x-μ_x)/σ_x

The calculation is simply to subtract the mean, μ_x, from each sample, x, and divide
by the standard deviation, σ_x. This gives as a value measured in units of sigma, σ.
A value ±1 σ is expected about two-thirds of the time. Larger values should be less
common. A value outside ±3 σ should happen less than 1 percent of the time.

Chapter 4

[77]

We can use this scalar function as follows:

>>> d = [2, 4, 4, 4, 5, 5, 7, 9]
>>> list(z(x, mean(d), stdev(d)) for x in d)
[-1.5, -0.5, -0.5, -0.5, 0.0, 0.0, 1.0, 2.0]

We've materialized list that consists of normalized scores based on some raw
data in the variable, d. We used a generator expression to apply the scalar function,
z(), to the sequence object.

The mean() and stdev() functions are simply based on the examples shown above:

def mean(x):
 return s1(x)/s0(x)
def stdev(x):
 return math.sqrt(s2(x)/s0(x) - (s1(x)/s0(x))**2)

The three sum functions, similarly, are based on the examples above:

def s0(data):
 return sum(1 for x in data) # or len(data)
def s1(data):
 return sum(x for x in data) # or sum(data)
def s2(data):
 return sum(x*x for x in data)

While this is very expressive and succinct, it's a little frustrating because we can't
simply use an iterable here. We're computing a mean, which requires a sum of the
iterable, plus a count. We're also computing a standard deviation that requires two
sums and a count from the iterable. For this kind of statistical processing, we must
materialize a sequence object so that we can examine the data multiple times.

The following is how we can compute the correlation between two sets of samples:

def corr(sample1, sample2):
 μ_1, σ_1 = mean(sample1), stdev(sample1)
 μ_2, σ_2 = mean(sample2), stdev(sample2)
 z_1 = (z(x, μ_1, σ_1) for x in sample1)
 z_2 = (z(x, μ_2, σ_2) for x in sample2)
 r = sum(zx1*zx2 for zx1, zx2 in zip(z_1, z_2))/s0(sample1)
 return r

Working with Collections

[78]

This correlation function gathers basic statistical summaries of the two sets of samples:
the mean and standard deviation. Given these summaries, we defined two generator
functions that will create normalized values for each set of samples. We can then use
the zip() function (see the next example) to pair up items from the two sequences
of normalized values and compute the product of those two normalized values.
The average of the product of the normalized scores is the correlation.

The following is an example of gathering the correlation between two sets of samples:

 >>> xi= [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65,
 ... 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83,] # Height (m)
 >>> yi= [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29,
 ... 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46,] #
 ... Mass (kg)
 >>> round(corr(xi, yi), 5)
 0.99458

We've shown two sequences of data points, xi and yi. The correlation is over .99,
which shows a very strong relationship between the two sequences.

This shows one of the strengths of functional programming. We've created a handy
statistical module using a half-dozen functions with definitions that are single
expressions. The counterexample is the corr() function that can be reduced to a
single very long expression. Each internal variable in this function is used just once;
a local variable can be replaced with a copy-and-paste of the expression that created
it. This shows us that the corr() function has a functional design even though it's
written out in six separate lines of Python.

Using zip() to structure and flatten
sequences
The zip() function interleaves values from several iterators or sequences. It will
create n tuples from the values in each of the n input iterables or sequences. We used
it in the previous section to interleave data points from two sets of samples, creating
two tuples.

The zip() function is a generator. It does not materialize
a resulting collection.

Chapter 4

[79]

The following is an example that shows what the zip() function does:

>>> xi= [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65,
... 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83,]
>>> yi= [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29,
... 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46,]
>>> zip(xi, yi)
<zip object at 0x101d62ab8>
>>> list(zip(xi, yi))
[(1.47, 52.21), (1.5, 53.12), (1.52, 54.48), (1.55, 55.84),
(1.57, 57.2), (1.6, 58.57), (1.63, 59.93), (1.65, 61.29),
(1.68, 63.11), (1.7, 64.47), (1.73, 66.28), (1.75, 68.1),
(1.78, 69.92), (1.8, 72.19), (1.83, 74.46)]

There are a number of edge cases for the zip() function. We must ask the following
questions about its behavior:

• What happens where then are no arguments at all?
• What happens where there's only one argument?
• What happens when the sequences are different lengths?

For reductions (any(), all(), len(), sum()), we want an identity element from
reducing an empty sequence.

Clearly, each of these edge cases must produce some kind of iterable output.
Here are some examples to clarify the behaviors. First, the empty argument list:

>>> zip()
<zip object at 0x101d62ab8>
>>> list(_)
[]

We can see that the zip() function with no arguments is a generator function,
but there won't be any items. This fits the requirement that the output is iterable.

Next, we'll try a single iterable:

>>> zip((1,2,3))
<zip object at 0x101d62ab8>
>>> list(_)
[(1,), (2,), (3,)]

In this case, the zip() function emitted one tuple from each input value. This too
makes considerable sense.

Working with Collections

[80]

Finally, we'll look at the different-length list approach used by the zip() function:

>>> list(zip((1, 2, 3), ('a', 'b')))
[(1, 'a'), (2, 'b')]

This result is debatable. Why truncate? Why not pad the shorter list with None values?
This alternate definition of zip() function is available in the itertools module as the
zip_longest() function. We'll look at this in Chapter 8, The Itertools Module.

Unzipping a zipped sequence
zip() mapping can be inverted. We'll look at several ways to unzip a collection
of tuples.

We can't fully unzip an iterable of tuples, since we might
want to make multiple passes over the data. Depending
on our needs, we might need to materialize the iterable
to extract multiple values.

The first way is something we've seen many times; we can use a generator function
to unzip a sequence of tuples. For example, assume that the following pairs are a
sequence object with two tuples:

p0= (x[0] for x in pairs)
p1= (x[1] for x in pairs)

This will create two sequences. The p0 sequence has the first element of each two
tuple; the p1 sequence has the second element of each two tuple.

Under some circumstances, we can use the multiple ssignment of a for loop to
decompose the tuples. The following is an example that computes the sum of
products:

sum(p0*p1 for for p0, p1 in pairs)

We used the for statement to decompose each two tuple into p0 and p1.

Flattening sequences
Sometimes, we'll have zipped data that needs to be flattened. For example, our input
might be a file that looks like this:

 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
 ...

Chapter 4

[81]

We can easily use ((line.split() for line in file) to create a sequence of
ten tuples.

We might heave data in blocks that looks as follows:

blocked = [['2', '3', '5', '7', '11', '13', '17', '19', '23',
'29'], ['31', '37', '41', '43', '47', '53', '59', '61', '67',
'71'],
...

This isn't really what we want, though. We want to get the numbers into a single,
flat sequence. Each item in the input is a ten tuple; we'd rather not wrangle with
decomposing this one item at a time.

We can use a two-level generator expression, as shown in the following code snippet,
for this kind of flattening:

>>> (x for line in blocked for x in line)
<generator object <genexpr> at 0x101cead70>
>>> list(_)
['2', '3', '5', '7', '11', '13', '17', '19', '23', '29', '31',
'37', '41', '43', '47', '53', '59', '61', '67', '71', …]

The two-level generator is confusing at first. We can understand this through
a simple rewrite as follows:

for line in data:
 for x in line:
 yield x

This transformation shows us how the generator expression works. The first for
clause (for line in data) steps through each ten tuple in the data. The second
for clause (for x in line) steps through each item in the first for clause.

This expression flattens a sequence-of-sequence structure into a single sequence.

Structuring flat sequences
Sometimes, we'll have raw data that is a flat list of values that we'd like to bunch
up into subgroups. This is a bit more complex. We can use the itertools module's
groupby() function to implement this. This will have to wait until Chapter 8, The
Iterools Module.

Let's say we have a simple flat list as follows:

flat= ['2', '3', '5', '7', '11', '13', '17', '19', '23', '29',
'31', '37', '41', '43', '47', '53', '59', '61', '67', '71', ...]

Working with Collections

[82]

We can write nested generator functions to build a sequence-of-sequence structure
from flat data. In order to do this, we'll need a single iterator that we can use multiple
times. The expression looks like the following code snippet:

>>> flat_iter=iter(flat)
>>> (tuple(next(flat_iter) for i in range(5)) for row in
range(len(flat)//5))
<generator object <genexpr> at 0x101cead70>
>>> list(_)
[('2', '3', '5', '7', '11'), ('13', '17', '19', '23', '29'),
('31', '37', '41', '43', '47'), ('53', '59', '61', '67', '71'),
('73', '79', '83', '89', '97'), ('101', '103', '107', '109',
'113'), ('127', '131', '137', '139', '149'), ('151', '157', '163',
'167', '173'), ('179', '181', '191', '193', '197'), ('199', '211',
'223', '227', '229')]

First, we created an iterator that exists outside either of the two loops that we'll use to
create our sequence-of-sequences. The generator expression uses tuple(next(flat_
iter) for i in range(5)) to create five tuples from the iterable values in the
flat_iter variable. This expression is nested inside another generator that repeats
the inner loop the proper number of times to create the required sequence of values.

This works only when the flat list is divided evenly. If the last row has partial
elements, we'll need to process them separately.

We can use this kind of function to group data into same-sized tuples, with an odd
sized tuple at the end using the following definitions:

def group_by_seq(n, sequence):
 flat_iter=iter(sequence)
 full_sized_items = list(tuple(next(flat_iter)
 for i in range(n))
 for row in range(len(sequence)//n))
 trailer = tuple(flat_iter)
 if trailer:
 return full_sized_items + [trailer]
 else:
 return full_sized_items

We've created an initial list where each tuple is of the size n. If there are leftovers,
we'll have a trailer tuple with a non-zero length that we can append to the list of
full-sized items. If the trailer tuple is of the length 0, we'll ignore it.

Chapter 4

[83]

This isn't as delightfully simple and functional-looking as other algorithms
we've looked at. We can rework this into a pleasant-enough generator function.
The following code uses a while loop as part of tail-recursion optimization:

def group_by_iter(n, iterable):
 row= tuple(next(iterable) for i in range(n))
 while row:
 yield row
 row= tuple(next(iterable) for i in range(n))

We've created a row of the required length from the input iterable. When we get
to the end of the input iterable, the value of tuple(next(iterable) for i in
range(n)) will be a zero-length tuple. This is the base case of a recursion, which
we've written as the terminating condition for a while loop.

Structuring flat sequences—an alternative
approach
Let's say we have a simple, flat list and we want to create pairs from this list.
The following is the required data:

flat= ['2', '3', '5', '7', '11', '13', '17', '19', '23', '29',
'31', '37', '41', '43', '47', '53', '59', '61', '67', '71',...]

We can create pairs using list slices as follows:

zip(flat[0::2], flat[1::2])

The slice flat[0::2] is all of the even positions. The slice flat[1::2] is all of the
odd positions. If we zip these together, we get a two tuple of (0), the value from the
first even position, and (1), the value from the first odd position. If the number of
elements is even, this will produce pairs nicely.

This has the advantage of being quite short. The functions shown in the previous
section are longer ways to solve the same problem.

This approach can be generalized. We can use the *(args) approach to generate
a sequence-of-sequences that must be zipped together. It looks like the following:

zip(*(flat[i::n] for i in range(n)))

This will generate n slices: flat[0::n], flat[1::n], flat[2::n], …, flat[n-1::n].
This collection of slices becomes the arguments to zip(), which then interleaves values
from each slice.

Working with Collections

[84]

Recall that zip() truncates the sequence at the shortest list. This means that, if the
list is not an even multiple of the grouping factor n, (len(flat)%n != 0), which
is the final slice, won't be the same length as the others and the others will all be
truncated. This is rarely what we want.

If we use the itertools.zip_longest() method, then we'll see that the final tuple
will be padded with enough None values to make it have a length of n. In some cases,
this padding is acceptable. In other cases, the extra values are undesirable.

The list slicing approach to grouping data is another way to approach the problem
of structuring a flat sequence of data into blocks. As it is a general solution, it doesn't
seem to offer too many advantages over the functions in the previous section. As a
solution specialized for making two tuples from a flat last, it's elegantly simple.

Using reversed() to change the order
There are times when we need a sequence reversed. Python offers us two approaches
to this: the reversed() function and slices with reversed indices.

For an example, consider performing a base conversion to hexadecimal or binary.
The following is a simple conversion function:

def digits(x, b):
 if x == 0: return
 yield x % b
 for d in to_base(x//b, b):
 yield d

This function uses a recursion to yield the digits from the least significant to the most
significant. The value of x%b will be the least significant digits of x in the base b.

We can formalize it as following:

() ()

[]
0

digits ,
mod digits , 0

x
x b xx b b x

b

== + >

if
if

In many cases, we'd prefer the digits to be yielded in the reverse order. We can wrap
this function with the reversed() function to swap the order of the digits:

def to_base(x, b):

 return reversed(tuple(digits(x, b)))

Chapter 4

[85]

The reversed() function produces an iterable, but the
argument value must be a sequence object. The function
then yields the items from that object in the reverse order.

We can do a similar kind of thing also with a slice such as tuple(digits(x, b))
[::-1]. The slice, however, is not an iterator. A slice is a materialized object built
from another materialized object. In this case, for such small collections of values,
the distinction is minor. As the reversed() function uses less memory, it might be
advantageous for larger collections.

Using enumerate() to include a sequence
number
Python offers the enumerate() function to apply index information to values in a
sequence or iterable. It performs a specialized kind of wrap that can be used as part
of an unwrap(process(wrap(data))) design pattern.

It looks like the following code snippet:

>>> xi
[1.47, 1.5, 1.52, 1.55, 1.57, 1.6, 1.63, 1.65, 1.68, 1.7, 1.73,
1.75, 1.78, 1.8, 1.83]
>>> list(enumerate(xi))
[(0, 1.47), (1, 1.5), (2, 1.52), (3, 1.55), (4, 1.57), (5, 1.6),
(6, 1.63), (7, 1.65), (8, 1.68), (9, 1.7), (10, 1.73), (11, 1.75),
(12, 1.78), (13, 1.8), (14, 1.83)]

The enumerate() function transformed each input item into a pair with a sequence
number and the original item. It's vaguely similar to something as follows:

zip(range(len(source)), source)

An important feature of enumerate() is that the result is an iterable and it works
with any iterable input.

When looking at statistical processing, for example, the enumerate() function comes
in handy to transform a single sequence of values into a more proper time series by
prefixing each sample with a number.

Working with Collections

[86]

Summary
In this chapter, we saw detailed ways to use a number of built-in reductions.

We've used any() and all() to do essential logic processing. These are tidy
examples of reductions using a simple operator such as or or and.

We've also looked at numeric reductions such as len() and sum(). We've applied
these functions to create some higher-order statistical processing. We'll return to
these reductions in Chapter 6, Recursions and Reductions.

We've also looked at some of the built-in mappings.

The zip() function merges multiple sequences. This leads us to look at using this
in the context of structuring and flattening more complex data structures. As we'll
see in examples in later chapters, nested data is helpful in some situations and flat
data is helpful in others.

The enumerate() function maps an iterable to a sequence of two tuples. Each two
tuple has (0) as the sequence number and (1) as the original item.

The reversed() function iterates over the items in a sequence object with their
original order reversed. Some algorithms are more efficient at producing results
in one order, but we'd like to present these results in the opposite order.

In the next chapter, we'll look at the mapping and reduction functions that use an
additional function as an argument to customize their processing. Functions that
accept a function as an argument are our first examples of higher-order functions.
We'll also touch on functions that return functions as a result.

Higher-order Functions
A very important feature of the functional programming paradigm is higher-order
functions. These are functions that accept functions as arguments or return functions
as results. Python offers several of these kinds of functions. We'll look at them and
some logical extensions.

As we can see, there are three varieties of higher-order functions, which are
as follows:

• Functions that accept a function as one of its arguments
• Functions that return a function
• Functions that accept a function and return a function

Python offers several higher-order functions of the first variety. We'll look at these
built-in higher-order functions in this chapter. We'll look at a few of the library
modules that offer higher-order functions in later chapters.

The idea of a function that emits functions can seem a bit odd. However, when we
look at a Callable class object, we see a function that returns a Callable object. This is
one example of a function that creates another function.

Functions that accept functions and create functions include complex Callable classes
as well as function decorators. We'll introduce decorators in this chapter, but defer
deeper consideration of decorators until Chapter 11, Decorator Design Techniques.

Sometimes we wish that Python had higher-order versions of the collection functions
from the previous chapter. In this chapter, we'll show the reduce(extract())
design pattern to perform a reduction on specific fields extracted from a larger tuple.
We'll also look at defining our own version of these common collection-processing
functions.

Higher-order Functions

[88]

In this chapter, we'll look at the following functions:

• max() and min()
• Lambda forms that we can use to simplify using higher-order functions
• map()

• filter()

• iter()

• sorted()

There are a number of higher-order functions in the itertools module. We'll look at
this module in Chapter 8, The Itertools Module and Chapter 9, More Itertools Techniques.

Additionally, the functools module provides a general-purpose reduce() function.
We'll look at this in Chapter 10, The Functools Module. We'll defer this because it's not
as generally applicable as the other higher-order functions in this chapter.

The max() and min() functions are reductions; they create a single value from
a collection. The other functions are mappings. They don't reduce the input to a
single value.

The max(), min(), and sorted() functions have a default
behavior as well as a higher-order function behavior. The function
is provided via the key= argument. The map() and filter()
functions take the function as the first positional argument.

Using max() and min() to find extrema
The max() and min() functions have a dual life. They are simple functions that apply
to collections. They are also higher-order functions. We can see their default behavior
as follows:

>>> max(1, 2, 3)

3

>>> max((1,2,3,4))

4

Both functions will accept an indefinite number of arguments. The functions are
designed to also accept a sequence or an iterable as the only argument and locate
the max (or min) of that iterable.

Chapter 5

[89]

They also do something more sophisticated. Let's say we have our trip data from the
examples in Chapter 4, Working with Collections. We have a function that will generate
a sequence of tuples that looks as follows:

(((37.54901619777347, -76.33029518659048), (37.840832, -76.273834),
17.7246), ((37.840832, -76.273834), (38.331501, -76.459503),
30.7382), ((38.331501, -76.459503), (38.845501, -76.537331),
31.0756), ((36.843334, -76.298668), (37.549, -76.331169), 42.3962),
((37.549, -76.331169), (38.330166, -76.458504), 47.2866),
((38.330166, -76.458504), (38.976334, -76.473503), 38.8019))

Each tuple has three values: a starting location, an ending location, and a distance.
The locations are given in latitude and longitude pairs. The East latitude is positive,
so these are points along the US East Coast, about 76° West. The distances are in
nautical miles.

We have three ways of getting the maximum and minimum distances from this
sequence of values. They are as follows:

• Extract the distance with a generator function. This will give us only the
distances, as we've discarded the other two attributes of each leg. This won't
work out well if we have any additional processing requirements.

• Use the unwrap(process(wrap())) pattern. This will give us the legs
with the longest and shortest distances. From these, we can extract just the
distance, if that's all that's needed. The other two will give us the leg that
contains the maximum and minimum distances.

• Use the max() and min() functions as higher-order functions.

To provide context, we'll show the first two solutions. The following is a script
that builds the trip and then uses the first two approaches to locate the longest
and shortest distances traveled:

from ch02_ex3 import float_from_pair, lat_lon_kml, limits,
haversine, legs

path= float_from_pair(lat_lon_kml())

trip= tuple((start, end, round(haversine(start, end),4))
 for start,end in legs(iter(path)))

This section creates the trip object as a tuple based on haversine distances of each
leg built from a path read from a KML file.

Once we have the trip object, we can extract distances and compute the maximum
and minimum of those distances. The code looks as follows:

long, short = max(dist for start,end,dist in trip),
min(dist for start,end,dist in trip)

print(long, short)

Higher-order Functions

[90]

We've used a generator function to extract the relevant item from each leg of the
trip tuple. We've had to repeat the generator function because each generator
expression can be consumed only once.

The following are the results:

129.7748 0.1731

The following is a version with the unwrap(process(wrap())) pattern. We've
actually declared functions with the names wrap() and unwrap() to make it clear
how this pattern works:

def wrap(leg_iter):

 return ((leg[2],leg) for leg in leg_iter)

def unwrap(dist_leg):

 distance, leg = dist_leg

 return leg

long, short = unwrap(max(wrap(trip))), unwrap(min(wrap(trip)))

print(long, short)

Unlike the previous version, this locates all attributes of the legs with the longest
and shortest distances. Rather than simply extracting the distances, we put the
distances first in each wrapped tuple. We can then use the default forms of the min()
and max() functions to process the two tuples that contain the distance and leg
details. After processing, we can strip the first element, leaving just the leg details.

The results look as follows:

((27.154167, -80.195663), (29.195168, -81.002998), 129.7748)

((35.505665, -76.653664), (35.508335, -76.654999), 0.1731)

The final and most important form uses the higher-order function feature of the
max() and min() functions. We'll define a helper function first and then use it to
reduce the collection of legs to the desired summaries by executing the following
code snippet:

def by_dist(leg):

 lat, lon, dist= leg

 return dist

long, short = max(trip, key=by_dist), min(trip, key=by_dist)

print(long, short)

Chapter 5

[91]

The by_dist() function picks apart the three items in each leg tuple and returns the
distance item. We'll use this with the max() and min() functions.

The max() and min() functions both accept an iterable and a function as arguments.
The keyword parameter key= is used by all of Python's higher-order functions to
provide a function that will be used to extract the necessary key value.

We can use the following to help conceptualize how the max() function uses
the key function:

wrap= ((key(leg),leg) for leg in trip)

return max(wrap)[1]

The max() and min() functions behave as if the given key function is being used
to wrap each item in the sequence into a two tuple, process the two tuple, and then
decompose the two tuple to return the original value.

Using Python lambda forms
In many cases, the definition of a helper function requires too much code. Often,
we can digest the key function to a single expression. It can seem wasteful to have to
write both def and return statements to wrap a single expression.

Python offers the lambda form as a way to simplify using higher-order functions.
A lambda form allows us to define a small, anonymous function. The function's body
is limited to a single expression.

The following is an example of using a simple lambda expression as the key:

long, short = max(trip, key=lambda leg: leg[2]),
min(trip, key=lambda leg: leg[2])

print(long, short)

The lambda we've used will be given an item from the sequence; in this case, each
leg three tuple will be given to the lambda. The lambda argument variable, leg, is
assigned and the expression, leg[2], is evaluated, plucking the distance from the
three tuple.

In the rare case that a lambda is never reused, this form is ideal. It's common,
however, to need to reuse the lambda objects. Since copy-and-paste is such
a bad idea, what's the alternative?

We can always define a function.

Higher-order Functions

[92]

We can also assign lambdas to variables, by doing something like this:

start= lambda x: x[0]

end = lambda x: x[1]

dist = lambda x: x[2]

A lambda is a callable object and can be used like a function. The following is an
example at the interactive prompt:

>>> leg = ((27.154167, -80.195663), (29.195168, -81.002998),
129.7748)

>>> start= lambda x: x[0]

>>> end = lambda x: x[1]

>>> dist = lambda x: x[2]

>>> dist(leg)

129.7748

Python offers us two ways to assign meaningful names to elements of tuples:
namedtuples and a collection of lambdas. Both are equivalent.

To extend this example, we'll look at how we get the latitude or longitude value
of the starting or ending point. This is done by defining some additional lambdas.

The following is a continuation of the interactive session:

>>> start(leg)

(27.154167, -80.195663)

>>>

>>> lat = lambda x: x[0]

>>> lon = lambda x: x[1]

>>> lat(start(leg))

27.154167

There's no clear advantage to lambdas over namedtuples. A set of lambdas to extract
fields requires more lines of code to define than a namedtuple. On the other hand,
we can use a prefix function notation, which might be easier to read in a functional
programing context. More importantly, as we'll see in the sorted() example later,
the lambdas can be used more effectively than namedtuple attribute names by
sorted(), min(), and max().

Chapter 5

[93]

Lambdas and the lambda calculus
In a book on a purely functional programming language, it would be necessary to
explain lambda calculus, and the technique invented by Haskell Curry that we call
currying. Python, however, doesn't stick closely to this kind of lambda calculus.
Functions are not curried to reduce them to single-argument lambda forms.

We can, using the functools.partial function, implement currying. We'll save this
for Chapter 10, The Functools Module.

Using the map() function to apply a
function to a collection
A scalar function maps values from a domain to a range. When we look at the math.
sqrt() function, as an example, we're looking at a mapping from the float value, x,
to another float value, y = sqrt(x) such that 2y x= . The domain is limited to positive
values. The mapping can be done via a calculation or table interpolation.

The map() function expresses a similar concept; it maps one collection to another
collection. It assures that a given function is used to map each individual item from
the domain collection to the range collection—the ideal way to apply a built-in
function to a collection of data.

Our first example involves parsing a block of text to get the sequence of numbers.
Let's say we have the following chunk of text:

>>> text= """\

... 2 3 5 7 11 13 17 19 23
29

... 31 37 41 43 47 53 59 61 67
71

... 73 79 83 89 97 101 103 107 109
113

... 127 131 137 139 149 151 157 163 167
173

... 179 181 191 193 197 199 211 223 227
229

... """

We can restructure this text using the following generator function:

>>> data= list(v for line in text.splitlines() for v in line.split())

Higher-order Functions

[94]

This will split the text into lines. For each line, it will split the line into space-delimited
words and iterate through each of the resulting strings. The results look as follows:

['2', '3', '5', '7', '11', '13', '17', '19', '23', '29',
'31', '37', '41', '43', '47', '53', '59', '61', '67', '71',
'73', '79', '83', '89', '97', '101', '103', '107', '109', '113',
'127', '131', '137', '139', '149', '151', '157', '163', '167',
'173', '179', '181', '191', '193', '197', '199', '211', '223',
'227', '229']

We still need to apply the int() function to each of the string values. This is where
the map() function excels. Take a look at the following code snippet:

>>> list(map(int,data))

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131,
137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229]

The map() function applied the int() function to each value in the collection.
The result is a sequence of numbers instead of a sequence of strings.

The map() function's results are iterable. The map() function can process any type
of iterable.

The idea here is that any Python function can be applied to the items of a collection
using the map() function. There are a lot of built-in functions that can be used in this
map-processing context.

Working with lambda forms and map()
Let's say we want to convert our trip distances from nautical miles to statute miles.
We want to multiply each leg's distance by 6076.12/5280, which is 1.150780.

We can do this calculation with the map() function as follows:

map(lambda x: (start(x),end(x),dist(x)*6076.12/5280), trip)

We've defined a lambda that will be applied to each leg in the trip by the map()
function. The lambda will use other lambdas to separate the start, end, and distance
values from each leg. It will compute a revised distance and assemble a new leg
tuple from the start, end, and statute mile distance.

This is precisely like the following generator expression:

((start(x),end(x),dist(x)*6076.12/5280) for x in trip)

Chapter 5

[95]

We've done the same processing on each item in the generator expression.

The important difference between the map() function and a generator expression is
that the map() function tends to be faster than the generator expression. The speedup
is in the order of 20 percent less time.

Using map() with multiple sequences
Sometimes, we'll have two collections of data that need to parallel each other. In
Chapter 4, Working with Collections, we saw how the zip() function can interleave
two sequences to create a sequence of pairs. In many cases, we're really trying to do
something like this:

map(function, zip(one_iterable, another_iterable))

We're creating argument tuples from two (or more) parallel iterables and applying a
function to the argument tuple. We can also look at it like this:

(function(x,y) for x,y in zip(one_iterable, another_iterable))

Here, we've replaced the map() function with an equivalent generator expression.

We might have the idea of generalizing the whole thing to this:

def star_map(function, *iterables)

 return (function(*args) for args in zip(*iterables))

There is a better approach that is already available to us. We don't actually need
these techniques. Let's look at a concrete example of the alternate approach.

In Chapter 4, Working with Collections, we looked at trip data that we extracted from
an XML file as a series of waypoints. We needed to create legs from this list of
waypoints that show the start and end of each leg.

The following is a simplified version that uses the zip() function applied to a special
kind of iterable:

>>> waypoints= range(4)

>>> zip(waypoints, waypoints[1:])

<zip object at 0x101a38c20>

>>> list(_)

[(0, 1), (1, 2), (2, 3)]

Higher-order Functions

[96]

We've created a sequence of pairs drawn from a single flat list. Each pair will have
two adjacent values. The zip() function properly stops when the shorter list is
exhausted. This zip(x, x[1:]) pattern only works for materialized sequences and
the iterable created by the range() function.

We created pairs so that we can apply the haversine() function to each pair to
compute the distance between the two points on the path. The following is how it
looks in one sequence of steps:

from ch02_ex3 import lat_lon_kml, float_from_pair, haversine

path= tuple(float_from_pair(lat_lon_kml()))

distances1= map(lambda s_e: (s_e[0], s_e[1], haversine(*s_e)),
 zip(path, path[1:]))

We've loaded the essential sequence of waypoints into the path variable. This is an
ordered sequence of latitude-longitude pairs. As we're going to use the zip(path,
path[1:]) design pattern, we must have a materialized sequence and not a simple
iterable.

The results of the zip() function will be pairs that have a start and end. We want our
output to be a triple with the start, end, and distance. The lambda we're using will
decompose the original two tuple and create a new three tuple from the start, end,
and distance.

As noted previously, we can simplify this by using a clever feature of the map()
function, which is as follows:

distances2= map(lambda s, e: (s, e, haversine(s, e)), path, path[1:])

Note that we've provided a function and two iterables to the map() function. The
map() function will take the next item from each iterable and apply those two values
as the arguments to the given function. In this case, the given function is a lambda
that creates the desired three tuple from the start, end, and distance.

The formal definition for the map() function states that it will do star-map processing
with an indefinite number of iterables. It will take items from each iterable to create a
tuple of argument values for the given function.

Using the filter() function to pass
or reject data
The job of the filter() function is to use and apply a decision function called a
predicate to each value in a collection. A decision of True means that the value
is passed; otherwise, the value is rejected. The itertools module includes

Chapter 5

[97]

filterfalse() as variations on this theme. Refer to Chapter 8, The Itertools Module to
understand the usage of the itertools module's filterfalse() function.

We might apply this to our trip data to create a subset of legs that are over 50
nautical miles long, as follows:

long= list(filter(lambda leg: dist(leg) >= 50, trip)))

The predicate lambda will be True for long legs, which will be passed. Short legs will
be rejected. The output is the 14 legs that pass this distance test.

This kind of processing clearly segregates the filter rule (lambda leg: dist(leg)
>= 50) from any other processing that creates the trip object or analyzes the
long legs.

For another simple example, look at the following code snippet:

>>> filter(lambda x: x%3==0 or x%5==0, range(10))

<filter object at 0x101d5de50>

>>> sum(_)

23

We've defined a simple lambda to check whether a number is a multiple of three or a
multiple of five. We've applied that function to an iterable, range(10). The result is
an iterable sequence of numbers that are passed by the decision rule.

The numbers for which the lambda is True are [0, 3, 5, 6, 9], so these values are
passed. As the lambda is False for all other numbers, they are rejected.

This can also be done with a generator expression by executing the following code:

>>> list(x for x in range(10) if x%3==0 or x%5==0)

[0, 3, 5, 6, 9]

We can formalize this using the following set comprehension notation:

() ()(){ }| 0 10 mod3 0 mod5 0x x x x≤ < ∧ = ∨ =

This says that we're building a collection of x values such that x is in range(10) and
x%3==0 or x%5==0. There's a very elegant symmetry between the filter() function
and formal mathematical set comprehensions.

Higher-order Functions

[98]

We often want to use the filter() function with defined functions instead of
lambda forms. The following is an example of reusing a predicate defined earlier:

>>> from ch01_ex1 import isprimeg

>>> list(filter(isprimeg, range(100)))

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97]

In this example, we imported a function from another module called isprimeg().
We then applied this function to a collection of values to pass the prime numbers
and reject any non-prime numbers from the collection.

This can be a remarkably inefficient way to generate a table of prime numbers. The
superficial simplicity of this is the kind of thing lawyers call an attractive nuisance.
It looks like it might be fun, but it doesn't scale well at all. A better algorithm is the
Sieve of Eratosthenes; this algorithm retains the previously located prime numbers
and uses them to prevent a lot of inefficient recalculation.

Using filter() to identify outliers
In the previous chapter, we defined some useful statistical functions to compute
mean and standard deviation and normalize a value. We can use these functions to
locate outliers in our trip data. What we can do is apply the mean() and stdev()
functions to the distance value in each leg of a trip to get the population mean and
standard deviation.

We can then use the z() function to compute a normalized value for each leg. If the
normalized value is more than 3, the data is extremely far from the mean. If we reject
this outliers, we have a more uniform set of data that's less likely to harbor reporting
or measurement errors.

The following is how we can tackle this:

from stats import mean, stdev, z

dist_data = list(map(dist, trip))

μ_d = mean(dist_data)

σ_d = stdev(dist_data)

outlier = lambda leg: z(dist(leg),μ_d,σ_d) > 3

print("Outliers", list(filter(outlier, trip)))

We've mapped the distance function to each leg in the trip collection. As we'll do
several things with the result, we must materialize a list object. We can't rely on
the iterator as the first function will consume it. We can then use this extraction to
compute population statistics μ_d and σ_d with the mean and standard deviation.

Chapter 5

[99]

Given the statistics, we used the outlier lambda to filter our data. If the normalized
value is too large, the data is an outlier.

The result of list(filter(outlier, trip)) is a list of two legs that are quite long
compared to the rest of the legs in the population. The average distance is about
34 nm, with a standard deviation of 24 nm. No trip can have a normalized distance
of less than -1.407.

We're able to decompose a fairly complex problem into a number
of independent functions, each one of which can be easily tested in
isolation. Our processing is a composition of simpler functions. This
can lead to succinct, expressive functional programming.

The iter() function with a sentinel value
The built-in iter() function creates an iterator over a collection object. We can use
this to wrap an iterator object around a collection. In many cases, we'll allow the
for statement to handle this implicitly. In a few cases, we might want to create an
iterator explicitly so that we can separate the head from the tail of a collection. This
function can also iterate through the values created by a callable or function until a
sentinel value is found. This feature is sometimes used with the read() function
of a file to consume rows until some sentinel value is found. In this case, the given
function might be some file's readline() method. Providing a callable function to
iter() is a bit hard for us because this function must maintain state internally. This
hidden state is a feature of an open file, for example, each read() or readline()
function advances some internal state to the next character or next line.

Another example of this is the way that a mutable collection object's pop()
method makes a stateful change in the object. The following is an example
of using the pop() method:

>>> tail= iter([1, 2, 3, None, 4, 5, 6].pop, None)

>>> list(tail)

[6, 5, 4]

The tail variable was set to an iterator over the list [1, 2, 3, None, 4, 5, 6]
that will be traversed by the pop() function. The default behavior of pop() is pop
(-1), that is, the elements are popped in the reverse order. When the sentinel
value is found, the iterator stops returning values.

This kind of internal state is something we'd like to avoid as much as possible.
Consequently, we won't try to contrive a use for this feature.

Higher-order Functions

[100]

Using sorted() to put data in order
When we need to produce results in a defined order, Python gives us two choices.
We can create a list object and use the list.sort() method to put items in an
order. An alternative is to use the sorted() function. This function works with any
iterable, but it creates a final list object as part of the sorting operation.

The sorted() function can be used in two ways. It can be simply applied to
collections. It can also be used as a higher-order function using the key= argument.

Let's say we have our trip data from the examples in Chapter 4, Working with Collections.
We have a function that will generate a sequence of tuples with start, end, and distance
for each leg of a trip. The data looks as follows:

(((37.54901619777347, -76.33029518659048), (37.840832, -76.273834),
17.7246), ((37.840832, -76.273834), (38.331501, -76.459503),
30.7382), ((38.331501, -76.459503), (38.845501, -76.537331),
31.0756), ((36.843334, -76.298668), (37.549, -76.331169), 42.3962),
((37.549, -76.331169), (38.330166, -76.458504), 47.2866),
((38.330166, -76.458504), (38.976334, -76.473503), 38.8019))

We can see the default behavior of the sorted() function using the following
interaction:

>>> sorted(dist(x) for x in trip)

[0.1731, 0.1898, 1.4235, 4.3155, ... 86.2095, 115.1751, 129.7748]

We used a generator expression (dist(x) for x in trip) to extract the distances
from our trip data. We then sorted this iterable collection of numbers to get the
distances from 0.17 nm to 129.77 nm.

If we want to keep the legs and distances together in their original three tuples, we
can have the sorted() function apply a key() function to determine how to sort the
tuples, as shown in the following code snippet:

>>> sorted(trip, key=dist)

[((35.505665, -76.653664), (35.508335, -76.654999), 0.1731),
((35.028175, -76.682495), (35.031334, -76.682663), 0.1898),
((27.154167, -80.195663), (29.195168, -81.002998), 129.7748)]

We've sorted the trip data, using a dist lambda to extract the distance from each
tuple. The dist function is simply as follows:

dist = lambda leg: leg[2]

This shows the power of using simple lambda to decompose a complex tuple into
constituent elements.

Chapter 5

[101]

Writing higher-order functions
We can identify three varieties of higher-order functions; they are as follows:

• Functions that accept a function as one of its arguments.
• Functions that return a function. A Callable class is a common example of

this. A function that returns a generator expression can be thought of as a
higher-order function.

• Functions that accept and return a function. The functools.partial()
function is a common example of this. We'll save this for Chapter 10, The
Functools Module. A decorator is different; we'll save this for Chapter 11,
Decorator Design Techinques.

We'll expand on these simple patterns using a higher-order function to also
transform the structure of the data. We can do several common transformations
such as the following:

• Wrap objects to create more complex objects
• Unwrap complex objects into their components
• Flatten a structure
• Structure a flat sequence

A Callable class object is a commonly used example of a function that returns a
callable object. We'll look at this as a way to write flexible functions into which
configuration parameters can be injected.

We'll also introduce simple decorators in this chapter. We'll defer deeper
consideration of decorators until Chapter 11, Decorator Design Techniques.

Writing higher-order mappings and filters
Python's two built-in higher-order functions, map() and filter(), generally handle
almost everything we might want to throw at them. It's difficult to optimize them in
a general way to achieve higher performance. We'll look at functions of Python 3.4,
such as imap(), ifilter(), and ifilterfalse(), in Chapter 8, The Itertools Module.

We have three largely equivalent ways to express a mapping. Assume that we
have some function, f(x), and some collection of objects, C. We have three entirely
equivalent ways to express a mapping; they are as follows:

• The map() function:
map(f, C)

Higher-order Functions

[102]

• The generator expression:
(f(x) for x in C)

• The generator function:

def mymap(f, C):
 for x in C:
 yield f(x)
mymap(f, C)

Similarly, we have three ways to apply a filter function to a collection,
all of which are equivalent:

• The filter() function:
filter(f, C)

• The generator expression:
(x for x in C if f(x))

• The generator function:
def myfilter(f, C):
 for x in C:
 if f(x):
 yield x
myfilter(f, C)

There are some performance differences; the map() and filter() functions are
fastest. More importantly, there are different kinds of extensions that fit these
mapping and filtering designs, which are as follows:

• We can create a more sophisticated function, g(x), that is applied to each
element, or we can apply a function to the collection, C, prior to processing.
This is the most general approach and applies to all three designs. This is
where the bulk of our functional design energy is invested.

• We can tweak the for loop. One obvious tweak is to combine mapping and
filtering into a single operation by extending the generator expression with
an if clause. We can also merge the mymap() and myfilter() functions to
combine mapping and filtering.

The profound change we can make is to alter the structure of the data handled by
the loop. We have a number of design patterns, including wrapping, unwrapping
(or extracting), flattening, and structuring. We've looked at a few of these techniques
in previous chapters.

Chapter 5

[103]

We need to exercise some caution when designing mappings that combine too
many transformations in a single function. As far as possible, we want to avoid
creating functions that fail to be succinct or expressive of a single idea. As Python
doesn't have an optimizing compiler, we might be forced to manually optimize
slow applications by combining functions. We need to do this kind of optimization
reluctantly, only after profiling a poorly performing program.

Unwrapping data while mapping
When we use a construct such as (f(x) for x, y in C), we've used multiple
assignment in the for statement to unwrap a multi-valued tuple and then apply a
function. The whole expression is a mapping. This is a common Python optimization
to change the structure and apply a function.

We'll use our trip data from Chapter 4, Working with Collections. The following is a
concrete example of unwrapping while mapping:

def convert(conversion, trip):

 return (conversion(distance) for start, end, distance in trip)

This higher-order function would be supported by conversion functions that we can
apply to our raw data as follows:

to_miles = lambda nm: nm*5280/6076.12

to_km = lambda nm: nm*1.852

to_nm = lambda nm: nm

This function would then be used as follows to extract distance and apply a
conversion function:

convert(to_miles, trip)

As we're unwrapping, the result will be a sequence of floating-point values.
The results are as follows:

[20.397120559090908, 35.37291511060606, ..., 44.652462240151515]

This convert() function is highly specific to our start-end-distance trip data
structure, as the for loop decomposes that three tuple.

We can build a more general solution for this kind of unwrapping while
mapping a design pattern. It suffers from being a bit more complex. First, we
need general-purpose decomposition functions like the following code snippet:

fst= lambda x: x[0]

snd= lambda x: x[1]

sel2= lambda x: x[2]

Higher-order Functions

[104]

We'd like to be able to express f(sel2(s_e_d)) for s_e_d in trip. This involves
functional composition; we're combining a function like to_miles() and a selector
like sel2(). We can express functional composition in Python using yet another
lambda, as follows:

to_miles= lambda s_e_d: to_miles(sel2(s_e_d))

This gives us a longer but more general version of unwrapping, as follows:

to_miles(s_e_d) for s_e_d in trip

While this second version is somewhat more general, it doesn't seem wonderfully
helpful. When used with particularly complex tuples, however, it can be handy.

What's important to note about our higher-order convert() function is that we're
accepting a function as an argument and returning a function as a result. The
convert() function is not a generator function; it doesn't yield anything. The
result of the convert() function is a generator expression that must be evaluated to
accumulate the individual values.

The same design principle works to create hybrid filters instead of mappings.
We'd apply the filter in an if clause of the generator expression that was returned.

Of course, we can combine mapping and filtering to create yet more complex
functions. It might seem like a good idea to create more complex functions to limit
the amount of processing. This isn't always true; a complex function might not beat
the performance of a nested use of simple map() and filter() functions. Generally,
we only want to create a more complex function if it encapsulates a concept and
makes the software easier to understand.

Wrapping additional data while mapping
When we use a construct such as ((f(x), x) for x in C), we've done a wrapping
to create a multi-valued tuple while also applying a mapping. This is a common
technique to save derived results to create constructs that have the benefits of
avoiding recalculation without the liability of complex state-changing objects.

This is part of the example shown in Chapter 4, Working with Collections, to create the
trip data from the path of points. The code looks like this:

from ch02_ex3 import float_from_pair, lat_lon_kml, limits, haversine,
legs

path= float_from_pair(lat_lon_kml())

trip= tuple((start, end, round(haversine(start, end),4)) for
start,end in legs(iter(path)))

Chapter 5

[105]

We can revise this slightly to create a higher-order function that separates the
wrapping from the other functions. We can define a function like this:

def cons_distance(distance, legs_iter):

 return ((start, end, round(distance(start,end),4)) for start,
 end in legs_iter)

This function will decompose each leg into two variables, start and end. These will
be used with the given distance() function to compute the distance between the
points. The result will build a more complex three tuple that includes the original
two legs and also the calculated result.

We can then rewrite our trip assignment to apply the haversine() function to
compute distances as follows:

path= float_from_pair(lat_lon_kml())

trip2= tuple(cons_distance(haversine, legs(iter(path))))

We've replaced a generator expression with a higher-order function, cons_
distance(). The function not only accepts a function as an argument, but it also
returns a generator expression.

A slightly different formulation of this is as follows:

def cons_distance3(distance, legs_iter):

 return (leg+(round(distance(*leg),4),) for leg in legs_iter)

This version makes the construction of a new object built up from an old object a bit
clearer. We're iterating through legs of a trip. We're computing the distance along a
leg. We're building new structures with the leg and the distance concatenated.

As both of these cons_distance() functions accept a function as an argument, we
can use this feature to provide an alternative distance formula. For example, we can
use the math.hypot(lat(start)-lat(end), lon(start)-lon(end)) method to
compute a less-correct plane distance along each leg.

In Chapter 10, The Functools Module, we'll show how to use the partial() function to
set a value for the R parameter of the haversine() function, which changes the units
in which the distance is calculated.

Higher-order Functions

[106]

Flattening data while mapping
In Chapter 4, Working with Collections, we looked at algorithms that flattened a nested
tuple-of-tuples structure into single iterable. Our goal at the time was simply to
restructure some data, without doing any real processing. We can create hybrid
solutions that combine a function with a flattening operation.

Let's assume that we have a block of text that we want to convert to a flat sequence
of numbers. The text looks as follows:

text= """\

 2 3 5 7 11 13 17 19 23
29

 31 37 41 43 47 53 59 61 67
71

 73 79 83 89 97 101 103 107 109
113

 127 131 137 139 149 151 157 163 167
173

 179 181 191 193 197 199 211 223 227
229

"""

Each line is a block of 10 numbers. We need to unblock the rows to create a flat
sequence of numbers.

This is done with a two part generator function as follows:

data= list(v for line in text.splitlines() for v in line.split())

This will split the text into lines and iterate through each line. It will split each line
into words and iterate through each word. The output from this is a list of strings,
as follows:

['2', '3', '5', '7', '11', '13', '17', '19', '23', '29', '31', '37',
'41', '43', '47', '53', '59', '61', '67', '71', '73', '79', '83',
'89', '97', '101', '103', '107', '109', '113', '127', '131', '137',
'139', '149', '151', '157', '163', '167', '173', '179', '181', '191',
'193', '197', '199', '211', '223', '227', '229']

To convert the strings to numbers, we must apply a conversion function as well
as unwind the blocked structure from its original format, using the following
code snippet:

Chapter 5

[107]

def numbers_from_rows(conversion, text):

 return (conversion(v) for line in text.splitlines() for v in
 line.split())

This function has a conversion argument, which is a function that is applied to each
value that will be emitted. The values are created by flattening using the algorithm
shown above.

We can use this numbers_from_rows() function in the following kind of expression:

print(list(numbers_from_rows(float, text)))

Here we've used the built-in float() to create a list of floating-point values from
the block of text.

We have many alternatives using mixtures of higher-order functions and generator
expressions. For example, we might express this as follows:

map(float, v for line in text.splitlines() for v in line.split())

This might be helpful if it helps us understand the overall structure of the algorithm.
The principle is called chunking; the details of a function with a meaningful name
can be abstracted and we can work with the function in a new context. While we
often use higher-order functions, there are times when a generator expression can be
more clear.

Structuring data while filtering
The previous three examples combined additional processing with mapping.
Combining processing with filtering doesn't seem to be quite as expressive as
combining with mapping. We'll look at an example in detail to show that, although
it is useful, it doesn't seem to have as compelling a use case as combining mapping
and processing.

In Chapter 4, Working with Collections, we looked at structuring algorithms.
We can easily combine a filter with the structuring algorithm into a single, complex
function. The following is a version of our preferred function to group the output from
an iterable:

def group_by_iter(n, iterable):

 row= tuple(next(iterable) for i in range(n))

 while row:

 yield row

 row= tuple(next(iterable) for i in range(n))

Higher-order Functions

[108]

This will try to assemble a tuple of n items taken from an iterable. If there are any
items in the tuple, they are yielded as part of the resulting iterable. In principle, the
function then operates recursively on the remaining items from the original iterable.
As the recursion is relatively inefficient in Python, we've optimized it into an explicit
while loop.

We can use this function as follows:

 group_by_iter(7, filter(lambda x: x%3==0 or x%5==0, range(100)))

This will group the results of applying a filter() function to an iterable created by
the range() function.

We can merge grouping and filtering into a single function that does both operations
in a single function body. The modification to group_by_iter() looks as follows:

def group_filter_iter(n, predicate, iterable):

 data = filter(predicate, iterable)

 row= tuple(next(data) for i in range(n))

 while row:

 yield row

 row= tuple(next(data) for i in range(n))

This function applies the filter predicate function to the source iterable. As the filter
output is itself a non-strict iterable, the data variable isn't computed in advance; the
values for data are created as needed. The bulk of this function is identical to the
version shown above.

We can slightly simplify the context in which we use this function as follows:

group_filter_iter(7, lambda x: x%3==0 or x%5==0, range(1,100))

Here, we've applied the filter predicate and grouped the results in a single function
invocation. In the case of the filter() function, it's rarely a clear advantage to
apply the filter in conjunction with other processing. It seems as if a separate, visible
filter() function is more helpful than a combined function.

Writing generator functions
Many functions can be expressed neatly as generator expressions. Indeed, we've seen
that almost any kind of mapping or filtering can be done as a generator expression.
They can also be done with a built-in higher-order function such as map() or
filter() or as a generator function. When considering multiple statement generator
functions, we need to be cautious that we don't stray from the guiding principles of
functional programming: stateless function evaluation.

Chapter 5

[109]

Using Python for functional programming means walking on a knife edge between
purely functional programming and imperative programming. We need to identify
and isolate the places where we must resort to imperative Python code because there
isn't a purely functional alternative available.

We're obligated to write generator functions when we need statement features
of Python. Features like the following aren't available in generator expressions:

• A with context to work with external resources. We'll look at this in Chapter
6, Recursions and Reductions, where we address file parsing.

• A while statement to iterate somewhat more flexibly than a for statement.
The example of this is shown previously in the Flattening data while mapping
section.

• A break or return statement to implement a search that terminates
a loop early.

• The try-except construct to handle exceptions.
• An internal function definition. We've looked at this in several examples in

Chapter 1, Introducing Functional Programming and Chapter 2, Introducing Some
Functional Features. We'll also revisit it in Chapter 6, Recursions and Reductions.

• A really complex if-elif sequence. Trying to express more than
one alternatives via if-else conditional expressions can become
complex-looking.

• At the edge of the envelope, we have less-used features of Python such as
for-else, while-else, try-else, and try-else-finally. These are all
statement-level features that aren't available in generator expressions.

The break statement is most commonly used to end processing of a collection early.
We can end processing after the first item that satisfies some criteria. This is a version
of the any() function we're looking at to find the existence of a value with a given
property. We can also end after processing some larger numbers of items, but not all
of them.

Finding a single value can be expressed succinctly as min(some-big-expression)
or max(something big). In these cases, we're committed to examining all of the
values to assure that we've properly found the minimum or the maximum.

In a few cases, we can stand to have a first(function, collection) function
where the first value that is True is sufficient. We'd like the processing to terminate
as early as possible, saving needless calculation.

Higher-order Functions

[110]

We can define a function as follows:

def first(predicate, collection):

 for x in collection:

 if predicate(x): return x

We've iterated through the collection, applying the given predicate function. If the
predicate is True, we'll return the associated value. If we exhaust the collection,
the default value of None will be returned.

We can also download a version of this from PyPi. The first module contains a
variation on this idea. For more details visit: https://pypi.python.org/pypi/first.

This can act as a helper when trying to determine whether a number is a prime
number or not. The following is a function that tests a number for being prime:

import math

def isprimeh(x):

 if x == 2: return True

 if x % 2 == 0: return False

 factor= first(lambda n: x%n==0,
 range(3,int(math.sqrt(x)+.5)+1,2))

 return factor is None

This function handles a few of the edge cases regarding the number 2 being a prime
number and every other even number being composite. Then, it uses the first()
function defined above to locate the first factor in the given collection.

When the first() function will return the factor, the actual number doesn't matter.
Its existence is all that matters for this particular example. Therefore, the isprimeh()
function returns True if no factor was found.

We can do something similar to handle data exceptions. The following is a version of
the map() function that also filters bad data:

def map_not_none(function, iterable):

 for x in iterable:

 try:

 yield function(x)

 except Exception as e:

 pass # print(e)

https://pypi.python.org/pypi/first

Chapter 5

[111]

This function steps through the items in the iterable. It attempts to apply the function
to the item; if no exception is raised, this new value is yielded. If an exception is
raised, the offending value is silently dropped.

This can be handy when dealing with data that include values that are not applicable
or missing. Rather than working out complex filters to exclude these values, we
attempt to process them and drop the ones that aren't valid.

We might use the map() function for mapping not-None values as follows:

data = map_not_none(int, some_source)

We'll apply the int() function to each value in some_source. When the
some_source parameter is an iterable collection of strings, this can be a handy
way to reject strings that don't represent a number.

Building higher-order functions with
Callables
We can define higher-order functions as instances of the Callable class. This builds
on the idea of writing generator functions; we'll write callables because we need
statement features of Python. In addition to using statements, we can also apply a
static configuration when creating the higher-order function.

What's important about a Callable class definition is that the class object, created by
the class statement, defines essentially a function that emits a function. Commonly,
we'll use a callable object to create a composite function that combines two other
functions into something relatively complex.

To emphasize this, consider the following class:

from collections.abc import Callable

class NullAware(Callable):

 def __init__(self, some_func):

 self.some_func= some_func

 def __call__(self, arg):

 return None if arg is None else self.some_func(arg)

This class creates a function named NullAware() that is a higher-order function
that is used to create a new function. When we evaluate the NullAware(math.log)
expression, we're creating a new function that can be applied to argument values.
The __init__() method will save the given function in the resulting object.

Higher-order Functions

[112]

The __call__() method is how the resulting function is evaluated. In this
case, the function that was created will gracefully tolerate None values without
raising exceptions.

The common approach is to create the new function and save it for future use
by assigning it a name as follows:

null_log_scale= NullAware(math.log)

This creates a new function and assigns the name null_log_scale(). We can then
use the function in another context. Take a look at the following example:

>>> some_data = [10, 100, None, 50, 60]

>>> scaled = map(null_log_scale, some_data)

>>> list(scaled)

[2.302585092994046, 4.605170185988092, None, 3.912023005428146,
4.0943445622221]

A less common approach is to create and use the emitted function in one expression
as follows:

>>> scaled= map(NullAware(math.log), some_data)

>>> list(scaled)

[2.302585092994046, 4.605170185988092, None, 3.912023005428146,
4.0943445622221]

The evaluation of NullAware(math.log) created a function. This anonymous
function was then used by the map() function to process an iterable, some_data.

This example's __call__() method relies entirely on expression evaluation. It's
an elegant and tidy way to define composite functions built up from lower-level
component functions. When working with scalar functions, there are a few complex
design considerations. When we work with iterable collections, we have to be a bit
more careful.

Assuring good functional design
The idea of stateless functional programming requires some care when using Python
objects. Objects are typically stateful. Indeed, one can argue that the entire purpose
of object-oriented programming is to encapsulate state change into class definition.
Because of this, we find ourselves pulled in opposing directions between functional
programming and imperative programming when using Python class definitions to
process collections.

Chapter 5

[113]

The benefit of using a Callable to create a composite function gives us slightly
simpler syntax when the resulting composite function is used. When we start
working with iterable mappings or reductions, we have to be aware of how
and why we introduce stateful objects.

We'll return to our sum_filter_f() composite function shown above. Here is a
version built from a Callable class definition:

from collections.abc import Callable

class Sum_Filter(Callable):

 __slots__ = ["filter", "function"]

 def __init__(self, filter, function):

 self.filter= filter

 self.function= function

 def __call__(self, iterable):

 return sum(self.function(x) for x in iterable if
 self.filter(x))

We've imported the abstract superclass Callable and used this as the basis for our
class. We've defined precisely two slots in this object; this puts a few constraints on
our ability to use the function as a stateful object. It doesn't prevent all modifications
to the resulting object, but it limits us to just two attributes. Attempting to add
attributes results in an exception.

The initialization method, __init__(), stows the two function names, filter and
function, in the object's instance variables. The __call__() method returns a value
based on a generator expression that uses the two internal function definitions.
The self.filter() function is used to pass or reject items. The self.function()
function is used to transform objects that are passed by the filter() function.

An instance of this class is a function that has two strategy functions built into it.
We create an instance as follows:

count_not_none = Sum_Filter(lambda x: x is not None, lambda x: 1)

We've built a function named count_not_none() that counts the non-None values
in a sequence. It does this by using a lambda to pass non-None values and a function
that uses a constant 1 instead of the actual values present.

Higher-order Functions

[114]

Generally, this count_not_none() object will behave like any other Python function.
The use is somewhat simpler than our previous example of sum_filter_f().

We can use the count_not_None() function as follows:

N= count_not_none(data)

Instead of using sum_filter_f() funtion:

N= sum_filter_f(valid, count_, data)

The count_not_none() function, based on a Callable, doesn't require quite so
many arguments as a conventional function. This makes it superficially simpler to
use. However, it can also make it somewhat more obscure because the details of
how the function works are in two places in the source code: where the function
was created as an instance of the Callable class and where the function was used.

Looking at some of the design patterns
The max(), min(), and sorted() functions have a default behavior without a
key= function. They can be customized by providing a function that defines how
to compute a key from the available data. For many of our examples, the key()
function has been a simple extraction of available data. This isn't a requirement;
the key() function can do anything.

Imagine the following method: max(trip, key=random.randint()). Generally,
we try not to have have key() functions that do something obscure.

The use of a key= function is a common design pattern. Our functions can easily
follow this pattern.

We've also looked at lambda forms that we can use to simplify using higher-order
functions. One significant advantage of using lambda forms is that it follows the
functional paradigm very closely. When writing more conventional functions,
we can create imperative programs that might clutter an otherwise succinct and
expressive functional design.

Chapter 5

[115]

We've looked at several kinds of higher-order functions that work with a collection
of values. Throughout the previous chapters, we've hinted around at several
different design patterns for higher-order collection and scalar functions.
The following is a broad classification:

• Return a Generator. A higher-order function can return a generator
expression. We consider the function higher-order because it didn't return
scalar values or collections of values. Some of these higher-order
functions also accept functions as arguments.

• Act as a Generator. Some function examples use the yield statement to
make them first-class generator functions. The value of a generator function
is an iterable collection of values that are evaluated lazily. We suggest that
a generator function is essentially indistinguishable from a function that
returns a generator expression. Both are non-strict. Both can yield a sequence
of values. For this reason, we'll also consider generator functions as higher
order. Built-in functions such as map() and filter() fall into this category.

• Materialize a Collection. Some functions must return a materialized
collection object: list, tuple, set, or mapping. These kinds of functions
can be of a higher order if they have a function as part of the arguments.
Otherwise, they're ordinary functions that happen to work with
collections.

• Reduce a Collection. Some functions work with an iterable (or a collection
object) and create a scalar result. The len() and sum() functions are
examples of this. We can create higher-order reductions when we accept
a function as an argument. We'll return to this in the next chapter.

• Scalar. Some functions act on individual data items. These can be
higher-order functions if they accept another function as an argument.

As we design our own software, we can pick and choose among these established
design patterns.

Higher-order Functions

[116]

Summary
In this chapter, we have seen two reductions that are higher-order functions: max()
and min(). We also looked at the two central higher-order functions, map()
and filter(). We also looked at sorted().

We also looked at how to use a higher-order function to also transform the structure
of data. We can perform several common transformations, including wrapping,
unwrapping, flattening, and structure sequences of different kinds.

We looked at three ways to define our own higher-order functions, which are
as follows:

• The def statement. Similar to this is a lambda form that we assign
to a variable.

• Defining a Callable class as a kind of function that emits
composite functions.

• We can also use decorators to emit composite functions. We'll return
to this in Chapter 11, Decorator Design Techniques.

In the next chapter, we'll look at the idea of purely functional iteration via recursion.
We'll use Pythonic structures to make several common improvements over purely
functional techniques. We'll also look at the associated problem of performing
reductions from collections to individual values.

Recursions and Reductions
In previous chapters, we've looked at several related kinds of processing designs;
some of them are as follows:

• Mapping and filtering that create collections from collections
• Reductions that create a scalar value from a collection

The distinction is exemplified by functions such as map() and filter() that
accomplish the first kind of collection processing. There are several specialized
reduction functions, which include min(), max(), len(), and sum(). There's a
general-purpose reduction function, also, functools.reduce().

We'll also consider a collections.Counter() function as a kind of reduction
operator. It doesn't produce a single scalar value per se, but it does create a new
organization of the data that eliminates some of the original structure. At its heart,
it's a kind of count-group-by operation that has more in common with a counting
reduction than with a mapping.

In this chapter, we'll look at reduction functions in more detail. From a purely
functional perspective, a reduction is defined recursively. For this reason, we'll look
at recursion first before we look at reduction algorithms.

Generally, a functional programming language compiler will optimize a recursive
function to transform a call in the tail of the function to a loop. This will dramatically
improve performance. From a Python perspective, pure recursion is limited, so we
must do the tail-call optimization manually. The tail-call optimization technique
available in Python is to use an explicit for loop.

We'll look at a number of reduction algorithms including sum(), count(), max(),
and min(). We'll also look at the collections.Counter() function and related
groupby() reductions. We'll also look at how parsing (and lexical scanning) are
proper reductions since they transform sequences of tokens (or sequences of
characters) into higher-order collections with more complex properties.

Recursions and Reductions

[118]

Simple numerical recursions
We can consider all numeric operations to be defined by recursions. For more
depth, read about the Peano axioms that define the essential features of numbers.
http://en.wikipedia.org/wiki/Peano_axioms is one place to start.

From these axioms, we can see that addition is defined recursively using more
primitive notions of the next number, or successor of a number, n, ()S n .

To simplify the presentation, we'll assume that we can define a predecessor function,
()P n , such that ()() ()()n S P n P S n= = , as long as 0n ≠

Addition between two natural numbers could be defined recursively as follows:

() () ()()
0

add ,
add , 0

b a
a b

P a S b a
 == ≠

if
if

If we use more common 1n + and 1n − instead of ()S n and ()P n , we can see that
() ()add , add 1, 1a b a b= − + .

This translates neatly in Python, as shown in the following command snippet:

def add(a,b):

 if a == 0: return b

 else: return add(a-1, b+1)

We've simply rearranged common mathematical notation into Python. The if
clauses are placed to the left instead of the right.

Generally, we don't provide our own functions in Python to do simple addition.
We rely on Python's underlying implementation to properly handle arithmetic
of various kinds. Our point here is that fundamental scalar arithmetic can be
defined recursively.

All of these recursive definitions include at least two cases: the nonrecursive cases
where the value of the function is defined directly and recursive cases where the
value of the function is computed from a recursive evaluation of the function with
different values.

In order to be sure the recursion will terminate, it's important to see how the
recursive case computes values that approach the defined nonrecursive case. There
are often constraints on the argument values that we've omitted from the functions
here. The add() function in the preceding command snippet, for example, can
include assert a>= and b>=0 to establish the constraints on the input values.

http://en.wikipedia.org/wiki/Peano_axioms

Chapter 6

[119]

Without these constraints. a-1 can't be guaranteed to approach the nonrecursive case
of a == 0.

In most cases, this is obvious. In a few rare cases, it might be difficult to prove.
One example is the Syracuse function. This is one of the pathological cases where
termination is unclear.

Implementing tail-call optimization
In the case of some functions, the recursive definition is the one often stated
because it is succinct and expressive. One of the most common examples is the
factorial() function.

We can see how this is rewritten as a simple recursive function in Python from the
following formula:

()
1 0

!
1 ! 0

n
n

n n n
 == × − >

if
if

The preceding formula can be executed in Python by using the following commands:

def fact(n):

 if n == 0: return 1

 else: return n*fact(n-1)

This has the advantage of simplicity. The recursion limits in Python artificially
constrain us; we can't do anything larger than about fact(997). The value of 1000! has
2,568 digits and generally exceeds our floating-point capacity; on some systems this
is about 30010 Pragmatically, it's common to switch to a log gamma function, which
works well with large floating-point values.

This function demonstrates a typical tail recursion. The last expression in the function
is a call to the function with a new argument value. An optimizing compiler can
replace the function call stack management with a loop that executes very quickly.

Since Python doesn't have an optimizing compiler, we're obliged to look at scalar
recursions with an eye toward optimizing them. In this case, the function involves
an incremental change from n to n-1. This means that we're generating a sequence
of numbers and then doing a reduction to compute their product.

Recursions and Reductions

[120]

Stepping outside purely functional processing, we can define an imperative facti()
calculation as follows:

def facti(n):

 if n == 0: return 1

 f= 1

 for i in range(2,n):

 f= f*i

 return f

This version of the factorial function will compute values beyond 1000! (2000!,
for example, has 5733 digits). It isn't purely functional. We've optimized the tail
recursion into a stateful loop depending on the i variable to maintain the state
of the computation.

In general, we're obliged to do this in Python because Python can't automatically
do the tail-call optimization. There are situations, however, where this kind of
optimization isn't actually helpful. We'll look at a few situations.

Leaving recursion in place
In some cases, the recursive definition is actually optimal. Some recursions involve
a divide and conquer strategy that minimizes the work from ()O n to ()2logO n . One
example of this is the exponentiation by the squaring algorithm. We can state it
formally like this:

()

1

2/2

1 0
n n

n

n
a a a n

a n

−

 == ×

if
if is odd

if is even

We've broken the process into three cases, easily written in Python as a recursion.
Look at the following command snippet:

def fastexp(a, n):

 if n == 0: return 1

 elif n % 2 == 1: return a*fastexp(a,n-1)

 else:

 t= fastexp(a,n//2)

 return t*t

Chapter 6

[121]

This function has three cases. The base case, the fastexp(a, 0) method is defined
as having a value of 1. The other two cases take two different approaches. For odd
numbers, the fastexp() method is defined recursively. The exponent, n, is reduced
by 1. A simple tail-recursion optimization would work for this case.

For even numbers, however, the fastexp() recursion uses n/2, chopping the
problem into half of its original size. Since the problem size is reduced by a factor
of 2, this case results in a significant speed-up of the processing.

We can't trivially reframe this kind of function into a tail-call optimization loop. Since
it's already optimal, we don't really need to optimize this further. The recursion limit in
Python would impose the constraint of 10002n ≤ , a generous upper bound.

Handling difficult tail-call optimization
We can look at the definition of Fibonacci numbers recursively. Following is one
widely used definition for the nth Fibonacci number:

1 2

0 0
1 1

2
n

n n

n
F n

F F n− −

=
= =
 + ≥

if
if
if

A given Fibonacci number, nF , is defined as the sum of the previous two numbers,
1 2n nF F− −+ . This is an example of multiple recursion: it can't be trivially optimized as a

simple tail-recursion. However, if we don't optimize it to a tail-recursion, we'll find it
to be too slow to be useful.

The following is a naïve implementation:

def fib(n):

 if n == 0: return 0

 if n == 1: return 1

 return fib(n-1) + fib(n-2)

This suffers from the multiple recursion problem. When computing the fib(n)
method, we must compute fib(n-1) and fib(n-2) methods. The computation of
fib(n-1) method involves a duplicate calculation of fib(n-2) method. The two
recursive uses of the Fibonacci function will duplicate the amount of computation
being done.

Because of the left-to-right Python evaluation rules, we can evaluate values up to
about fib(1000). However, we have to be patient. Very patient.

Recursions and Reductions

[122]

Following is an alternative which restates the entire algorithm to use stateful
variables instead of a simple recursion:

def fibi(n):

 if n == 0: return 0

 if n == 1: return 1

 f_n2, f_n1 = 1, 1

 for i in range(3, n+1):

 f_n2, f_n1 = f_n1, f_n2+f_n1

 return f_n1

Our stateful version of this function counts up from 0, unlike the
recursion, which counts down from the initial value of n. It saves the
values of 2nF − and 1nF − that will be used to compute nF . This version is
considerably faster than the recursive version.

What's important here is that we couldn't trivially optimize the recursion with an
obvious rewrite. In order to replace the recursion with an imperative version, we
had to look closely at the algorithm to determine how many stateful intermediate
variables were required.

Processing collections via recursion
When working with a collection, we can also define the processing recursively.
We can, for example, define the map() function recursively. The formalism looks
as follows:

() []() []()()
()
()

[] 0
,

, : 1 1 0
C

map f C
map f C append f C C

 == − − ≠

if len
if len

We've defined the mapping of a function to an empty collection as an empty
sequence. We've also specified that applying a function to a collection can be
defined recursively with a three step expression. First, apply the function to all of
the collection except the last element, creating a sequence object. Then apply the
function to the last element. Finally, append the last calculation to the previously
built sequence.

Chapter 6

[123]

Following is a purely recursive function version of the older map() function:

def mapr(f, collection):

 if len(collection) == 0: return []

 return mapr(f, collection[:-1]) + [f(collection[-1])]

The value of the mapr(f,[]) method is defined to be an empty list object. The
value of the mapr() function with a non-empty list will apply the function to the
last element in the list and append this to the list built recursively from the mapr()
function applied to the head of the list.

We have to emphasize that this mapr() function actually creates a list object,
similar to the older map() function in Python. The Python 3 map() function is an
iterable, and isn't as good an example of tail-call optimization.

While this is an elegant formalism, it still lacks the tail-call optimization required.
The tail-call optimization allows us to exceed the recursion depth of 1000 and also
performs much more quickly than this naïve recursion.

Tail-call optimization for collections
We have two general ways to handle collections: we can use a higher-order function
which returns a generator expression or we can create a function which uses a for
loop to process each item in a collection. The two essential patterns are very similar.

Following is a higher-order function that behaves like the built-in map() function:

def mapf(f, C):

 return (f(x) for x in C)

We've returned a generator expression which produces the required mapping.
This uses an explicit for loop as a kind of tail-call optimization.

Following is a generator function with the same value:

def mapg(f, C):

 for x in C:

 yield f(x)

This uses a complete for statement for the required optimization.

Recursions and Reductions

[124]

In both cases, the result is iterable. We must do something following this to
materialize a sequence object:

>>> list(mapg(lambda x:2**x, [0, 1, 2, 3, 4]))

[1, 2, 4, 8, 16]

For performance and scalability, this kind of tail-call optimization is essentially
required in Python programs. It makes the code less than purely functional.
However, the benefit far outweighs the lack of purity. In order to reap the benefits of
succinct and expression functional design, it is helpful to treat these less-than-pure
functions as if they were proper recursions.

What this means, pragmatically, is that we must avoid cluttering up a collection
processing function with additional stateful processing. The central tenets of
functional programming are still valid even if some elements of our programs are
less than purely functional.

Reductions and folding – from many to one
We can consider the sum() function to have the following kind of definition:

We could say that the sum of a collection is 0 for an empty collection. For a non-empty
collection the sum is the first element plus the sum of the remaining elements.

() [] []()
()
()

0 0
sum

0 sum 1: 0
C

C
C C C
 == + >

if len
if len

Similarly, we can compute the product of a collection of numbers recursively using
two cases:

() [] []()
()
()

1 0
prod

0 prod 1: 0
C

C
C C C
 == × >

if len
if len

The base case defines the product of an empty sequence as 1. The recursive case
defines the product as the first item times the product of the remaining items.

We've effectively folded in × or + operators between each item of the sequence.
Further, we've grouped the items so that processing will be done right-to-left.
This could be called a fold-right way of reducing a collection to a single value.

Chapter 6

[125]

In Python, the product function can be defined recursively as follows:

def prodrc(collection):

 if len(collection) == 0: return 1

 return collection[0] * prodrc(collection[1:])

This is technically correct. It's a trivial rewrite from mathematical notation to
Python. However, it is less than optimal because it tends to create a large number of
intermediate list objects. It's also limited to only working with explicit collections;
it can't work easily with iterable objects.

We can revise this slightly to work with an iterable, which avoids creating any
intermediate collection objects. Following is a properly recursive product function
which works with an iterable source of data:

def prodri(iterable):

 try:

 head= next(iterable)

 except StopIteration:

 return 1

 return head*prodri(iterable)

We can't interrogate an iterable with the len() function to see how many elements
it has. All we can do is attempt to extract the head of the iterable sequence. If
there are no items in the sequence, then any attempt to get the head will raise the
StopIteration exception. If there is an item, then we can multiply this item by the
product of the remaining items in the sequence. For a demo, we must explicitly create
an iterable from a materialized sequence object, using the iter() function. In other
contexts, we might have an iterable result that we can use. Following is an example:

>>> prodri(iter([1,2,3,4,5,6,7]))

5040

This recursive definition does not rely on explicit state or other imperative features
of Python. While it's more purely functional, it is still limited to working with
collections of under 1000 items. Pragmatically, we can use the following kind of
imperative structure for reduction functions:

def prodi(iterable):

 p= 1

 for n in iterable:

 p *= n

 return p

Recursions and Reductions

[126]

This lacks the recursion limits. It includes the required tail-call optimization.
Further, this will work equally well with either a sequence object or an iterable.

In other functional languages, this is called a foldl operation: the operators are
folded into the iterable collection of values from left-to-right. This is unlike the
recursive formulations which are generally called foldr operations because the
evaluations are done from right-to-left in the collection.

For languages with optimizing compilers and lazy evaluation, the fold-left and
fold-right distinction determines how intermediate results are created. This may
have profound performance implications, but the distinction might not be obvious.
A fold-left, for example, could immediately consume and process the first elements
in a sequence. A fold-right, however, might consume the head of the sequence, but
not do any processing until the entire sequence was consumed.

Group-by reductions – from many
to fewer
A very common operation is a reduction that groups values by some key or
indicator. In SQL, this is often called the SELECT GROUP BY operation. The raw data
is grouped by some columns value and reductions (sometimes aggregate functions)
are applied to other columns. The SQL aggregate functions include SUM, COUNT, MAX,
and MIN.

The statistical summary called the mode is a count that's grouped by some
independent variable. Python offers us several ways to group data before computing
a reduction of the grouped values. We'll start by looking at two ways to get simple
counts of grouped data. Then we'll look at ways to compute different summaries of
grouped data.

We'll use the trip data that we computed in Chapter 4, Working with Collections.
This data started as a sequence of latitude-longitude waypoints. We restructured
it to create legs represented by three tuples of start, end, and distance for the leg.
The data looks as follows:

(((37.5490162, -76.330295), (37.840832, -76.273834), 17.7246),
((37.840832, -76.273834), (38.331501, -76.459503), 30.7382),
((38.331501, -76.459503), (38.845501, -76.537331), 31.0756), ...
((38.330166, -76.458504), (38.976334, -76.473503), 38.8019))

Chapter 6

[127]

A common operation that can be approached either as a stateful map or as a
materialized, sorted object is computing the mode of a set of data values. When we
look at our trip data, the variables are all continuous. To compute a mode, we'll need
to quantize the distances covered. This is also called binning: we'll group the data
into different bins. Binning is common in data visualization applications, also. In this
case, we'll use 5 nautical miles as the size of each bin.

The quantized distances can be produced with a generator expression:

quantized= (5*(dist//5) for start,stop,dist in trip)

This will divide each distance by 5 – discarding any fractions – and then multiply by
5 to compute a number that represents the distance rounded down to the nearest 5
nautical miles.

Building a mapping with Counter
A mapping like the collections.Counter method is a great optimization for doing
reductions that create counts (or totals) grouped by some value in the collection.
A more typical functional programming solution to grouping data is to sort the
original collection, and then use a recursive loop to identify when each group begins.
This involves materializing the raw data, performing a O n n(log) sort, and then
doing a reduction to get the sums or counts for each key.

We'll use the following generator to create an simple sequence of distances
transformed into bins:

quantized= (5*(dist//5) for start,stop,dist in trip)

We divided each distance by 5 using truncated integer division, and then multiplied
by 5 to create a value that's rounded down to the nearest 5 miles.

The following expression creates a mapping from distance to frequency:

from collections import Counter

Counter(quantized)

This is a stateful object, that was created by – technically – imperative object-oriented
programming. Since it looks like a function, however, it seems a good fit for a design
based on functional programming ideas.

Recursions and Reductions

[128]

If we print Counter(quantized).most_common() function, we'll see the
following results:

[(30.0, 15), (15.0, 9), (35.0, 5), (5.0, 5), (10.0, 5), (20.0, 5),
(25.0, 5), (0.0, 4), (40.0, 3), (45.0, 3), (50.0, 3), (60.0, 3),
(70.0, 2), (65.0, 1), (80.0, 1), (115.0, 1), (85.0, 1), (55.0, 1),
(125.0, 1)]

The most common distance was about 30 nautical miles. The shortest recorded leg
was four instances of 0. The longest leg was 125 nautical miles.

Note that your output may vary slightly from this. The results of the most_common()
function are in order by frequency; equal-frequency bins may be in any order.
These 5 lengths may not always be in the order shown:

(35.0, 5), (5.0, 5), (10.0, 5), (20.0, 5), (25.0, 5)

Building a mapping by sorting
If we want to implement this without using the Counter class, we can use a more
functional approach of sorting and grouping. Following is a common algorithm:

def group_sort(trip):

 def group(data):

 previous, count = None, 0

 for d in sorted(data):

 if d == previous:

 count += 1

 elif previous is not None: # and d != previous

 yield previous, count

 previous, count = d, 1

 elif previous is None:

 previous, count = d, 1

 else:

 raise Exception("Bad bad design problem.")

 yield previous, count

 quantized= (5*(dist//5) for start,stop,dist in trip)

 return dict(group(quantized))

Chapter 6

[129]

The internal group() function steps through the sorted sequence of data items. If
a given item has already been seen – it matches the value in previous – then the
counter can be incremented. If a given item does not match the previous value and
the previous value is not-None, then we've had a change in value; we can emit the
previous value and the count, and begin a new accumulation of counts for the new
value. The third condition only applies once: if the previous value has never been set,
then this is the first value, and we should save it.

The final line of the function creates a dictionary from the grouped items. This
dictionary will be similar to a Counter dictionary. The primary difference is that a
Counter() function will have a most_common() method function which a default
dictionary lacks.

The elif previous is None method case is an irksome overhead. Getting
rid of this elif clause (and seeing a slight performance improvement) isn't
terribly difficult.

To remove the extra elif clause, we need to use a slightly more elaborate
initialization in the internal group() function:

 def group(data):

 sorted_data= iter(sorted(data))

 previous, count = next(sorted_data), 1

 for d in sorted_data:

 if d == previous:

 count += 1

 elif previous is not None: # and d != previous

 yield previous, count

 previous, count = d, 1

 else:

 raise Exception("Bad bad design problem.")

 yield previous, count

This picks the first item out of the set of data to initialize the previous variable.
The remaining items are then processed through the loop. This design shows a loose
parallel with recursive designs where we initialize the recursion with the first item,
and each recursive call provides either a next item or None to indicate that no items
are left to process.

We can also do this with itertools.groupby(). We'll look at this function closely in
Chapter 8, The Itertools Module.

Recursions and Reductions

[130]

Grouping or partitioning data by key values
There are no limits to the kinds of reductions we might want to apply to grouped
data. We might have data with a number of independent and dependent variables.
We can consider partitioning the data by an independent variable and computing
summaries like maximum, minimum, average, and standard deviation of the values
in each partition.

The essential trick to doing more sophisticated reductions is to collect all of the data
values into each group. The Counter() function merely collects counts of identical
items. We want to create sequences of the original items based on a key value.

Looked at in a more general way, each 5-mile bin will contain the entire collection of
legs of that distance, not merely a count of the legs. We can consider the partitioning
as a recursion or as a stateful application of defaultdict(list) object. We'll look at
the recursive definition of a groupby() function, since it's easy to design.

Clearly, the groupby(C, key) method for an empty collection, C, is the empty
dictionary, dict(). Or, more usefully, the empty defaultdict(list) object.

For a non-empty collection, we need to work with item C[0], the head, and
recursively process sequence C[1:], the tail. We can use head, *tail = C
command to do this parsing of the collection, as follows:

>>> C= [1,2,3,4,5]

>>> head, *tail= C

>>> head

1

>>> tail

[2, 3, 4, 5]

We need to do the dict[key(head)].append(head) method to include the head
element in the resulting dictionary. And then we need to do the groupby(tail,key)
method to process the remaining elements.

We can create a function as follows:

def group_by(key, data):

 def group_into(key, collection, dictionary):

 if len(collection) == 0:

 return dictionary

 head, *tail= collection

 dictionary[key(head)].append(head)

 return group_into(key, tail, dictionary)

 return group_into(key, data, defaultdict(list))

Chapter 6

[131]

The interior function handles our essential recursive definition. An empty collection
returns the provided dictionary. A non-empty collection is parsed into a head and
tail. The head is used to update the dictionary. The tail is then used, recursively,
to update the dictionary with all remaining elements.

We can't easily use Python's default values to collapse this into a single function.
We cannot use the following command snippet:

def group_by(key, data, dictionary=defaultdict(list)):

If we try this, all uses of the group_by() function share one common
defaultdict(list) object. Python builds default values just once. Mutable
objects as default values rarely do what we want. Rather than try to include more
sophisticated decision-making to handle an immutable default value (like None),
we prefer to use a nested function definition. The wrapper() function properly
initializes the arguments to the interior function.

We can group the data by distance as follows:

binned_distance = lambda leg: 5*(leg[2]//5)

by_distance= group_by(binned_distance, trip)

We've defined simple, reusable lambda which puts our distances into 5 nm bins.
We then grouped the data using the provided lambda.

We can examine the binned data as follows:

import pprint

for distance in sorted(by_distance):

 print(distance)

 pprint.pprint(by_distance[distance])

Following is what the output looks like:

0.0

[((35.505665, -76.653664), (35.508335, -76.654999), 0.1731),
((35.028175, -76.682495), (35.031334, -76.682663), 0.1898),
((25.4095, -77.910164), (25.425833, -77.832664), 4.3155),
((25.0765, -77.308167), (25.080334, -77.334), 1.4235)]

5.0

[((38.845501, -76.537331), (38.992832, -76.451332), 9.7151),
((34.972332, -76.585167), (35.028175, -76.682495), 5.8441),
((30.717167, -81.552498), (30.766333, -81.471832), 5.103),
((25.471333, -78.408165), (25.504833, -78.232834), 9.7128),
((23.9555, -76.31633), (24.099667, -76.401833), 9.844)] ...
125.0

[((27.154167, -80.195663), (29.195168, -81.002998), 129.7748)]

Recursions and Reductions

[132]

This can also be written as an iteration as follows:

def partition(key, data):

 dictionary= defaultdict(list)

 for head in data:

 dictionary[key(head)].append(head)

 return dictionary

When doing the tail-call optimization, the essential line of the code in the imperative
version will match the recursive definition. We've highlighted that line to emphasize
that the rewrite is intended to have the same outcome. The rest of the structure
represents the tail-call optimization we've adopted as a common way to work
around the Python limitations.

Writing more general group-by reductions
Once we have partitioned the raw data, we can compute various kinds of
reductions on the data elements in each partition. We might, for example,
want the northern-most point for the start of each leg in the distance bins.

We'll introduce some helper functions to decompose the tuple as follows:

start = lambda s, e, d: s

end = lambda s, e, d: e

dist = lambda s, e, d: d

latitude = lambda lat, lon: lat

longitude = lambda lat, lon: lon

Each of these helper functions expects a tuple object to be provided using the *
operator to map each element of the tuple to a separate parameter of the lambda.
Once the tuple is expanded into the s, e, and p parameters, it's reasonably obvious
to return the proper parameter by name. It's much more clear than trying to interpret
the tuple_arg[2] method.

Following is how we use these helper functions:

>>> point = ((35.505665, -76.653664), (35.508335, -76.654999),
0.1731)

>>> start(*point)

(35.505665, -76.653664)

>>> end(*point)

(35.508335, -76.654999)

>>> dist(*point)

Chapter 6

[133]

0.1731

>>> latitude(*start(*point))

35.505665

Our initial point object is a nested three tuple with (0) - a starting position, (1) - the
ending position, and (2) - the distance. We extracted various fields using our helper
functions.

Given these helpers, we can locate the northern-most starting position for the legs in
each bin:

for distance in sorted(by_distance):

 print(distance, max(by_distance[distance],
 key=lambda pt: latitude(*start(*pt))))

The data that we grouped by distance included each leg of the given distance.
We supplied all of the legs in each bin to the max() function. The key function
we provided to the max() function extracted just the latitude of the starting
point of the leg.

This gives us a short list of the northern-most legs of each distance as follows:

0.0 ((35.505665, -76.653664), (35.508335, -76.654999), 0.1731)

5.0 ((38.845501, -76.537331), (38.992832, -76.451332), 9.7151)

10.0 ((36.444168, -76.3265), (36.297501, -76.217834), 10.2537)

...

125.0 ((27.154167, -80.195663), (29.195168, -81.002998), 129.7748)

Writing higher-order reductions
We'll look at an example of a higher-order reduction algorithm here. This will
introduce a rather complex topic. The simplest kind of reduction develops a single
value from a collection of values. Python has a number of built-in reductions,
including any(), all(), max(), min(), sum(), and len().

As we noted in Chapter 4, Working with Collections, we can do a great deal of statistical
calculation if we start with a few simple reductions such as the following:

def s0(data):

 return sum(1 for x in data) # or len(data)

def s1(data):

 return sum(x for x in data) # or sum(data)

def s2(data):

 return sum(x*x for x in data)

Recursions and Reductions

[134]

This allows us to define mean, standard deviation, normalized values, correction,
and even least-squares linear regression using a few simple functions.

The last of our simple reductions, s2(), shows how we can apply existing
reductions to create higher-order functions. We might change our approach
to be more like the following:

def sum_f(function, data):

 return sum(function(x) for x in data)

We've added a function that we'll use to transform the data. We'll compute the sum
of the transformed values.

Now we can apply this function in three different ways to compute the three
essential sums as follows:

N= sum_f(lambda x: 1, data) # x**0

S= sum_f(lambda x: x, data) # x**1

S2= sum_f(lambda x: x*x, data) # x**2

We've plugged in a small lambda to compute ()0 1
x X x X

x
∈ ∈

=∑ ∑ , which is the count,
()1x X x X
x x

∈ ∈
=∑ ∑ , the sum, and

2

x X
x

∈∑ , the sum of the squares, which we can use
to compute standard deviation.

A common extension to this includes a filter to reject raw data which is unknown
or unsuitable in some way. We might use the following command to reject bad data:

def sum_filter_f(filter, function, data):

 return sum(function(x) for x in data if filter(x))

Execution of the following command snippet allows us to do things like reject None
values in a simple way:

count_= lambda x: 1

sum_ = lambda x: x

valid = lambda x: x is not None

N = sum_filter_f(valid, count_, data)

This shows how we can provide two distinct lambda to our sum_filter_f() function.
The filter argument is a lambda that rejects None values, we've called it valid to
emphasize its meaning. The function argument is a lambda that implements a count
or a sum method. We can easily add a lambda to compute a sum of squares.

Chapter 6

[135]

It's important to note that this function is similar to other examples in that it actually
returns a function rather than a value. This is one of the defining characteristics of
higher-order functions, and is pleasantly simple to implement in Python.

Writing file parsers
We can often consider a file parser to be a kind of reduction. Many languages have
two levels of definition: the lower-level tokens in the language and the higher-level
structures built from those tokens. When looking at an XML file, the tags, tag names,
and attribute names form this lower-level syntax; the structures which are described
by XML form a higher-level syntax.

The lower-level lexical scanning is a kind of reduction that takes individual
characters and groups them into tokens. This fits well with Python's generator
function design pattern. We can often write functions that look as follows:

Def lexical_scan(some_source):

 for char in some_source:

 if some_pattern completed: yield token

 else: accumulate token

For our purposes, we'll rely on lower-level file parsers to handle this for us. We'll use
the CSV, JSON, and XML packages to manage these details. We'll write higher-level
parsers based on these packages.

We'll still rely on a two-level design pattern. A lower-level parser will produce a
useful canonical representation of the raw data. It will be an iterator over tuples
of text. This is compatible with many kinds of data files. The higher-level parser
will produce objects useful for our specific application. These might be tuples of
numbers, or namedtuples, or perhaps some other class of immutable Python objects.

We provided one example of a lower-level parser in Chapter 4, Working with
Collections. The input was a KML file; KML is an XML representation of geographic
information. The essential features of the parser look similar to the following
command snippet:

def comma_split(text):

 return text.split(",")

def row_iter_kml(file_obj):

 ns_map={

 "ns0": "http://www.opengis.net/kml/2.2",

 "ns1": "http://www.google.com/kml/ext/2.2"}

 doc= XML.parse(file_obj)

Recursions and Reductions

[136]

 return (comma_split(coordinates.text)

 for coordinates in
 doc.findall("./ns0:Document/ns0:Folder/ns0:Placemark
 /ns0:Point/ns0:coordinates", ns_map)

The bulk of the row_iter_kml() function is the XML parsing that allows us to use
the doc.findall() function to iterate through the <ns0:coordinates> tags in the
document. We've used a function named comma_split() to parse the text of this tag
into a three tuple of values.

This is focused on working with the normalized XML structure. The document
mostly fits the database designer's definitions of First Normal Form, that is, each
attribute is atomic and only a single value. Each row in the XML data had the same
columns with data of a consistent type. The data values weren't properly atomic; we
had to split the points on a "," to separate longitude, latitude, and altitude into atomic
string values.

A large volume of data – xml tags, attributes, and other punctuation – was reduced
to a somewhat smaller volume including just floating-point latitude and longitude
values. For this reason, we can think of parsers as a kind of reduction.

We'll need a higher-level set of conversions to map the tuples of text into
floating-point numbers. Also, we'd like to discard altitude, and reorder longitude
and latitude. This will produce the application-specific tuple we need. We can use
functions as follows for this conversion:

def pick_lat_lon(lon, lat, alt):

 return lat, lon

def float_lat_lon(row_iter):

 return (tuple(map(float, pick_lat_lon(*row)))
 for row in row_iter)

The essential tool is the float_lat_lon() function. This is a higher-order function
which returns a generator expression. The generator uses map() function to apply
the float() function conversion to the results of pick_lat_lon() class. We've used
the *row parameter to assign each member of the row tuple to a different parameter
of the pick_lat_lon() function. This function then returns a tuple of the selected
items in the required order.

We can use this parser as follows:

with urllib.request.urlopen("file:./Winter%202012-2013.kml") as
source:

 trip = tuple(float_lat_lon(row_iter_kml(source)))

Chapter 6

[137]

This will build a tuple-of-tuple representation of each waypoint along the path in
the original KML file. It uses a low-level parser to extract rows of text data from the
original representation. It uses a high-level parser to transform the text items into
more useful tuples of floating-point values. In this case, we have not implemented
any validation.

Parsing CSV files
In Chapter 3, Functions, Iterators and Generators, we saw another example where we
parsed a CSV file that was not in a normalized form: we had to discard header rows
to make it useful. To do this, we used a simple function that extracted the header and
returned an iterator over the remaining rows.

The data looks as follows:

Anscombe's quartet

I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

...

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

The columns are separated by tab characters. Plus there are three rows of headers
that we can discard.

Here's another version of that CSV-based parser. We've broken it into three
functions. The first, row_iter() function, returns the iterator over the rows
in a tab-delimited file. The function looks as follows:

def row_iter_csv(source):

 rdr= csv.reader(source, delimiter="\t")

 return rdr

This is a simple wrapper around the CSV parsing process. When we look back at the
previous parsers for XML and plain text, this was the kind of thing that was missing
from those parsers. Producing an iterable over row tuples can be a common feature
of parsers for normalized data.

Once we have a row of tuples, we can pass rows that contain usable data and reject
rows that contain other metadata, like titles and column names. We'll introduce a
helper function that we can use to do some of the parsing, plus a filter() function
to validate a row of data.

Recursions and Reductions

[138]

Following is the conversion:

def float_none(data):

 try:

 data_f= float(data)

 return data_f

 except ValueError:

 return None

This function handles the conversion of a single string to float values, converting
bad data to None value. We can embed this function in a mapping so that we convert
all columns of a row to a float or None value. The lambda looks as follows:

float_row = lambda row: list(map(float_none, row))

Following is a row-level validator based on the use of the all() function to assure
that all values are float (or none of the values are None):

all_numeric = lambda row: all(row) and len(row) == 8

Following is a higher-order function which combines the row-level conversion
and filtering:

def head_filter_map(validator, converter, validator, row_iter):

 return filter(all_validator, map(converter, row_iter))

This function gives us a slightly more complete pattern for parsing an input file.
The foundation is a lower-level function that iterates over tuples of text. We can
then wrap this in functions to convert and validate the converted data. For the
cases where files are either in first normal form (all rows are the same) or a simple
validator can reject the other rows, this design works out nicely.

All parsing problems aren't quite this simple, however. Some files have important
data in header or trailer rows that must be preserved, even though it doesn't match
the format of the rest of the file. These non-normalized files will require a more
sophisticated parser design.

Parsing plain text files with headers
In Chapter 3, Functions, Iterators, and Generators, the Crayola.GPL file was presented
without showing the parser. This file looks as follows:

GIMP Palette
Name: Crayola
Columns: 16

Chapter 6

[139]

#
239 222 205 Almond
205 149 117 Antique Brass

We can parse a text file using regular expressions. We need to use a filter to read
(and parse) header rows. We also want to return an iterable sequence of data rows.
This rather complex two-part parsing is based entirely on the two-part – head and
tail – file structure.

Following is a low-level parser that handles both head and tail:

def row_iter_gpl(file_obj):

 header_pat= re.compile(r"GIMP
 Palette\nName:\s*(.*?)\nColumns:\s*(.*?)\n#\n", re.M)

 def read_head(file_obj):

 match= header_pat.match("".join(file_obj.readline() for _ in
 range(4)))

 return (match.group(1), match.group(2)), file_obj

 def read_tail(headers, file_obj):

 return headers, (next_line.split() for next_line in file_obj)

 return read_tail(*read_head(file_obj))

We've defined a regular expression that parses all four lines of the header, and
assigned this to the header_pat variable. There are two internal functions for parsing
different parts of the file. The read_head() function parses the header lines. It does
this by reading four lines and merging them into a single long string. This is then
parsed with the regular expression. The results include the two data items from the
header plus an iterator ready to process additional lines.

The read_tail() function accepts the output from the read_head() function and
parses the iterator over the remaining lines. The parsed information from the header
rows forms a two tuple that is given to the read_tail() function along with the
iterator over the remaining lines. The remaining lines are merely split on spaces,
since that fits the description of the GPL file format.

For more information, visit the following link:
https://code.google.com/p/grafx2/issues/detail?id=518.

Once we've transformed each line of the file into a canonical tuple-of-strings format,
we can apply the higher level of parsing to this data. This involves conversion and
(if necessary) validation.

https://code.google.com/p/grafx2/issues/detail?id=518

Recursions and Reductions

[140]

Following is a higher-level parser command snippet:

def color_palette(headers, row_iter):

 name, columns = headers

 colors = tuple(Color(int(r), int(g), int(b), " ".join(name))
 for r,g,b,*name in row_iter)

 return name, columns, colors

This function will work with the output of the lower-level row_iter_gpl() parser: it
requires the headers and the iterator. This function will use the multiple assignment
to separate the color numbers and the remaining words into four variables, r, g, b,
and name. The use of the *name parameter assures that all remaining values will be
assigned to names as a tuple. The " ".join(name) method then concatenates the
words into a single space-separated string.

Following is how we can use this two-tier parser:

with open("crayola.gpl") as source:

 name, columns, colors = color_palette(*row_iter_gpl(source))

 print(name, columns, colors)

We've applied the higher-level parser to the results of the lower-level parser.
This will return the headers and a tuple built from the sequence of Color objects.

Summary
In this chapter, we've looked at two significant functional programming topics.
We've looked at recursions in some detail. Many functional programming language
compilers will optimize a recursive function to transform a call in the tail of the
function to a loop. In Python, we must do the tail-call optimization manually by
using an explicit for loop instead of a purely function recursion.

We've also looked at reduction algorithms including sum(), count(), max(), and
min() functions. We looked at the collections.Counter() function and related
groupby() reductions.

We've also looked at how parsing (and lexical scanning) are similar to reductions
since they transform sequences of tokens (or sequences of characters) into higher-
order collections with more complex properties. We've examined a design pattern that
decomposes parsing into a lower level that tries to produce tuples of raw strings and a
higher level that creates more useful application objects.

In the next chapter, we'll look at some techniques appropriate to working with
namedtuples and other immutable data structures. We'll look at techniques that
make stateful objects unnecessary. While stateful objects aren't purely functional, the
idea of a class hierarchy can be used to package related method function definitions.

Additional Tuple Techniques
Many of the examples we've looked at have either been scalar functions, or
relatively simple structures built from small tuples. We can often exploit Python's
immutable namedtuple as a way to build complex data structures. We'll look at how
we use and how we create namedtuples. We'll also look at ways that immutable
namedtuples can be used instead of stateful object classes.

One of the beneficial features of object-oriented programming is the ability to create
complex data structures incrementally. In some respects, an object is simply a cache
for results of functions; this will often fit well with functional design patterns.
In other cases, the object paradigm provides for property methods that include
sophisticated calculations. This is an even better fit for functional design ideas.

In some cases, however, object class definitions are used statefully to create complex
objects. We'll look at a number of alternatives that provide similar features without
the complexities of stateful objects. We can identify stateful class definitions and
then include meta-properties for valid or required ordering of method function calls.
Statements such as If X.p() is called before X.q(), the results are undefined are outside the
formalism of the language and are meta-properties of a class. Sometimes, stateful
classes include the overhead of explicit assertions and error checking to assure that
methods are used in the proper order. If we avoid stateful classes, we eliminate these
kinds of overheads.

We'll also look at some techniques to write generic functions outside any
polymorphic class definition. Clearly, we can rely on Callable classes to create a
polymorphic class hierarchy. In some cases, this might be a needless overhead in a
functional design.

Additional Tuple Techniques

[142]

Using an immutable namedtuple as
a record
In Chapter 3, Functions, Iterators, and Generators, we showed two common techniques
to work with tuples. We've also hinted at a third way to handle complex structures.
We can do any of the following, depending on the circumstances:

• Use lambdas (or functions) to select a named item using the index
• Use lambdas (or functions) with *parameter to select an item by parameter

name, which maps to an index
• Use namedtuples to select an item by attribute name or index

Our trip data, introduced in Chapter 4, Working with Collections, has a rather complex
structure. The data started as an ordinary time series of position reports. To compute
the distances covered, we transposed the data into a sequence of legs with a start
position, end position, and distance as a nested three-tuple.

Each item in the sequence of legs looks as follows as a three-tuple:

first_leg= ((37.54901619777347, -76.33029518659048), (37.840832,
-76.273834), 17.7246)

This is a short trip between two points on the Chesapeake Bay.

A nested tuple of tuples can be rather difficult to read; for example, expressions such
as first_leg[0][0] aren't very informative.

Let's look at the three alternatives for selected values out of a tuple. The first technique
involves defining some simple selection functions that can pick items from a tuple by
index position:

start= lambda leg: leg[0]

end= lambda leg: leg[1]

distance= lambda leg: leg[2]

latitude= lambda pt: pt[0]

longitude= lambda pt: pt[1]

With these definitions, we can use latitude(start(first_leg)) to refer to a
specific piece of data.

Chapter 7

[143]

These definitions don't provide much guidance on the data types involved. We can
use a simple naming convention to make this a bit more clear. The following are
some examples of selection functions that use a suffix:

start_point = lambda leg: leg[0]

distance_nm= lambda leg: leg[2]

latitude_value= lambda point: point[0]

When used judiciously, this can be helpful. It can also degenerate into an elaborately
complex Hungarian notation as a prefix (or suffix) of each variable.

The second technique uses the *parameter notation to conceal some details of the
index positions. The following are some selection functions that use the * notation:

start= lambda start, end, distance: start

end= lambda start, end, distance: end

distance= lambda start, end, distance: distance

latitude= lambda lat, lon: lat

longitude= lambda lat, lon: lon

With these definitions, we can use latitude(*start(*first_leg)) to refer to a
specific piece of data. This has the advantage of clarity. It can look a little odd to see
the * operator in front of the tuple arguments to these selection functions.

The third technique is the namedtuple function. In this case, we have nested
namedtuple functions such as the following:

Leg = namedtuple("Leg", ("start", "end", "distance"))
Point = namedtuple("Point", ("latitude", "longitude"))

This allows us to use first_leg.start.latitude to fetch a particular piece of data.
The change from prefix function names to postfix attribute names can be seen as a
helpful emphasis. It can also be seen as a confusing shift in the syntax.

We will also replace tuple() functions with appropriate Leg() or Point() function
calls in our process that builds the raw data. We will also have to locate some return
and yield statements that implicitly create tuples.

For example, take a look at the following code snippet:

def float_lat_lon(row_iter):

 return (tuple(map(float, pick_lat_lon(*row)))
 for row in row_iter)

Additional Tuple Techniques

[144]

The preceding code would be changed to the following code snippet:

def float_lat_lon(row_iter):

 return (Point(*map(float, pick_lat_lon(*row)))
 for row in row_iter)

This would build Point objects instead of anonymous tuples of floating-point
coordinates.

Similarly, we can introduce the following to build the complete trip of Leg objects:

with urllib.request.urlopen("file:./Winter%202012-2013.kml") as
source:

 path_iter = float_lat_lon(row_iter_kml(source))

 pair_iter = legs(path_iter)

 trip_iter = (Leg(start, end, round(haversine(start, end),4))
 for start,end in pair_iter)

 trip= tuple(trip_iter)

This will iterate through the basic path of points, pairing them up to make start
and end for each Leg object. These pairs are then used to build Leg instances using
the start point, end point, and the haversine() function from Chapter 4, Working
with Collections.

The trip object will look as follows when we try to print it:

(Leg(start=Point(latitude=37.54901619777347, longitude=
-76.33029518659048), end=Point(latitude=37.840832, longitude=
-76.273834), distance=17.7246),
Leg(start=Point(latitude=37.840832, longitude=-76.273834),
end=Point(latitude=38.331501, longitude=-76.459503),
distance=30.7382),
...

Leg(start=Point(latitude=38.330166, longitude=-76.458504),
end=Point(latitude=38.976334, longitude=-76.473503),
distance=38.8019))

It's important to note that the haversine() function was written to
use simple tuples. We've reused this function with namedtuples. As
we carefully preserved the order the arguments, this small change in
representation was handled gracefully by Python.

In some cases, the namedtuple function adds clarity. In other cases, the namedtuple
is a needless change in syntax from prefix to suffix.

Chapter 7

[145]

Building namedtuples with functional
constructors
There are three ways we can build namedtuple instances. The choice of technique we
use is generally based on how much additional information is available at the time of
object construction.

We've shown two of the three techniques in the examples in the previous section.
We'll emphasize the design considerations here. It includes the following choices:

• We can provide the parameter values according to their positions. This works
out well when there are one or more expressions that we were evaluating.
We used it when applying the haversine() function to the start and end
points to create a Leg object.
Leg(start, end, round(haversine(start, end),4))

• We can use the *argument notation to assign parameters according to their
positions in a tuple. This works out well when we're getting the arguments
from another iterable or an existing tuple. We used it when using map() to
apply the float() function to the latitude and longitude values.
Point(*map(float, pick_lat_lon(*row)))

• We can use explicit keyword assignment. While not used in the previous
example, we might see something like this as a way to make the relationships
more obvious:

Point(longitude=float(row[0]), latitude=float(row[1]))

It's helpful to have the flexibility of a variety of ways of created namedtuple
instances. This allows us to more easily transform the structure of data. We
can emphasize features of the data structure that are relevant for reading and
understanding the application. Sometimes, the index number of 0 or 1 is an
important thing to emphasize. Other times, the order of start, end, and
distance is important.

Avoiding stateful classes by using
families of tuples
In several previous examples, we've shown the idea of Wrap-Unwrap design
patterns that allow us to work with immutable tuples and namedtuples. The point
of this kind of designs is to use immutable objects that wrap other immutable objects
instead of mutable instance variables.

Additional Tuple Techniques

[146]

A common statistical measure of correlation between two sets of data is the
Spearman rank correlation. This compares the rankings of two variables. Rather
than trying to compare values, which might have different scales, we'll compare
the relative orders. For more information, visit http://en.wikipedia.org/wiki/
Spearman%27s_rank_correlation_coefficient.

Computing the Spearman rank correlation requires assigning a rank value to each
observation. It seems like we should be able to use enumerate(sorted()) to do this.
Given two sets of possibly correlated data, we can transform each set into a sequence
of rank values and compute a measure of correlation.

We'll apply the Wrap-Unwrap design pattern to do this. We'll wrap data items with
their rank for the purposes of computing the correlation coefficient.

In Chapter 3, Functions, Iterators, and Generators, we showed how to parse a simple
dataset. We'll extract the four samples from that dataset as follows:

from ch03_ex5 import series, head_map_filter, row_iter

with open("Anscombe.txt") as source:

 data = tuple(head_map_filter(row_iter(source)))

 series_I= tuple(series(0,data))

 series_II= tuple(series(1,data))

 series_III= tuple(series(2,data))

 series_IV= tuple(series(3,data))

Each of these series is a tuple of Pair objects. Each Pair object has x and y
attributes. The data looks as follows:

(Pair(x=10.0, y=8.04), Pair(x=8.0, y=6.95), …, Pair(x=5.0, y=5.68))

We can apply the enumerate() function to create sequences of values as follows:

y_rank= tuple(enumerate(sorted(series_I, key=lambda p: p.y)))

xy_rank= tuple(enumerate(sorted(y_rank, key=lambda rank: rank[1].x)))

The first step will create simple two-tuples with (0) a rank number and (1) the
original Pair object. As the data was sorted by the y value in each pair, the rank
value will reflect this ordering.

The sequence will look as follows:

((0, Pair(x=8.0, y=5.25)), (1, Pair(x=8.0, y=5.56)), ...,
(10, Pair(x=19.0, y=12.5)))

http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Chapter 7

[147]

The second step will wrap these two-tuples into yet another layer of wrapping. We'll
sort by the x value in the original raw data. The second enumeration will be by the x
value in each pair.

We'll create more deeply nested objects that should look like the following:

((0, (0, Pair(x=4.0, y=4.26))), (1, (2, Pair(x=5.0, y=5.68))), ...,
(10, (9, Pair(x=14.0, y=9.96))))

In principle, we can now compute rank-order correlations between the two variables
by using the x and y rankings. The extraction expression, however, is rather awkward.
For each ranked sample in the data set, r, we have to compare r[0] with r[1][0].

To overcome these awkward references, we can write selector functions as follows:

x_rank = lambda ranked: ranked[0]

y_rank= lambda ranked: ranked[1][0]

raw = lambda ranked: ranked[1][1]

This allows us to compute correlation using x_rank(r) and y_rank(r), making
references to values less awkward.

We've wrapped the original Pair object twice, which created new tuples with the
ranking value. We've avoided stateful class definitions to create complex data
structures incrementally.

Why create deeply nested tuples? The answer is simple: laziness. The processing
required to unpack a tuple and build a new, flat tuple is simply time consuming.
There's less processing involved in wrapping an existing tuple. There are some
compelling reasons for giving up the deeply nested structure.

There are two improvements we'd like to make; they are as follows:

We'd like a flatter data structure. The use of a nested tuple of (x rank, (y rank,
Pair())) doesn't feel expressive or succinct:

• The enumerate() function doesn't deal properly with ties. If two
observations have the same value, they should get the same rank. The
general rule is to average the positions of equal observations. The sequence
[0.8, 1.2, 1.2, 2.3, 18] should have rank values of 1, 2.5, 2.5, 4.
The two ties in positions 2 and 3 have the midpoint value of 2.5 as their
common rank.

Additional Tuple Techniques

[148]

Assigning statistical ranks
We'll break the rank ordering problem into two parts. First, we'll look at a generic,
higher-order function that we can use to assign ranks to either the x or y value of
a Pair object. Then, we'll use this to create a wrapper around the Pair object that
includes both x and y rankings. This will avoid a deeply nested structure.

The following is a function that will create a rank order for each observation
in a dataset:

from collections import defaultdict

def rank(data, key=lambda obj:obj):

 def rank_output(duplicates, key_iter, base=0):

 for k in key_iter:

 dups= len(duplicates[k])

 for value in duplicates[k]:

 yield (base+1+base+dups)/2, value

 base += dups

 def build_duplicates(duplicates, data_iter, key):

 for item in data_iter:

 duplicates[key(item)].append(item)

 return duplicates

 duplicates= build_duplicates(defaultdict(list), iter(data), key)

 return rank_output(duplicates, iter(sorted(duplicates)), 0)

Our function to create the rank ordering relies on creating an object that is like
Counter to discover duplicate values. We can't use a simple Counter function, as
it uses the entire object to create a collection. We only want to use a key function
applied to each object. This allows us to pick either the x or y value of a Pair object.

The duplicates collection in this example is a stateful object. We could have written
a properly recursive function. We'd then have to do tail-call optimization to allow
working with large collections of data. We've shown the optimized version of that
recursion here.

As a hint to how this recursion would look, we've provided the arguments to build_
duplicates() that expose the state as argument values. Clearly, the base case for
the recursion is when data_iter is empty. When data_iter is not empty, a new
collection is built from the old collection and the head next(data_iter). A recursive
evaluation of build_duplicates() will handle all items in the tail of data_iter.

Chapter 7

[149]

Similarly, we could have written two properly recursive functions to emit the
collection with the assigned rank values. Again, we've optimized that recursion
into nested for loops. To make it clear how we're computing the rank value,
we've included the low end of the range (base+1) and the high end of the range
(base+dups) and taken the midpoint of these two values. If there is only a single
duplicate, we evaluate (2*base+2)/2, which has the advantage of being a
general solution.

The following is how we can test this to be sure it works.

>>> list(rank([0.8, 1.2, 1.2, 2.3, 18]))

[(1.0, 0.8), (2.5, 1.2), (2.5, 1.2), (4.0, 2.3), (5.0, 18)]

>>> data= ((2, 0.8), (3, 1.2), (5, 1.2), (7, 2.3), (11, 18))

>>> list(rank(data, key=lambda x:x[1]))

[(1.0, (2, 0.8)), (2.5, (3, 1.2)), (2.5, (5, 1.2)), (4.0, (7, 2.3)),
(5.0, (11, 18))]

The sample data included two identical values. The resulting ranks split positions 2
and 3 to assign position 2.5 to both values. This is the common statistical practice for
computing the Spearman rank-order correlation between two sets of values.

The rank() function involves rearranging the input data as part of
discovering duplicated values. If we want to rank on both the x and y
values in each pair, we need to reorder the data twice.

Wrapping instead of state changing
We have two general strategies to do wrapping; they are as follows:

• Parallelism: We can create two copies of the data and rank each copy. We
then need to reassemble the two copies into a final result that includes both
rankings. This can be a bit awkward because we'll need to somehow merge
two sequences that are likely to be in different orders.

• Serialism: We can compute ranks on one variable and save the results as a
wrapper that includes the original raw data. We can then rank this wrapped
data on the other variable. While this can create a complex structure, we can
optimize it slightly to create a flatter wrapper for the final results.

Additional Tuple Techniques

[150]

The following is how we can create an object that wraps a pair with the rank order
based on the y value:

Ranked_Y= namedtuple("Ranked_Y", ("r_y", "raw",))

def rank_y(pairs):

 return (Ranked_Y(*row)
 for row in rank(pairs, lambda pair: pair.y))

We've defined a namedtuple function that contains the y value rank plus the original
(raw) value. Our rank_y() function will create instances of this tuple by applying
the rank() function using a lambda that selects the y value of each pairs object.
We then created instances of the resulting two tuples.

The idea is that we can provide the following input:

>>> data = (Pair(x=10.0, y=8.04), Pair(x=8.0, y=6.95), ...,
Pair(x=5.0, y=5.68))

We can get the following output:

>>> list(rank_y(data))

[Ranked_Y(r_y=1.0, raw=Pair(x=4.0, y=4.26)),
Ranked_Y(r_y=2.0, raw=Pair(x=7.0, y=4.82)), ...
Ranked_Y(r_y=11.0, raw=Pair(x=12.0, y=10.84))]

The raw Pair objects have been wrapped in a new object that includes the rank.
This isn't all we need; we'll need to wrap this one more time to create an object that
has both x and y rank information.

Rewrapping instead of state changing
We can use a namedtuple named Ranked_X that contains two attributes: r_x and
ranked_y. The ranked_y attribute is an instance of Ranked_Y that has two attributes:
r_y and raw. Although this looks simple, the resulting objects are annoying to work
with because the r_x and r_y values aren't simple peers in a flat structure. We'll
introduce a slightly more complex wrapping process that produces a slightly
simpler result.

We want the output to look like this:

Ranked_XY= namedtuple("Ranked_XY", ("r_x", "r_y", "raw",))

Chapter 7

[151]

We're going to create a flat namedtuple with multiple peer attributes. This kind
of expansion is often easier to work with than deeply nested structures. In some
applications, we might have a number of transformations. For this application, we
have only two transformations: x-ranking and y-ranking. We'll break this into two
steps. First, we'll look at a simplistic wrapping like the one shown previously and
then a more general unwrap-rewrap.

The following is how the x-y ranking builds on the y-ranking:

def rank_xy(pairs):

 return (Ranked_XY(r_x=r_x, r_y=rank_y_raw[0],
 raw=rank_y_raw[1])

 for r_x, rank_y_raw in rank(rank_y(pairs),
 lambda r: r.raw.x))

We've used the rank_y() function to build Rank_Y objects. Then, we applied the
rank() function to those objects to order them by the original x values. The result
of the second rank function will be two tuples with (0) the x rank and (1) the
Rank_Y object. We build a Ranked_XY object from the x ranking (r_x), the y ranking
(rank_y_raw[0]), and the original object (rank_y_raw[1]).

What we've shown in this second function is a more general approach to adding
data to a tuple. The construction of the Ranked_XY object shows how to unwrap
the values from a data and rewrap to create a second, more complete structure.
This approach can be used generally to introduce new variables to a tuple.

The following is some sample data:

>>> data = (Pair(x=10.0, y=8.04), Pair(x=8.0, y=6.95), ...,
Pair(x=5.0, y=5.68))

This allows us to create ranking objects as follows:

>>> list(rank_xy(data))

[Ranked_XY(r_x=1.0, r_y=1.0, raw=Pair(x=4.0, y=4.26)),
Ranked_XY(r_x=2.0, r_y=3.0, raw=Pair(x=5.0, y=5.68)), ...,

Ranked_XY(r_x=11.0, r_y=10.0, raw=Pair(x=14.0, y=9.96))]

Once we have this data with the appropriate x and y rankings, we can compute the
Spearman rank-order correlation value. We can compute the Pearson correlation
from the raw data.

Our multiranking approach involves decomposing a tuple and building a new, flat
tuple with the additional attributes we need. We will often need this kind of design
when computing multiple derived values from source data.

Additional Tuple Techniques

[152]

Computing the Spearman rank-order
correlation
The Spearman rank-order correlation is a comparison between the rankings of two
variables. It neatly bypasses the magnitude of the values, and it can often find a
correlation even when the relationship is not linear. The formula is as follows:

t

This formula shows us that we'll be summing the differences in rank, ix and iy , for
all of the pairs of observed values. The Python version of this depends on the sum()
and len() functions, as follows:

def rank_corr(pairs):

 ranked= rank_xy(pairs)

 sum_d_2 = sum((r.r_x - r.r_y)**2 for r in ranked)

 n = len(pairs)

 return 1-6*sum_d_2/(n*(n**2-1))

We've created Rank_XY objects for each pair. Given this, we can then subtract the
r_x and r_y values from those pairs to compare their difference. We can then square
and sum the differences.

A good article on statistics will provide detailed guidance on what the coefficient
means. A value around 0 means that there is no correlation between the data ranks
of the two series of data points. A scatter plot shows a random scattering of points.
A value around +1 or -1 indicates a strong relationship between the two values.
A graph shows a clear line or curve.

The following is an example based on Anscombe's Quartet series I:

>>> data = (Pair(x=10.0, y=8.04), Pair(x=8.0, y=6.95), …,
Pair(x=5.0, y=5.68))

>>> round(rank_corr(data), 3)

0.818

For this particular data set, the correlation is strong.

Chapter 7

[153]

In Chapter 4, Working with Collections, we showed how to compute the Pearson
correlation coefficient. The function we showed, corr(), worked with two separate
sequences of values. We can use it with our sequence of Pair objects as follows:

import ch04_ex4

def pearson_corr(pairs):

 X = tuple(p.x for p in pairs)

 Y = tuple(p.y for p in pairs)

 return ch04_ex4.corr(X, Y)

We've unwrapped the Pair objects to get the raw values that we can use with the
existing corr() function. This provides a different correlation coefficient. The
Pearson value is based on how well the standardized values compare between two
sequences. For many data sets, the difference between the Pearson and Spearman
correlations is relatively small. For some datasets, however, the differences can be
quite large.

To see the importance of having multiple statistical tools for exploratory data
analysis, compare the Spearman and Pearson correlations for the four sets of
data in the Anscombe's Quartet.

Polymorphism and Pythonic pattern
matching
Some functional programming languages offer clever approaches to working with
statically typed function definitions. The issue is that many functions we'd like
to write are entirely generic with respect to data type. For example, most of our
statistical functions are identical for integer or floating-point numbers, as long
as division returns a value that is a subclass of numbers.Real (for example, Decimal,
Fraction, or float). In order to make a single generic definition work for multiple
data types, sophisticated type or pattern-matching rules are used by the compiler.

Instead of the (possibly) complex features of statically typed functional languages,
Python changes the issue using dynamic selection of the final implementation of
an operator based on the data types being used. This means that a compiler doesn't
certify that our functions are expecting and producing the proper data types. We
generally rely on unit testing for this.

In Python, we're effectively writing generic definitions because the code isn't bound
to any specific data type. The Python runtime will locate the appropriate operations
using a simple set of matching rules. The 3.3.7 Coercion rules section of the language
reference manual and the numbers module in the library provide details on how this
mapping from operation to special method name works.

Additional Tuple Techniques

[154]

In rare cases, we might need to have different behavior based on the types of the data
elements. We have two ways to tackle this; they are as follows:

• We can use the isinstance() function to distinguish the different cases
• We can create our own subclass of numbers.Number or tuple and implement

a proper polymorphic special method names

In some cases, we'll actually need to do both so that we can include appropriate data
type conversions.

When we look back at the ranking example in the previous section, we're tightly
bound to the idea of applying rank-ordering to simple pairs. While this is the way
the Spearman correlation is defined, we might have a multivariate dataset and have
a need to do rank-order correlation among all the variables.

The first thing we'll need to do is generalize our idea of rank-order information. The
following is a namedtuple that handles a tuple of ranks and a tuple of raw data:

Rank_Data = namedtuple("Rank_Data", ("rank_seq", "raw"))

For any specific piece of Rank_Data, such as r, we can use r.rank_seq[0] to get a
specific ranking and r.raw to get the original observation.

We'll add some syntactic sugar to our ranking function. In many previous examples,
we've required either an iterable or a collection. The for statement is graceful about
working with either one. However, we don't always use the for statement, and for
some functions, we've had to explicitly use iter() to make an iterable out of a
collection. We can handle this situation with a simple isinstance() check, as shown
in the following code snippet:

def some_function(seq_or_iter):

 if not isinstance(seq_or_iter,collections.abc.Iterator):

 yield from some_function(iter(seq_or_iter), key)

 return

 # Do the real work of the function using the iterable

We've included a type check to handle the small difference between the
two collections, which doesn't work with next() and an iterable, which
supports next().

In the context of our rank-ordering function, we will use this variation on the
design pattern:

def rank_data(seq_or_iter, key=lambda obj:obj):

 # Not a sequence? Materialize a sequence object

 if isinstance(seq_or_iter, collections.abc.Iterator):

Chapter 7

[155]

 yield from rank_data(tuple(seq_or_iter), key)

 data = seq_or_iter

 head= seq_or_iter[0]

 # Convert to Rank_Data and process.

 if not isinstance(head, Rank_Data):

 ranked= tuple(Rank_Data((),d) for d in data)

 for r, rd in rerank(ranked, key):

 yield Rank_Data(rd.rank_seq+(r,), rd.raw)

 return

 # Collection of Rank_Data is what we prefer.

 for r, rd in rerank(data, key):

 yield Rank_Data(rd.rank_seq+(r,), rd.raw)

We've decomposed the ranking into three cases for three different types of data.
We're forced it to do this when the different kinds of data aren't polymorphic
subclasses of a common superclass. The following are the three cases:

• Given an iterable (without a usable __getitem__() method), we'll
materialize a tuple that we can work with

• Given a collection of some unknown type of data, we'll wrap the unknown
objects into Rank_Data tuples

• Finally, given a collection of Rank_Data tuples, we'll add yet another ranking
to the tuple of ranks inside the each Rank_Data container

This relies on a rerank() function that inserts and returns another ranking into
the Rank_Data tuple. This will build up a collection of individual rankings from
a complex record of raw data values. The rerank() function follows a slightly
different design than the example of the rank() function shown previously.

This version of the algorithm uses sorting instead of creating a groups in a objects
like Counter object:

def rerank(rank_data_collection, key):

 sorted_iter= iter(sorted(rank_data_collection, key=lambda
 obj: key(obj.raw)))

 head = next(sorted_iter)

 yield from ranker(sorted_iter, 0, [head], key)

We've started by reassembling a single, sortable collection from the head and the
data iterator. In the context in which this is used, we can argue that this is a bad idea.

Additional Tuple Techniques

[156]

This function relies on two other functions. They can be declared within the body of
rerank(). We'll show them separately. The following is the ranker, which accepts an
iterable, a base rank number, a collection of values with the same rank, and a key:

def ranker(sorted_iter, base, same_rank_seq, key):

 """Rank values from a sorted_iter using a base rank value.

 If the next value's key matches same_rank_seq, accumulate those.

 If the next value's key is different, accumulate same rank values

 and start accumulating a new sequence.

 """

 try:

 value= next(sorted_iter)

 except StopIteration:

 dups= len(same_rank_seq)

 yield from yield_sequence((base+1+base+dups)/2,
 iter(same_rank_seq))

 return

 if key(value.raw) == key(same_rank_seq[0].raw):

 yield from ranker(sorted_iter, base, same_rank_seq+[value],
 key)

 else:

 dups= len(same_rank_seq)

 yield from yield_sequence((base+1+base+dups)/2,
 iter(same_rank_seq))

 yield from ranker(sorted_iter, base+dups, [value], key)

We've extracted the next item from the iterable collection of sorted values. If this
fails, there is no next item, and we need to emit the final collection of equal-valued
items in the same_rank_seq sequence. If this works, then we need to use the key()
function to see whether the next item, which is a value, has the same key as the
collection of equal-ranked items. If the key is the same, the overall value is defined
recursively; the reranking is the rest of the sorted items, the same base value for the
rank, a larger collection of same_rank items, and the same key() function.

If the next item's key doesn't match the sequence of equal-valued items, the result
is a sequence of equal-valued items. This will be followed by the reranking of the rest
of the sorted items, a base value incremented by the number of equal-valued items,
a fresh list of equal-rank items with just the new value, and the same key
extraction function.

Chapter 7

[157]

This depends on the yield_sequence() function, which looks as follows:

def yield_sequence(rank, same_rank_iter):

 head= next(same_rank_iter)

 yield rank, head

 yield from yield_sequence(rank, same_rank_iter)

We've written this in a way that emphasizes the recursive definition. We don't
really need to extract the head, emit it, and then recursively emit the remaining
items. While a single for statement might be shorter, it's sometimes more clear to
emphasize the recursive structure that has been optimized into a for loop.

The following are some examples of using this function to rank (and rerank) data.
We'll start with a simple collection of scalar values:

>>> scalars= [0.8, 1.2, 1.2, 2.3, 18]

>>> list(ranker(scalars))

[Rank_Data(rank_seq=(1.0,), raw=0.8), Rank_Data(rank_seq=(2.5,),
raw=1.2), Rank_Data(rank_seq=(2.5,), raw=1.2), Rank_Data(rank_seq=(4.0,),
raw=2.3), Rank_Data(rank_seq=(5.0,),
raw=18)]

Each value becomes the raw attribute of a Rank_Data object.

When we work with a slightly more complex object, we can also have multiple
rankings. The following is a sequence of two tuples:

>>> pairs= ((2, 0.8), (3, 1.2), (5, 1.2), (7, 2.3), (11, 18))

>>> rank_x= tuple(ranker(pairs, key=lambda x:x[0]))

>>> rank_x

(Rank_Data(rank_seq=(1.0,), raw=(2, 0.8)), Rank_Data(rank_seq=(2.0,),
raw=(3, 1.2)), Rank_Data(rank_seq=(3.0,), raw=(5, 1.2)),
Rank_Data(rank_seq=(4.0,), raw=(7, 2.3)), Rank_Data(rank_seq=(5.0,),
raw=(11, 18)))

>>> rank_xy= (ranker(rank_x, key=lambda x:x[1]))

>>> tuple(rank_xy)

(Rank_Data(rank_seq=(1.0, 1.0), raw=(2, 0.8)),
 Rank_Data(rank_seq=(2.0, 2.5), raw=(3, 1.2)),
Rank_Data(rank_seq=(3.0, 2.5), raw=(5, 1.2)),
Rank_Data(rank_seq=(4.0, 4.0), raw=(7, 2.3)), Rank_Data(rank_seq=(5.0,
5.0), raw=(11, 18)))

Additional Tuple Techniques

[158]

Here, we defined a collection of pairs. Then, we ranked the two tuples, assigning the
sequence of Rank_Data objects to the rank_x variable. We then ranked this collection
of Rank_Data objects, creating a second rank value and assigning the result to the
rank_xy variable.

The resulting sequence can be used to a slightly modified rank_corr() function
to compute the rank correlations of any of the available values in the rank_seq
attribute of the Rank_Data objects. We'll leave this modification as an exercise
for the readers.

Summary
In this chapter, we looked at different ways to use namedtuple objects to implement
more complex data structures. The essential features of a namedtuple are a good fit
with functional design. They can be created with a creation function and accessed by
position as well as name.

We looked at how to use immutable namedtuples instead of stateful object
definitions. The core technique was to wrap an object in an immutable tuple to
provide additional attribute values.

We also looked at ways to handle multiple data types in Python. For most arithmetic
operations, Python's internal method dispatch locates proper implementations. To
work with collections, however, we might want to handle iterators and sequences
slightly differently.

In the next two chapters, we'll look at the itertools module. This library module
provides a number of functions that help us work with iterators in sophisticated
ways. Many of these tools are examples of higher-order functions. They can help
make a functional design stay succinct and expressive.

The Itertools Module
Functional programming emphasizes stateless programming. In Python this leads
us to work with generator expressions, generator functions, and iterables. In this
chapter, we'll look at the itertools library with numerous functions to help us work
with iterable collections.

We introduced iterator functions in Chapter 3, Functions, Iterators, and Generators.
In this chapter, we'll expand on that superficial introduction. We used some related
functions in Chapter 5, Higher-order Functions.

Some of the functions merely behave like they are proper, lazy
Python iterables. It's important to look at the implementation details
for each of these functions. Some of them create intermediate objects,
leading to the potential of consuming a large amount of memory.
Since implementations might change with Python releases, we can't
provide function-by-function advice here. If you have performance or
memory issues, ensure that you check the implementation.

There are a large number of iterator functions in this module. We'll examine some of
the functions in the next chapter. In this chapter, we'll look at three broad groupings
of iterator functions. These are as follows:

• Functions that work with infinite iterators. These can be applied to any iterable
or an iterator over any collection; they will consume the entire source.

• Functions that work with finite iterators. These can either accumulate a
source multiple times, or they produce a reduction of the source.

• The tee iterator function which clones an iterator into several copies that can
each be used independently. This provides a way to overcome the primary
limitation of Python iterators: they can be used once only.

The Itertools Module

[160]

We need to emphasize an important limitation of iterables that we've touched upon
in other places.

Iterables can be used only once.
This can be astonishing because there's no error. Once exhausted,
they appear to have no elements and will raise the StopIteration
exception every time they're used.

There are some other features of iterators that aren't such profound limitations.
They are as follows:

• There's no len() function for an iterable. In almost every other respect, they
appear to be a container.

• Iterables can do next() operations, unlike a container.
• The for statement makes the distinction between containers and iterables

invisible; containers will produce an iterable via the iter() function.
An iterable simply returns itself.

These points will provide some necessary background for this chapter. The idea
of the itertools module is to leverage what iterables can do to create succinct,
expressive applications without the complex-looking overheads associated with the
details of managing the iterables.

Working with the infinite iterators
The itertools module provides a number of functions that we can use to enhance
or enrich an iterable source of data. We'll look at the following three functions:

• count(): This is an unlimited version of the range() function
• cycle(): This will reiterate a cycle of values
• repeat(): This can repeat a single value an indefinite number of times

Our goal is to understand how these various iterator functions can be used in
generator expressions and with generator functions.

Counting with count()
The built-in range() function is defined by an upper limit: the lower limit and
step values are optional. The count() function, on the other hand, has a start and
optional step, but no upper limit.

Chapter 8

[161]

This function can be thought of as the primitive basis for a function like
enumerate(). We can define the enumerate() function in terms of zip() and
count() functions, as follows:

enumerate = lambda x, start=0: zip(count(start),x)

The enumerate() function behaves as if it's a zip() function that uses the count()
function to generate the values associated with some iterator.

Consequently, the following two commands are equivalent to each other:

zip(count(), some_iterator)

enumerate(some_iterator)

Both will emit a sequence of numbers of two tuples paired with items from
the iterator.

The zip() function is made slightly simpler with the use of the count() function,
as shown in the following command:

zip(count(1,3), some_iterator)

This will provide values of 1, 4, 7, 10, and so on, as the identifiers for each value from
the enumerator. This is a challenge because enumerate doesn't provide a way to
change the step.

The following command describes the enumerate() function:

((1+3*e, x) for e,x in enumerate(a))

The count() function permits non-integer values. We can use
something like the count(0.5, 0.1) method to provide floating-
point values. This will accumulate a substantial error if the increment
value doesn't have an exact representation. It's generally better to
use the (0.5+x*.1 for x in count()) method to assure that
representation errors don't accumulate.

Here's a way to examine the accumulating error. We'll define a function, which
will evaluate items from an iterator until some condition is met. Here's how we can
define the until() function:

def until(terminate, iterator):

 i = next(iterator)

 if terminate(*i): return i

 return until(terminate, iterator)

The Itertools Module

[162]

We'll get the next value from the iterator. If it passes the test, that's our value.
Otherwise, we'll evaluate this function recursively to search for a value that passes
the test.

We'll provide a source iterable and a comparison function as follows:

source = zip(count(0, .1), (.1*c for c in count()))

neq = lambda x, y: abs(x-y) > 1.0E-12

When we evaluate the until(neq, source) method, we find the result is as follows:

(92.799999999999, 92.80000000000001)

After 928 iterations, the sum of the error bits has accumulated to 1210− . Neither value
has an exact binary representation.

The count() function is close to the Python recursion limit. We'd
need to rewrite our until() function to use tail-call optimization to
locate counts with larger accumulated errors.

The smallest detectible difference can be computed as follows:

>>> until(lambda x, y: x != y, source)

(0.6, 0.6000000000000001)

After just six steps, the count(0, 0.1) method has accumulated a measurable error
of 1610− . Not a large error, but within 1000 steps, it will be considerably larger.

Reiterating a cycle with cycle()
The cycle() function repeats a sequence of values. We can imagine using it to solve
silly fizz-buzz problems.

Visit http://rosettacode.org/wiki/FizzBuzz for a comprehensive set of
solutions to a fairly trivial programming problem. Also see https://projecteuler.
net/problem=1 for an interesting variation on this theme.

We can use the cycle() function to emit sequences of True and False values
as follows:

m3= (i == 0 for i in cycle(range(3)))

m5= (i == 0 for i in cycle(range(5)))

http://rosettacode.org/wiki/FizzBuzz
https://projecteuler.net/problem=1
https://projecteuler.net/problem=1

Chapter 8

[163]

If we zip together a finite collection of numbers, we'll get a set of triples with a
number, and two flags showing whether or not the number is a multiple of 3 or a
multiple of 5. It's important to introduce a finite iterable to create a proper upper
bound on the volume of data being generated. Here's a sequence of values and their
multiplier flags:

multipliers = zip(range(10), m3, m5)

We can now decompose the triples and use a filter to pass numbers which are
multiples and reject all others:

sum(i for i, *multipliers in multipliers if any(multipliers))

This function has another, more valuable use for exploratory data analysis.

We often need to work with samples of large sets of data. The initial phases of
cleansing and model creation are best developed with small sets of data and tested
with larger and larger sets of data. We can use the cycle() function to fairly select
rows from within a larger set. The population size, PN , and the desired sample size,
SN , denotes how long we can use a cycle:

P

S

Nc
N

=

We'll assume that the data can be parsed with the csv module. This leads to an
elegant way to create subsets. We can create subsets using the following commands:

chooser = (x == 0 for x in cycle(range(c)))

rdr= csv.reader(source_file)

wtr= csv.writer(target_file)

wtr.writerows(row for pick, row in zip(chooser, rdr) if pick)

We created a cycle() function based on the selection factor, c. For example, we
might have a population of 10 million records: a 1,000-record subset involves picking
1/10,000 of the records. We assumed that this snippet of code is nestled securely
inside a with statement that opens the relevant files. We also avoided showing
details of any dialect issues with the CSV format files.

We can use a simple generator expression to filter the data using the cycle()
function and the source data that's available from the CSV reader. Since the chooser
expression and the expression used to write the rows are both non-strict, there's little
memory overhead from this kind of processing.

The Itertools Module

[164]

We can—with a small change—use the random.randrange(c) method instead
of the cycle(c) method to achieve a randomized selection of a similar sized subset.

We can also rewrite this method to use compress(), filter(), and islice()
functions, as we'll see later in this chapter.

This design will also reformat a file from any nonstandard CSV-like format into
a standardized CSV format. As long as we define parser functions that return
consistently defined tuples and write consumer functions that write tuples to the
target files, we can do a great deal of cleansing and filtering with relatively short,
clear scripts.

Repeating a single value with repeat()
The repeat() function seems like an odd feature: it returns a single value over and
over again. It can serve as a replacement for the cycle() function. We can extend
our data subset selection function using the repeat(0) method instead of the
cycle(range(100)) method in an expression line, for example,(x==0 for x in
some_function).

We can think of the following commands:

all = repeat(0)

subset= cycle(range(100))

chooser = (x == 0 for x in either_all_or_subset)

This allows us to make a simple parameter change, which will either pick all data
or pick a subset of data.

We can embed this in nested loops to create more complex structures. Here's a
simple example:

>>> list(tuple(repeat(i, times=i)) for i in range(10))

[(), (1,), (2, 2), (3, 3, 3), (4, 4, 4, 4), (5, 5, 5, 5, 5),
(6, 6, 6, 6, 6, 6), (7, 7, 7, 7, 7, 7, 7), (8, 8, 8, 8, 8, 8, 8, 8),
(9, 9, 9, 9, 9, 9, 9, 9, 9)]

>>> list(sum(repeat(i, times=i)) for i in range(10))

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We created repeating sequences of numbers using the times parameter on the
repeat() function.

Chapter 8

[165]

Using the finite iterators
The itertools module provides a number of functions that we can use to produce
finite sequences of values. We'll look at ten functions in this module, plus some
related built-in functions:

• enumerate(): This function is actually part of the __builtins__ package,
but it works with an iterator and is very similar to other functions in the
itertools module.

• accumulate(): This function returns a sequence of reductions of the input
iterable. It's a higher-order function and can do a variety of clever calculations.

• chain(): This function combines multiple iterables serially.
• groupby(): This function uses a function to decompose a single iterable into

a sequence of iterables over subsets of the input data.
• zip_longest(): This function combines elements from multiple iterables.

The built-in zip() function truncates the sequence at the length of the
shortest iterable. The zip_longest() function pads the shorter iterables
with the given fillvalue.

• compress(): This function filters one iterable based on a second iterable
of Boolean values.

• islice(): This function is the equivalent of a slice of a sequence when
applied to an iterable.

• dropwhile() and takewhile(): Both of these functions use a Boolean
function to filter items from an iterable. Unlike filter() or filterfalse(),
these functions rely on a single True or False value to change their filter
behavior for all subsequent values.

• filterfalse(): This function applies a filter function to an iterable.
This complements the built-in filter() function.

• starmap(): This function maps a function to an iterable sequence of tuples
using each iterable as an *args argument to the given function. The map()
function does a similar thing using multiple parallel iterables.

We've grouped these functions into approximate categories. The categories are
roughly related to concepts of restructuring an iterable, filtering, and mapping.

The Itertools Module

[166]

Assigning numbers with enumerate()
In Chapter 7, Additional Tuple Techniques, we used the enumerate() function to make
a naïve assignment of rank numbers to sorted data. We can do things like pairing up
a value with its position in the original sequence, as follows:

pairs = tuple(enumerate(sorted(raw_values)))

This will sort the items in raw_values into order, create two tuples with an
ascending sequence of numbers, and materialize an object we can use for further
calculations. The command and the result are as follows:

>>> raw_values= [1.2, .8, 1.2, 2.3, 11, 18]

>>> tuple(enumerate(sorted(raw_values)))

((0, 0.8), (1, 1.2), (2, 1.2), (3, 2.3), (4, 11), (5, 18))

In Chapter 7, Additional Tuple Techniques we implemented an alternative form of
enumerate, rank() function, which would handle ties in a more statistically useful
way.

This is a common feature that is added to a parser to record the source data row
numbers. In many cases, we'll create some kind of row_iter() function to extract
the string values from a source file. This might iterate over the string values in tags
of an XML file or in columns of a CSV file. In some cases, we might even be parsing
data presented in an HTML file parsed with Beautiful Soup.

In Chapter 4, Working with Collections, we parsed an XML to create a simple sequence
of position tuples. We then created legs with a start, end, and distance. We did not,
however, assign an explicit leg number. If we ever sorted the trip collection, we'd be
unable to determine the original ordering of the legs.

In Chapter 7, Additional Tuple Techniques, we expanded on the basic parser to create
namedtuples for each leg of the trip. The output from this enhanced parser looks
as follows:

(Leg(start=Point(latitude=37.54901619777347, longitude=
-76.33029518659048), end=Point(latitude=37.840832, longitude=
-76.273834), distance=17.7246),
Leg(start=Point(latitude=37.840832, longitude=-76.273834),
end=Point(latitude=38.331501, longitude=-76.459503),
distance=30.7382),
Leg(start=Point(latitude=38.331501, longitude=-76.459503),
end=Point(latitude=38.845501, longitude=-76.537331),
distance=31.0756),...,
Leg(start=Point(latitude=38.330166, longitude=-76.458504),
end=Point(latitude=38.976334, longitude=-76.473503),
distance=38.8019))

Chapter 8

[167]

The first Leg function is a short trip between two points on the Chesapeake Bay.

We can add a function that will build a more complex tuple with the input order
information as part of the tuple. First, we'll define a slightly more complex version
of the Leg class:

Leg = namedtuple("Leg", ("order", "start", "end", "distance"))

This is similar to the Leg instance shown in Chapter 7, Additional Tuple Techniques
but it includes the order as well as the other attributes. We'll define a function that
decomposes pairs and creates Leg instances as follows:

def ordered_leg_iter(pair_iter):

 for order, pair in enumerate(pair_iter):

 start, end = pair

 yield Leg(order, start, end, round(haversine(start, end),4))

We can use this function to enumerate each pair of starting and ending points.
We'll decompose the pair and then reassemble the order, start, and end parameters
and the haversine(start,end) parameter's value as a single Leg instance. This
generator function will work with an iterable sequence of pairs.

In the context of the preceding explanation, it is used as follows:

with urllib.request.urlopen("file:./Winter%202012-2013.kml") as
source:

 path_iter = float_lat_lon(row_iter_kml(source))

 pair_iter = legs(path_iter)

 trip_iter = ordered_leg_iter(pair_iter)

 trip= tuple(trip_iter)

We've parsed the original file into the path points, created start-end pairs, and then
created a trip that was built of individual Leg objects. The enumerate() function
assures that each item in the iterable sequence is given a unique number that
increments from the default starting value of 0. A second argument value can be
given to provide an alternate starting value.

Running totals with accumulate()
The accumulate() function folds a given function into an iterable, accumulating
a series of reductions. This will iterate over the running totals from another
iterator; the default function is operator.add(). We can provide alternative
functions to change the essential behavior from sum to product. The Python library
documentation shows a particularly clever use of the max() function to create a
sequence of maximum values so far.

The Itertools Module

[168]

One application of running totals is quartiling data. We can compute the running
total for each sample and divide them into quarters with an int(4*value/total)
calculation.

In the Assigning numbers with enumerate() section, we introduced a sequence of
latitude-longitude coordinates that describe a sequence of legs on a voyage. We can
use the distances as a basis for quartiling the waypoints. This allows us to determine
the midpoint in the trip.

The value of the trip variable looks as follows:

(Leg(start=Point(latitude=37.54901619777347, longitude=
-76.33029518659048), end=Point(latitude=37.840832, longitude=
-76.273834), distance=17.7246),
Leg(start=Point(latitude=37.840832, longitude=-76.273834),
end=Point(latitude=38.331501, longitude=-76.459503),
distance=30.7382), ...,
Leg(start=Point(latitude=38.330166, longitude=-76.458504),
end=Point(latitude=38.976334, longitude=-76.473503),
distance=38.8019))

Each Leg object has a start point, an end point, and a distance. The calculation of
quartiles looks like the following example:

distances= (leg.distance for leg in trip)

distance_accum= tuple(accumulate(distances))

total= distance_accum[-1]+1.0

quartiles= tuple(int(4*d/total) for d in distance_accum)

We extracted the distance values and computed the accumulated distances for each
leg. The last of the accumulated distances is the total. We've added 1.0 to the total
to assure that 4*d/total is 3.9983, which truncates to 3. Without the +1.0, the final
item would have a value of 4, which is an impossible fifth quartile. For some kinds of
data (with extremely large values) we might have to add a larger value.

The value of the quartiles variable is as follows:

(0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3)

We can use the zip() function to merge this sequence of quartile numbers with
the original data points. We can also use functions like groupby() to create distinct
collections of the legs in each quartile.

Chapter 8

[169]

Combining iterators with chain()
We can use the chain() function to combine a collection of iterators into a single,
overall iterator. This can be helpful to combine data that was decomposed via the
groupby() function. We can use this to process a number of collections as if they
were a single collection.

In particular, we can combine the chain() function with the contextlib.
ExitStack() method to process a collection of files as a single iterable sequence
of values. We can do something like this:

from contextlib import ExitStack

import csv

def row_iter_csv_tab(*filenames):

 with ExitStack() as stack:

 files = [stack.enter_context(open(name, 'r', newline=''))

 for name in filenames]

 readers = [csv.reader(f, delimiter='\t') for f in files]

 readers = map(lambda f: csv.reader(f, delimiter='\t'), files)

 yield from chain(*readers)

We've created an ExitStack object that can contain a number of individual contexts
open. When the with statement finishes, all items in the ExitStack object will be
closed properly. We created a simple sequence of open file objects; these objects were
also entered into the ExitStack object.

Given the sequence of files in the files variable, we created a sequence of
CSV readers in the readers variable. In this case, all of our files have a common
tab-delimited format, which makes it very pleasant to open all of the files with a
simple, consistent application of a function to the sequence of files.

We could also open the files using the following command:

readers = map(lambda f: csv.reader(f, delimiter='\t'), files)

Finally, we chained all of the readers into a single iterator with chain(*readers).
This was used to yield the sequence of rows from all of the files.

It's important to note that we can't return the chain(*readers) object. If we do, this
would exit the with statement context, closing all the source files. Instead, we must
yield individual rows so that the with statement context is kept active.

The Itertools Module

[170]

Partitioning an iterator with groupby()
We can use the groupby() function to partition an iterator into smaller iterators.
This works by evaluating the given key() function for each item in the given
iterable. If the key value matches the previous item's key, the two items are part of
the same partition. If the key does not match the previous item's key, the previous
partition is ended and a new partition is started.

The output from the groupby() function is a sequence of two tuples. Each tuple
has the group's key value and an iterable over the items in the group. Each group's
iterator can be preserved as a tuple or processed to reduce it to some summary value.
Because of the way the group iterators are created, they can't be preserved.

In the Running totals with accumulate() section, earlier in the chapter, we showed how
to compute quartile values for an input sequence.

Given the trip variable with the raw data and the quartile variable with the quartile
assignments, we can group the data using the following commands:

group_iter= groupby(zip(quartile, trip), key=lambda q_raw:

 q_raw[0])

for group_key, group_iter in group_iter:

 print(group_key, tuple(group_iter))

This will start by zipping the quartile numbers with the raw trip data, iterating over
two tuples. The groupby() function will use the given lambda variable to group by
the quartile number. We used a for loop to examine the results of the groupby()
function. This shows how we get a group key value and an iterator over members
of the group.

The input to the groupby() function must be sorted by the key values. This will
assure that all of the items in a group will be adjacent.

Note that we can also create groups using the defaultdict(list) method,
as follows:

def groupby_2(iterable, key):

 groups = defaultdict(list)

 for item in iterable:

 groups[key(item)].append(item)

 for g in groups:

 yield iter(groups[g])

Chapter 8

[171]

We created a defaultdict class with a list object as the value associated with
each key. Each item will have the given key() function applied to create a key value.
The item is appended to the list in the defaultdict class with the given key.

Once all of the items are partitioned, we can then return each partition as an iterator
over the items that share a common key. This is similar to the groupby() function
because the input iterator to this function isn't necessarily sorted in precisely the
same order; it's possible that the groups might have the same members, but the
order might differ.

Merging iterables with zip_longest() and zip()
We saw the zip() function in Chapter 4, Working with Collections. The zip_longest()
function differs from the zip() function in an important way: where the zip()
function stops at the end of the shortest iterable, the zip_longest() function pads
short iterables and stops at the end of the longest iterable.

The fillvalue keyword parameter allows filling with a value other than the default
value, None.

For most exploratory data analysis applications, padding with a default value is
statistically difficult to justify. The Python Standard Library document shows a few
clever things which can be done with the zip_longest() function. It's difficult to
expand on these without drifting far from our focus on data analysis.

Filtering with compress()
The built-in filter() function uses a predicate to determine if an item is passed
or rejected. Instead of a function that calculates a value, we can use a second, parallel
iterable to determine which items to pass and which to reject.

We can think of the filter() function as having the following definition:

def filter(iterable, function):

 i1, i2 = tee(iterable, 2)

 return compress(i1, (function(x) for x in i2))

We cloned the iterable using the tee() function. (We'll look at this function in
detail later.) We evaluated the filter predicate for each value. Then we provided the
original iterable and the filter function iterable to compress, pass, and reject values.
This builds the features of the filter() function from the more primitive features
of the compress() function.

The Itertools Module

[172]

In the Reiterating a cycle with cycle() section of this chapter, we looked at data selection
using a simple generator expression. Its essence was as follows:

chooser = (x == 0 for x in cycle(range(c)))

keep= (row for pick, row in zip(chooser, some_source) if pick)

We defined a function which would produce a value 1 followed by c-1 zeroes.
This cycle would be repeated, allowing to pick only 1/c rows from the source.

We can replace the cycle(range(c)) function with the repeat(0) function to
select all rows. We can also replace it with the random.randrange(c) function to
randomize the selection of rows.

The keep expression is really just a compress(some_source, chooser) method.
If we make that change, the processing is simplified:

all = repeat(0)

subset = cycle(range(c))

randomized = random.randrange(c)

selection_rule = one of all, subset, or randomized

chooser = (x == 0 for x in selection_rule)

keep = compress(some_source, chooser)

We've defined three alternative selection rules: all, subset, and randomized.
The subset and randomized versions will pick 1/c rows from the source. The chooser
expression will build an iterable over True and False values based on one of the
selection rules. The rows to be kept are selected by applying the source iterable to the
row selection iterable.

Since all of this is non-strict, rows are not read from the source until required.
This allows us to process very large sets of data efficiently. Also, the relative
simplicity of the Python code means that we don't really need a complex
configuration file and an associated parser to make choices among the selection
rules. We have the option to use this bit of Python code as the configuration for
a larger data sampling application.

Picking subsets with islice()
In Chapter 4, Working with Collections, we looked at slice notation to select subsets
from a collection. Our example was to pair up items sliced from a list object.
The following is a simple list:

flat= ['2', '3', '5', '7', '11', '13', '17', '19', '23', '29', '31',
'37', '41', '43', '47', '53', '59', '61', '67', '71',...]

Chapter 8

[173]

We can create pairs using list slices as follows:

zip(flat[0::2], flat[1::2])

The islice() function gives us similar capabilities without the overhead of
materializing a list object, and it looks like the following:

flat_iter_1= iter(flat)

flat_iter_2= iter(flat)

zip(islice(flat_iter_1, 0, None, 2), islice(flat_iter_2, 1, None, 2))

We created two independent iterators over a flat list of data points. These might be
two separate iterators over an open file or a database result set. The two iterators
need to be independent so that change in one islice() function doesn't interfere
with the other islice() function.

The two sets of arguments to the islice() function are similar to the flat[0::2]
and flat[1::2] methods. There's no slice-like shorthand, so the start and stop
argument values are required. The step can be omitted and the default value is 1.
This will produce a sequence of two tuples from the original sequence:

[(2, 3), (5, 7), (11, 13), (17, 19), (23, 29), ... (7883, 7901),
(7907, 7919)]

Since islice() works with an iterable, this kind of design will work with extremely
large sets of data. We can use this to pick a subset out of a larger set of data. In
addition to using the filter() or compress() functions, we can also use the
islice(source,0,None,c) method to pick 1/ c items from a larger set of data.

Stateful filtering with dropwhile() and
takewhile()
The dropwhile() and takewhile() functions are stateful filter functions. They start
in one mode; the given predicate function is a kind of flip-flop that switches the
mode. The dropwhile() function starts in reject mode; when the function becomes
False, it switches to pass mode. The takewhile() function starts in pass mode;
when the given function becomes False, it switches into reject mode.

Since these are filters, both functions will consume the entire iterable. Given an
infinite iterator like the count() function, it will continue indefinitely. Since there's
no simple integer overflow in Python, an ill-considered use of dropwhile() or
takewhile() functions won't crash after a few billion iterations with integer
overflow. It really can run for a very, very long time.

The Itertools Module

[174]

We can use these with file parsing to skip headers or footers in the input. We use the
dropwhile() function to reject header rows and pass the remaining data. We use the
takewhile() function to pass data and reject trailer rows. We'll return to the simple
GPL file format shown in Chapter 3, Functions, Iterators, and Generators. The file has a
header that looks as follows:

GIMP Palette
Name: Crayola
Columns: 16
#

This is followed by rows that look like the following example:

255 73 108 Radical Red

We can easily locate the final line of the headers—the # line—using a parser based
on the dropwhile() function, as follows:

with open("crayola.gpl") as source:

 rdr = csv.reader(source, delimiter='\t')

 rows = dropwhile(lambda row: row[0] != '#', rdr)

We created a CSV reader to parse the lines based on tab characters. This will neatly
separate the color three tuple from the name. The three tuple will need further
parsing. This will produce an iterator that starts with the # line and continues with
the rest of the file.

We can use the islice() function to discard the first item of an iterable. We can then
parse the color details as follows:

 color_rows = islice(rows, 1, None)

 colors = ((color.split(), name) for color, name in color_rows)

 print(list(colors))

The islice(rows, 1, None) expression is similar to asking for a rows[1:] slice:
the first item is quietly discarded. Once the last of the heading rows have been
discarded, we can parse the color tuples and return more useful color objects.

For this particular file, we can also use the number of columns located by the CSV
reader function. We can use the dropwhile(lambda row: len(row) == 1, rdr)
method to discard header rows. This doesn't always work out well in general.
Locating the last line of the headers is often easier than trying to locate some general
feature that distinguishes header (or trailer) lines from the meaningful file content.

Chapter 8

[175]

Two approaches to filtering with filterfalse()
and filter()
In Chapter 5, Higher-order Functions we looked at the built-in filter() function.
The filterfalse() function from the itertools module could be defined from
the filter() function, as follows:

filterfalse = lambda pred, iterable:

 filter(lambda x: not pred(x), iterable)

As with the filter() function, the predicate function can be of None value. The
value of the filter(None, iterable) method is all the True values in the iterable.
The value of the filterfalse(None, iterable) method is all of the False values
from the iterable:

>>> filter(None, [0, False, 1, 2])

<filter object at 0x101b43a50>

>>> list(_)

[1, 2]

>>> filterfalse(None, [0, False, 1, 2])

<itertools.filterfalse object at 0x101b43a50>

>>> list(_)

[0, False]

The point of having the filterfalse() function is to promote reuse. If we have a
succinct function that makes a filter decision, we should be able to use that function
to partition input in to pass and reject groups without having to fiddle around with
logical negation.

The idea is to execute the following commands:

iter_1, iter_2 = iter(some_source), iter(some_source)

good = filter(test, iter_1)

bad = filterfalse(test, iter_2)

This will obviously include all items from the source. The test() function is
unchanged, and we can't introduce a subtle logic bug through improper use of ().

The Itertools Module

[176]

Applying a function to data via starmap()
and map()
The built-in map() function is a higher-order function that applies a map() function
to items from an iterable. We can think of the simple version of the map() function,
as follows:

map(function, arg_iter) == (function(a) for a in arg_iter)

This works well when the arg_iter parameter is a list of individual values. The
starmap() function in the itertools module is simply the *a version of the map()
function, which is as follows:

starmap(function, arg_iter) == (function(*a) for a in arg_iter)

This reflects a small shift in the semantics of the map() function to properly handle
a tuple-of-tuples structure.

The map() function can also accept multiple iterables; the values from these
additional iterables are zipped and it behaves like the starmap() function. Each
zipped item from the source iterables becomes multiple arguments to the given
function.

We can think of the map(function, iter1, iter2, ..., itern) method being
defined as the following two commands:

(function(*args) for args in zip(iter1, iter2, ..., itern))

starmap(function, zip(iter1, iter2, ..., itern))

Various iterator values are used to construct a tuple of arguments via the *args
construct. In effect, starmap() function is like this more general case. We can build
the simple map() function from the more general starmap() function.

When we look at the trip data, from the preceding commands, we can redefine the
construction of a Leg object based on the starmap() function. Prior to creating Leg
objects, we created pairs of points. Each pair looks as follows:

((Point(latitude=37.54901619777347, longitude=-76.33029518659048),
Point(latitude=37.840832, longitude=-76.273834)), ...,
(Point(latitude=38.330166, longitude=-76.458504),
Point(latitude=38.976334, longitude=-76.473503)))

We could use the starmap() function to assemble the Leg objects, as follows:

with urllib.request.urlopen(url) as source:

 path_iter = float_lat_lon(row_iter_kml(source))

 pair_iter = legs(path_iter)

Chapter 8

[177]

 make_leg = lambda start, end: Leg(start, end,
 haversine(start,end))

 trip = list(starmap(make_leg, pair_iter))

The legs() function creates pairs of point objects that reflect the start and end of
a leg of the voyage. Given these pairs, we can create a simple function, make_leg,
which accepts a pair of Points object, and returns a Leg object with the start point,
end point, and distance between the two points.

The benefit of the starmap(function, some_list) method is to replace a potentially
wordy (function(*args) for args in some_list) generator expression.

Cloning iterators with tee()
The tee() function gives us a way to circumvent one of the important Python rules
for working with iterables. The rule is so important, we'll repeat it here.

Iterators can be used only once.

The tee() function allows us to clone an iterator. This seems to free us from
having to materialize a sequence so that we can make multiple passes over the
data. For example, a simple average for an immense dataset could be written in
the following way:

def mean(iterator):

 it0, it1= tee(iterator,2)

 s0= sum(1 for x in it0)

 s1= sum(x for x in it1)

 return s0/s1

This would compute an average without appearing to materialize the entire dataset
in memory in any form.

While interesting in principle, the tee() function's implementation suffers from
a severe limitation. In most Python implementations, the cloning is done by
materializing a sequence. While this circumvents the "one time only" rule for small
collections, it doesn't work out well for immense collections.

Also, the current implementation of the tee() function consumes the source iterator.
It might be nice to create some syntactic sugar to allow unlimited use of an iterator.
This is difficult to manage in practice. Instead, Python obliges us to optimize the
tee() function carefully.

The Itertools Module

[178]

The itertools recipes
The itertools chapter of the Python library documentation, Itertools Recipes, is
outstanding. The basic definitions are followed by a series of recipes that are
extremely clear and helpful. Since there's no reason to reproduce these, we'll
reference them here. They should be considered as required reading on functional
programming in Python.

10.1.2 section, Itertools Recipes of Python Standard Library, is a
wonderful resource. See
https://docs.python.org/3/library/itertools.
html#itertools-recipes.

It's important to note that these aren't importable functions in the itertools
modules. A recipe needs to be read and understood and then, perhaps, copied or
modified before inclusion in an application.

The following table summarizes some of the recipes that show functional
programming algorithms built from the itertools basics:

Function Name Arguments Results
take (n, iterable) This returns the first n items of the iterable

as a list. This wraps a use of islice() in a
simple name.

tabulate (function,
start=0)

This returns function(0) and
function(1). This is based on a
map(function, count()).

consume (iterator, n) This advances the iterator n steps ahead. If n
is None, iterator consumes the steps entirely.

nth (iterable, n,
default=None)

This returns the nth item or a default value.
This wraps the use of islice() in a simple
name.

quantify (iterable,
pred=bool)

This counts how many times the predicate is
true. This uses sum() and map(), and relies
on the way a Boolean predicate is effectively 1
when converted to an integer value.

padnone (iterable) This returns the sequence elements and then
returns None indefinitely. This can create
functions that behave like zip_longest()
or map().

ncycles (iterable, n) This returns the sequence elements n times.

https://docs.python.org/3/library/itertools.html#itertools-recipes
https://docs.python.org/3/library/itertools.html#itertools-recipes

Chapter 8

[179]

Function Name Arguments Results
dotproduct (vec1, vec2) This is the essential definition of a dot

product. Multiply two vectors and find the
sum of the result.

flatten (listOfLists) This flattens one level of nesting. This chains
the various lists together into a single list.

repeatfunc (func,
times=None,
*args)

This calls to func repeatedly with specified
arguments.

pairwise (iterable): s -> (s0,s1), (s1,s2), (s2, s3).
grouper (iterable, n,

fillvalue=None)
Collect data into fixed length chunks or
blocks.

roundrobin (*iterables) roundrobin('ABC', 'D', 'EF') -->
A D
E B F C

partition (pred,
iterable)

This uses a predicate to partition entries into
False entries and True entries.

unique_
everseen

(iterable,
key=None)

This lists unique elements, preserving order.
Remembers all elements ever seen. unique_
everseen('AAAABBBCCDAABBB') -
-> A B C D.

unique_
justseen

(iterable,
key=None)

This lists unique elements, preserving order.
Remembers only the element just seen.
unique_justseen('AAAABBBCCDAABBB')
-
-> A B C D A B.

iter_except (func,
exception,
first=None)

Call a function repeatedly until an exception
is raised. This can be used to iterate until
KeyError or IndexError.

Summary
In this chapter, we've looked at a number of functions in the itertools module.
This library module provides a number of functions that help us to work with
iterators in sophisticated ways.

We've looked at the infinite iterators; these repeat without terminating. These include
the count(), cycle(), and repeat() functions. Since they don't terminate, the
consuming function must determine when to stop accepting values.

The Itertools Module

[180]

We've also looked at a number of finite iterators. Some of these are built-in and some
of these are part of the itertools module. These work with a source iterable, so they
terminate when that iterable is exhausted. These functions include enumerate(),
accumulate() , chain() , groupby() , zip_longest(), zip(), compress(),
islice(), dropwhile(), takewhile(), filterfalse(), filter(), starmap(), and
map(). These functions allow us to replace possibly complex generator expressions
with simpler-looking functions.

Additionally, we looked at the recipes from the documentation, which provide yet
more functions we can study and copy for our own applications. The recipes list
shows a wealth of common design patterns.

In Chapter 9, More Itertools Techniques, we'll continue our study of the itertools
module. We'll look at the iterators focused on permutations and combinations.
These don't apply to processing large sets of data. They're a different kind of
iterator-based tool.

More Itertools Techniques
Functional programming emphasizes stateless programming. In Python, this leads
us to work with generator expressions, generator functions, and iterables. In this
chapter, we'll continue our study of the itertools library, with numerous functions
to help us work with iterable collections.

In the previous chapter, we looked at three broad groupings of iterator functions.
They are as follows:

• Functions that work with infinite iterators can be applied to any iterable
or an iterator over any collection; they will consume the entire source

• Functions that work with finite iterators can either accumulate a source
multiple times, or they produce a reduction of the source

• The tee() iterator function clones an iterator into several copies that can
each be used independently

In this chapter, we'll look at the itertools functions that work with permutations
and combinations. These include several functions and a few recipes built on these
functions. The functions are as follows:

• product(): This function forms a Cartesian product equivalent to the nested
for loops

• permutations(): This function emits tuples of length r from a universe p in
all possible orderings; there are no repeated elements

• combinations(): This function emits tuples of length r from a universe p in
sorted order; there are no repeated elements

• combinations_with_replacement(): This function emits tuples of length r
from p in a sorted order, with repeated elements

More Itertools Techniques

[182]

These functions embody algorithms that iterate over potentially large result sets
from small collections of input data. Some kinds of problems have exact solutions
based on exhaustively enumerating a potentially gigantic universe of permutations.
The functions make it simple to emit a large number of permutations; in some cases,
the simplicity isn't actually optimal.

Enumerating the Cartesian product
The term Cartesian product refers to the idea of enumerating all the possible
combinations of elements drawn from a number of sets.

Mathematically, we might say that the product of two sets, { } { }1,2,3,...,13 C,D,H,S× ,
has 52 pairs as follows:

{(1, C), (1, D), (1, H), (1, S), (2, C), (2, D), (2, H), (2, S), ...,
(13, C), (13, D), (13, H), (13, S)}

We can produce the preceding results by executing the following commands:

>>> list(product(range(1, 14), '♣♦♥♠'))

[(1, '♣'), (1, '♦'), (1, '♥'), (1, '♠'),(2, '♣'), (2, '♦'), (2, '♥'),
(2, '♠'),… (13, '♣'), (13, '♦'), (13, '♥'), (13, '♠')]

The calculation of a product can be extended to any number of iterable collections.
Using a large number of collections can lead to a very large result set.

Reducing a product
In relational database theory, a join between tables can be thought of as a filtered
product. A SQL SELECT statement that joins tables without a WHERE clause will
produce a Cartesian product of rows in the tables. This can be thought of as the
worst-case algorithm: a product without any filtering to pick the proper results.

We can use the join() function to join two tables, as shown in the following
commands:

def join(t1, t2, where):):

 return filter(where, product(t1, t2)))))

All combinations of the two iterables, t1 and t2, are computed. The filter()
function will apply the given where function to pass or reject items that didn't fit the
given condition to match appropriate rows from each iterable. This will work when
the where function returns a simple Boolean.

Chapter 9

[183]

In some cases, we don't have a simple Boolean matching function. Instead, we're
forced to search for a minimum or maximum of some distance between items.

Assume that we have a table of Color objects as follows:

[Color(rgb=(239, 222, 205), name='Almond'),
Color(rgb=(255, 255, 153), name='Canary'),
Color(rgb=(28, 172, 120), name='Green'),...
Color(rgb=(255, 174, 66), name='Yellow Orange')]

For more information, see Chapter 6, Recursions and Reductions, where we showed you
how to parse a file of colors to create namedtuple objects. In this case, we've left the
RGB as a triple, instead of decomposing each individual field.

An image will have a collection of pixels:

pixels= [(([(r, g, b), (r, g, b), (r, g, b), ...)

As a practical matter, the Python Imaging Library (PIL) package presents the pixels
in a number of forms. One of these is the mapping from (x, y) coordinate to RGB
triple. For more information, visit https://pypi.python.org/pypi/Pillow for the
Pillow project documentation.

Given a PIL.Image object, we can iterate over the collection of pixels with something
like the following commands:

def pixel_iter(image):

 w, h = img.size

 return ((c, img.getpixel(c)) for c in product(range(w),
range(h)))

We've determined the range of each coordinate based on the image size. The
calculation of the product(range(w), range(h)) method creates all the possible
combinations of coordinates. It is, effectively, two nested for loops.

This has the advantage of providing each pixel with its coordinates. We can then
process the pixels in no particular order and still reconstruct an image. This is
particularly handy when using multiprocessing or multithreading to spread the
workload among several cores or processors. The concurrent.futures module
provides an easy way to distribute work among cores or processors.

https://pypi.python.org/pypi/Pillow

More Itertools Techniques

[184]

Computing distances
A number of decision-making problems require that we find a close-enough match.
We might not be able to use a simple equality test. Instead, we have to use a distance
metric and locate items with the shortest distance to our target. For text, we might
use the Levenshtein distance; this shows how many changes are required to get from
a given block of text to our target.

We'll use a slightly simpler example. This will involve very simple math. However,
even though it's simple, it doesn't work out well if we approach it naively.

When doing color matching, we won't have a simple equality test. We're rarely able
to check for the exact equality of pixel colors. We're often forced to define a minimal
distance function to determine whether two colors are close enough, without
being the same three values of R, G, and B. There are several common approaches,
including the Euclidean distance, Manhattan distance, and yet other complex
weightings based on visual preferences.

Here are the Euclidean and Manhattan distance functions:

def euclidean(pixel, color):

 return math.sqrt(sum(map(lambda x, y: (x-y)**2, pixel,
 color.rgb)))))))

def manhattan(pixel, color):

 return sum(map(lambda x, y: abs(x-y), pixel, color.rgb)))))

The Euclidean distance measures the hypotenuse of a right-angled triangle among
the three points in an RGB space. The Manhattan distance sums the edges of each
leg of the right-angled triangle among the three points. The Euclidean distance offers
precision where the Manhattan distance offers calculation speed.

Looking forward, we're aiming for a structure that looks like this. For each
individual pixel, we can compute the distance from that pixel's color to the available
colors in a limited color set. The results of this calculation for a single pixel might
look like this:

(((0, 0), (92, 139, 195), Color(rgb=(239, 222, 205), name='Almond'),
169.10943202553784), ((0, 0), (92, 139, 195),
Color(rgb=(255, 255, 153), name='Canary'), 204.42357985320578),
((0, 0), (92, 139, 195), Color(rgb=(28, 172, 120), name='Green'),
103.97114984456024), ((0, 0), (92, 139, 195),
Color(rgb=(48, 186, 143), name='Mountain Meadow'),
82.75868534480233), ((0, 0), (92, 139, 195),
Color(rgb=(255, 73, 108), name='Radical Red'), 196.19887869200477),
((0, 0), (92, 139, 195), Color(rgb=(253, 94, 83),
name='Sunset Orange'), 201.2212712413874), ((0, 0), (92, 139, 195),
Color(rgb=(255, 174, 66), name='Yellow Orange'), 210.7961100210343))

Chapter 9

[185]

We've shown an overall tuple that consists of a number of four tuples. Each of the
four tuples contains the following contents:

• The pixel's coordinates, for example, (0,0)
• The pixel's original color, for example, (92, 139, 195)
• A Color object from our set of seven colors, for example, Color(rgb=(239,

222, 205),name='Almond')
• The Euclidean distance between the original color and the given Color object

We can see that the smallest Euclidean distance is the closest match color. This kind
of reduction is done easily with the min() function. If the overall tuple is assigned to
a variable name, choices, the pixel-level reduction would look like this:

min(choices, key=lambda xypcd: xypcd[3]))])

We've called each four tuple an xypcd, that is, an xy coordinate, pixel, color, and
distance. The minimum distance calculation will then pick a single four tuple as the
optimal match between pixel and color.

Getting all pixels and all colors
How do we get to the structure that contains all pixels and all colors? The answer is
simple but, as we'll see, less than optimal.

One way to map pixels to colors is to enumerate all pixels and all colors using the
product() function:

xy = lambda xyp_c: xyp_c[0][0]

p = lambda xyp_c: xyp_c[0][1]

c = lambda xyp_c: xyp_c[1]

distances= ((= ((xy(item), p(item), c(item), euclidean(p(item),
c(item)))

 for item in product(pixel_iter(img), colors)))))

The core of this is the product(pixel_iter(img), colors) method that creates all
pixels combined with all colors. We will do a bit of restructuring of the data to flatten
it out. We will apply the euclidean() function to compute distances between pixel
colors and Color objects.

More Itertools Techniques

[186]

The final selection of colors uses the groupby() function and the min(choices,...)
expression, as shown in the following command snippet:

for _, choices in groupby(distances, key=lambda xy_p_c_d:

 xy_p_c_d[0]):

 print(min(choices, key=lambda xypcd: xypcd[3])))]))

The overall product of pixels and colors is a long, flat iterable. We grouped the iterable
into smaller collections where the coordinates match. This will break the big iterable
into smaller iterables of just colors associated with a single pixel. We can then pick the
minimal color distance for each color.

In a picture that's 3,648×2,736 with 133 Crayola colors, we have an iterable with
1,327,463,424 items to be evaluated. Yes. That's a billion combinations created by this
distances expression. The number is not necessarily impractical. It's well within the
limits of what Python can do. However, it reveals an important flaw in the naïve use
of the product() function.

We can't trivially do this kind of large-scale processing without some analysis to
see how large it is. Here are some timeit numbers for these that do each of these
calculations only 1,000,000 times:

• Euclidean 2.8
• Manhattan 1.8

Scaling up from 1 million to 1 billion means 1,800 seconds, that is, about half an
hour for the Manhattan distance and 46 minutes to calculate the Euclidean distance.
It appears that the core arithmetic operations of Python are too slow for this kind of
naïve bulk processing.

More importantly, we're doing it wrong. This kind of width×height×color processing is
simply a bad design. In many cases, we can do much better.

Performance analysis
A key feature of any big data algorithm is locating a way to execute some kind of a
divide-and-conquer strategy. This is true of functional programming design as well
as imperative design.

We have three options to speed up this processing; they are as follows:

• We can try to use parallelism to do more of the calculations concurrently.
On a four-core processor, the time can be cut to approximately ¼. This cuts
the time to 8 minutes for Manhattan distances.

Chapter 9

[187]

• We can see if caching intermediate results will reduce the amount of
redundant calculation. The question arises of how many colors are the
same and how many colors are unique.

• We can look for a radical change in the algorithm.

We'll combine the last two points by computing all the possible comparisons between
source colors and target colors. In this case, as in many other contexts, we can easily
enumerate the entire mapping and avoid redundant calculation when done on a
pixel-by-pixel basis. We'll also change the algorithm from a series of comparisons
to a series of simple lookups in a mapping object.

When looking at this idea of precomputing all transformations for source color
to target color, we need some overall statistics for an arbitrary image. The code
associated with this book includes IMG_2705.jpg. Here is a basic algorithm to
collect some data from the specified image:

from collections import defaultdict, Counter

palette = defaultdict(list)

for xy_p in pixel_iter(img):

 xy, p = xy_p

 palette[p].append(xy)

w, h = img.size

print(""("Total pixels", w*h)

print(""("Total colors", len(palette)))))

We collected all pixels of a given color into a list organized by color. From this,
we'll learn the first of the following facts:

• The total number of pixels is 9,980,928. This is not surprising for a 10
megapixel image.

• The total number of colors is 210,303. If we try to compute the Euclidean
distance between actual colors and the 133 colors, we would merely do
27,970,299 calculations, which might take about 76 seconds.

• Using a 3-bit mask, 0b11100000, there are 214 colors used out of
a possible 512.

• Using a 4-bit mask, 0b11110000, there are 1,150 colors used out of 4,096.
• Using a 5-bit mask, 0b11111000, there are 5,845 colors used out of 32,768.
• Using a 6-bit mask, 0b11111100, there are 27,726 colors out of 262,144.

More Itertools Techniques

[188]

This gives us some insight into how we can rearrange the data structure, calculate
the matching colors quickly, and then rebuild the image without doing a billion
comparisons.

We can apply mask values to the RGB bytes with the following piece of command:

masked_color= tuple(map(lambda x: x&0b11100000, c))

This will pick out the most significant 3 bits of red, green, and blue values. If we use
this instead of the original color to create a Counter object, we'll see that we have 214
distinct values.

Rearranging the problem
The naïve use of the product() function to compare all pixels and all colors was
a bad idea. There are 10 million pixels, but only 200,000 unique colors. When
mapping the source colors to target colors, we only have to save 200,000 values
in a simple map.

We'll approach it as follows:

• Compute the source to target color mapping. In this case, let's use 3-bit color
values as output. Each R, G, and B value comes from the eight values in the
range(0, 256, 32) method. We can use this expression to enumerate all
the output colors:
product(range(0,256,32), range(0,256,32), range(0,256,32))

• We can then compute the Euclidean distance to the nearest color in our
source palette, doing just 68,096 calculations. This takes about 0.14 seconds.
It's done one time only and computes the 200,000 mappings.

• In one pass through the image, build a new image using the revised color
table. In some cases, we can exploit the truncation of integer values. We can
use an expression such as (0b11100000&r, 0b11100000&g, 0b11100000&b)
to remove the least significant bits of an image color. We'll look at this
additional reduction in computation later.

This will replace a billion Euclidean distance calculations with 10 million
dictionary lookups. This will replace 30 minutes of calculation with about
30 seconds of calculation.

Instead of doing color mapping for all pixels, we'll create a static mapping from
input to output values. We can build the image building using simple lookup
mapping from original color to new color.

Chapter 9

[189]

Once we have the palette of all 200,000 colors, we can apply the fast Manhattan
distance to locate the nearest color in an output, such as the Crayola colors. This will
use the algorithm for color matching shown earlier to compute the mapping instead
of a result image. The difference will center on using the palette.keys() function
instead of the pixel_iter() function.

We'll fold in yet another optimization: truncation. This will give us an even
faster algorithm.

Combining two transformations
When combining multiple transformations, we can build a more complex mapping
from source through intermediate targets to the result. To illustrate this, we'll
truncate the colors as well as apply a mapping.

In some problem contexts, truncation can be difficult. In other cases, it's often
quite simple. For example, truncating US postal ZIP codes from 9 to 5 characters is
common. Postal codes can be further truncated to three characters to determine a
regional facility that represents a larger geography.

For colors, we can use the bit-masking shown previously to truncate colors form
three 8-bit values (24 bits, 16 million colors) to three 3-bit values (9 bits, 512 colors).

Here is a way to build a color map that combines both distances to a given set of
colors and truncation of the source colors:

bit3 = range(0, 256, 0b100000)

best = (min(((((euclidean(rgb, c), rgb, c) for c in colors)

 for rgb in product(bit3, bit3, bit3)))))

color_map = dict(((((b[1], b[2].rgb) for b in best)

We created a range object, bit3, that will iterate through all eight of the 3-bit
color values.

The range objects aren't like ordinary iterators; they can be used
multiple times. As a result of this, the product(bit3, bit3,
bit3) expression will produce all 512 color combinations that we'll
use as the output colors.

For each truncated RGB color, we created a three tuple that has (0) the distance from
all crayon colors, (1) the RGB color, and (2) the crayon Color object. When we ask for
the minimum value of this collection, we'll get the closest crayon Color object to the
truncated RGB color.

More Itertools Techniques

[190]

We built a dictionary that maps from the truncated RGB color to the closest crayon.
In order to use this mapping, we'll truncate a source color before looking up the
nearest crayon in the mapping. This use of truncation coupled with the precomputed
mapping shows how we might need to combine mapping techniques.

The following are the commands for the image replacement:

clone = img.copy()

for xy, p in pixel_iter(img):

 r, g, b = p

 repl = color_map[(([(0b11100000&r, 0b11100000&g,
 0b11100000&b)]])]

 clone.putpixel(xy, repl)

clone.show()

This simply uses a number of PIL features to replace all of the pixels in a picture with
other pixels.

What we've seen is that the naïve use of some functional programming tools can lead
to algorithms that are expressive and succinct, but also inefficient. The essential tools
to compute the complexity of a calculation—sometimes called Big-O analysis—is just
as important for functional programming as it is for imperative programming.

The problem is not that the product() function is inefficient. The problem is that we
can use the product() function in an inefficient algorithm.

Permuting a collection of values
When we permute a collection of values, we'll elaborate all the possible orders for the
items. There are n! ways to permute n items. We can use permutations as a kind of
brute-force solution to a variety of optimization problems.

By visiting http://en.wikipedia.org/wiki/Combinatorial_optimization,
we can see that the exhaustive enumeration of all permutations isn't appropriate
for larger problems. The use of the itertools.permutations() function is a handy
way to explore very small problems.

One popular example of these combinatorial optimization problems is the
assignment problem. We have n agents and n tasks, but the cost of each agent
performing a given task is not equal. Imagine that some agents have trouble with
some details, while other agents excel at these details. If we can properly assign tasks
to agents, we can minimize the costs.

http://en.wikipedia.org/wiki/Combinatorial_optimization

Chapter 9

[191]

We can create a simple grid that shows how well a given agent is able to perform a
given task. For a small problem of a half-dozen agents and tasks, there will be a grid
of 36 costs. Each cell in the grid shows agents 0 to 5 performing tasks A to F.

We can easily enumerate all the possible permutations. However, this approach
doesn't scale well. 10! is 3,628,800. We can see this sequence of 3 million items with
the list(permutations(range(10))) method.

We would expect to solve a problem of this size in a few seconds. If we double the size
of the problem to 20!, we would have a bit of a scalability problem: there would be
2,432,902,008,176,640,000 permutations. If it takes about 0.56 seconds to generate 10!
permutations, then to generate 20! permutations, it would take about 12,000 years.

Assume that we have a cost matrix with 36 values that show the costs of six agents
and six tasks. We can formulate the problem as follows:

perms = permutations(range(6)))))

alt= [(([(sum(cost[x][y] for y, x in enumerate(perm)), perm) for perm
in perms]

m = min(alt)[0]

print([[([ans for s, ans in alt if s == m]))])

We've created all permutations of tasks for our six agents. We've computed the sums
of all the costs in our cost matrix for each task assigned to each agent. The minimum
cost is the optimal solution. In many cases, there might be multiple optimal
solutions; we'll locate all of them.

For small text-book examples, this is very fast. For larger examples, an
approximation algorithm is more appropriate.

Generating all combinations
The itertools module also supports computing all combinations of a set of values.
When looking at combinations, the order doesn't matter, so there are far fewer
combinations than permutations. The number of combinations is often stated as

()
p!

r! !
p
r p r

= −

. This is the number of ways that we can take combinations of r things
at a time from a universe of p items overall.

For example, there are 2,598,960 5-card poker hands. We can actually enumerate all 2
million hands by executing the following command:

hands = list(combinations(tuple(product(range(13), '♠♥♦♣')), 5))

More Itertools Techniques

[192]

More practically, we have a dataset with a number of variables. A common exploratory
technique is to determine the correlation among all pairs of variables in a set of data.
If there are v variables, then we will enumerate all variables that must be compared by
executing the following command:

combinations(range(v), 2)

Let's get some sample data from http://www.tylervigen.com to show how this
will work. We'll pick three datasets with the same time range: numbers 7, 43, and
3890. We'll simply laminate the data into a grid, repeating the year column.

This is how the first and the remaining rows of the yearly data will look:

[('year', 'Per capita consumption of cheese (US)Pounds (USDA)',
'Number of people who died by becoming tangled in their
bedsheetsDeaths (US) (CDC)',
'year', 'Per capita consumption of mozzarella cheese (US)Pounds
(USDA)', 'Civil engineering doctorates awarded (US)Degrees awarded
(National Science Foundation)',
'year', 'US crude oil imports from VenezuelaMillions of barrels
(Dept. of Energy)', 'Per capita consumption of high fructose corn
syrup (US)Pounds (USDA)'),

(2000, 29.8, 327, 2000, 9.3, 480, 2000, 446, 62.6),
(2001, 30.1, 456, 2001, 9.7, 501, 2001, 471, 62.5),
(2002, 30.5, 509, 2002, 9.7, 540, 2002, 438, 62.8),
(2003, 30.6, 497, 2003, 9.7, 552, 2003, 436, 60.9),
(2004, 31.3, 596, 2004, 9.9, 547, 2004, 473, 59.8),
(2005, 31.7, 573, 2005, 10.2, 622, 2005, 449, 59.1),
(2006, 32.6, 661, 2006, 10.5, 655, 2006, 416, 58.2),
(2007, 33.1, 741, 2007, 11, 701, 2007, 420, 56.1),
(2008, 32.7, 809, 2008, 10.6, 712, 2008, 381, 53),
(2009, 32.8, 717, 2009, 10.6, 708, 2009, 352, 50.1)]

This is how we can use the combinations() function to emit all the combinations
of the nine variables in this dataset, taken two at a time:

combinations(range(9), 2)

There are 36 possible combinations. We'll have to reject the combinations that
involve year and year. These will trivially correlate with a value of 1.00.

Here is a function that picks a column of data out of our dataset:

def column(source, x):

 for row in source:

 yield row[x]

http://www.tylervigen.com

Chapter 9

[193]

This allows us to use the corr() function from Chapter 4, Working with Collections, to
compare two columns of data.

This is how we can compute all combinations of correlations:

from itertools import *

from Chapter_4.ch04_ex4 import corr

for p, q in combinations(range(9), 2):

 header_p, *data_p = list(column(source, p))

 header_q, *data_q = list(column(source, q))

 if header_p == header_q: continue

 r_pq = corr(data_p, data_q)

 print("{"{("{2: 4.2f}: {0} vs {1}".
 format(header_p, header_q, r_pq)))))

For each combination of columns, we've extracted the two columns of data from our
data set and used multiple assignments to separate the header from the remaining
rows of data. If the headers match, we're comparing a variable to itself. This will be
True for the three combinations of year and year that stem from the redundant
year columns.

Given a combination of columns, we will compute the correlation function and then
print the two headings along with the correlation of the columns. We've intentionally
chosen some datasets that show spurious correlations with a dataset that doesn't
follow the same pattern. In spite of this, the correlations are remarkably high.

The results look like this:

0.96: year vs Per capita consumption of cheese (US)Pounds (USDA)

0.95: year vs Number of people who died by becoming tangled in their
bedsheetsDeaths (US) (CDC)

0.92: year vs Per capita consumption of mozzarella cheese (US)Pounds
(USDA)

0.98: year vs Civil engineering doctorates awarded (US)Degrees
awarded (National Science Foundation)

-0.80: year vs US crude oil imports from VenezuelaMillions of barrels
(Dept. of Energy)

-0.95: year vs Per capita consumption of high fructose corn syrup
(US)Pounds (USDA)

0.95: Per capita consumption of cheese (US)Pounds (USDA) vs Number of
people who died by becoming tangled in their bedsheetsDeaths (US)
(CDC)

0.96: Per capita consumption of cheese (US)Pounds (USDA) vs year

More Itertools Techniques

[194]

0.98: Per capita consumption of cheese (US)Pounds (USDA) vs Per
capita consumption of mozzarella cheese (US)Pounds (USDA)

...

0.88: US crude oil imports from VenezuelaMillions of barrels
(Dept. of Energy) vs Per capita consumption of high fructose corn
syrup (US)Pounds (USDA)

It's not at all clear what this pattern means. We used a simple expression,
combinations(range(9), 2), to enumerate all the possible combinations of data.
This kind of succinct, expressive technique makes it easier to focus on the data
analysis issues instead of the Combinatoric algorithm considerations.

Recipes
The itertools chapter of the Python library documentation is outstanding. The basic
definitions are followed by a series of recipes that are extremely clear and helpful.
Since there's no reason to reproduce these, we'll reference them here. They are the
required reading materials on functional programming in Python.

Section 10.1.2, Itertools Recipes, of Python Standard Library is a wonderful resource.
Visit https://docs.python.org/3/library/itertools.html#itertools-
recipes more details.

These function definitions aren't importable functions in the itertools modules.
These are ideas that need to be read and understood and then, perhaps, copied or
modified before inclusion in an application.

The following table summarizes some recipes that show functional programming
algorithms built from the itertools basics:

Function
Name

Arguments Results

powerset (iterable) This generates all the subsets of the iterable. Each
subset is actually a tuple object, not a set instance.

random_
product

(*args,
repeat=1)

This randomly selects from itertools.
product(*args, **kwds).

random_
permutation

(iterable,
r=None)

This randomly selects from itertools.
permutations(iterable, r).

random_
combination

(iterable,
r)

This randomly selects from itertools.
combinations(iterable, r).

https://docs.python.org/3/library/itertools.html#itertools-recipes
https://docs.python.org/3/library/itertools.html#itertools-recipes

Chapter 9

[195]

Summary
In this chapter, we looked at a number of functions in the itertools module.
This library module provides a number of functions that help us work with iterators
in sophisticated ways.

We looked at the product() function that will compute all the possible combinations
of the elements chosen from two or more collections. The permutations() function
gives us different ways to reorder a given set of values. The combinations()
function returns all the possible subsets of the original set.

We also looked at ways in which the product() and permutations() functions
can be used naïvely to create extremely large result sets. This is an important
cautionary note. A succinct and expressive algorithm can also involve a vast amount
of computation. We must perform basic complexity analysis to be sure that the code
will finish in a reasonable amount of time.

In the next chapter, we'll look at the functools module. This module includes some
tools to work with functions as first-class objects. This builds on some material shown
in Chapter 2, Introducing Some Functional Features, and Chapter 5, Higher-order Functions.

The Functools Module
Functional programming emphasizes functions as first class objects. We have many
high-order functions that accept functions as arguments or return functions as
results. In this chapter, we'll look at the functools library with some functions to
help us create and modify functions.

We'll look at some higher-order functions in this chapter. Earlier, we looked at
higher-order functions in Chapter 5, Higher-order Functions. We'll continue to look at
higher-order function techniques in Chapter 11, Decorator Design Techniques, as well.

We'll look at the following functions in this module:

• @lru_cache: This decorator can be a huge performance boost for certain
types of applications.

• @total_ordering: This decorator can help create rich comparison operators.
However, it lets us look at the more general question of object-oriented
design mixed with functional programming.

• partial(): It creates a new function with some arguments applied to
a given function.

• reduce(): It is a higher-order function which generalizes reductions
like sum().

We'll defer two additional members of this library to Chapter 11, Decorator Design
Techniques: the update_wrapper() and wraps() functions. We'll look more closely
at writing our own decorators in the next chapter also.

We'll ignore the cmp_to_key() function entirely. Its purpose is to help with
converting Python 2 code—which uses a comparison—to run under Python 3
which uses key extraction. We're only interested in Python 3; we'll write proper
key functions.

The Functools Module

[198]

Function tools
We looked at a number of higher-order functions in Chapter 5, Higher-order Functions.
These functions either accepted a function as an argument or returned a function (or
generator expression) as a result. All these higher-order functions had an essential
algorithm which was customized by injecting another function. Functions like max(),
min(), and sorted() accepted a key= function that customized their behavior.
Functions like map() and filter() accept a function and an iterable and apply
this function to the arguments. In the case of the map() function, the results of the
function are simply kept. In the case of the filter() function, the Boolean result of
the function is used to pass or reject values from the iterable.

All the functions in Chapter 5, Higher-order Functions are part of the Python __
builtins__ package: they're available without the need to do an import. They are
ubiquitous because they are so universally useful. The functions in this chapter must
be introduced with an import because they're not quite so universally usable.

The reduce() function straddles this fence. It was originally built-in. After much
discussion, it was removed from the __builtins__ package because of the possibility
of abuse. Some seemingly simple operations can perform remarkably poorly.

Memoizing previous results with
lru_cache
The lru_cache decorator transforms a given function into a function that might
perform more quickly. The LRU means Least Recently Used: a finite pool of recently
used items is retained. Items not frequently used are discarded to keep the pool to a
bounded size.

Since this is a decorator, we can apply it to any function that might benefit from
caching previous results. We might use it as follows:

from functools import lru_cache

@lru_cache(128)

def fibc(n):

 """Fibonacci numbers with naive recursion and caching

 >>> fibc(20)

 6765

 >>> fibc(1)

 1

 """

Chapter 10

[199]

 if n == 0: return 0

 if n == 1: return 1

 return fibc(n-1) + fibc(n-2)

This is an example based on Chapter 6, Recursions and Reductions. We've applied the
@lru_cache decorator to the naïve Fibonacci number calculation. Because of this
decoration, each call to the fibc(n) function will now be checked against a cache
maintained by the decorator. If the argument, n, is in the cache, the previously
computed result is used instead of doing a potentially expensive re-calculation.
Each return value is added to the cache. When the cache is full, the oldest value is
ejected to make room for a new value.

We highlight this example because the naïve recursion is quite expensive in this case.
The complexity of computing any given Fibonacci number, nF , involves not merely
computing 1nF − but 2nF − also. This tree of values leads to a complexity in the order
of ()2nO .

We can try to confirm the benefits empirically using the timeit module. We can
execute the two implementations a thousand times each to see how the timing
compares. Using the fib(20) and fibc(20) methods shows just how costly this
calculation is without the benefit of caching. Because the naïve version is so slow,
the timeit number of repetitions was reduced to only 1,000. Following are the results:

• Naive 3.23
• Cached 0.0779

Note that we can't trivially use the timeit module on the fibc() function. The
cached values will remain in place: we'll only compute the fibc(20) function once,
which populates this value in the cache. Each of the remaining 999 iterations will
simply fetch the value from the cache. We need to actually clear the cache between
uses of the fibc() function or the time drops to almost 0. This is done with a fibc.
cache_clear() method built by the decorator.

The concept of memoization is powerful. There are many algorithms that can benefit
from memoization of results. There are also some algorithms that might not benefit
quite so much.

The number of combinations of p things taken in groups of r is often stated as follows:

()
!

! !
p p
r r p r

= −

The Functools Module

[200]

This binomial function involves computing three factorial values. It might make
sense to use an @lru_cache decorator on a factorial function. A program that
calculates a number of binomial values will not need to re-compute all of those
factorials. For cases where similar values are computed repeatedly, the speedup
can be impressive. For situations where the cached values are rarely reused, the
overheads of maintaining the cached values outweigh any speedups.

When computing similar values repeatedly, we see the following:

• Naive Factorial 0.174
• Cached Factorial 0.046
• Cleared Cache Factorial 1.335

If we re-calculate the same binomial with the timeit module, we'll only really do the
computation once, and return the same value the rest of the time; the cleared cache
factorial shows the impact of clearing the cache before each calculation. The cache
clearing operation—the cache_clear() function—introduces some overheads,
making it appear more costly than it actually is. The moral of the story is that an
lru_cache decorator is trivial to add. It often has a profound impact; but it may
also have no impact, depending on the distribution of the actual data.

It's important to note that the cache is a stateful object. This design pushes the
edge of the envelope on purely functional programming. A possible ideal is to
avoid assignment statements and the associated changes of state. This concept of
avoiding stateful variables is exemplified by a recursive function: the current state
is contained in the argument values, and not in the changing values of variables.
We've seen how tail-call optimization is an essential performance improvement to
assure that this idealized recursion actually works nicely with the available processor
hardware and limited memory budgets. In Python, we do this tail-call optimization
manually by replacing the tail recursions with a for loop. Caching is a similar kind
of optimization: we'll implement it manually as needed.

In principle, each call to a function with an LRU cache has two results: the
expected result and a new cache object which should be used for all future
requests. Pragmatically, we encapsulate the new cache object inside the decorated
version of the fibc() function.

Caching is not a panacea. Applications that work with float values might not
benefit much from memoization because all floats differ by small amounts.
The least-significant bits of a float value are sometimes just random noise which
prevents the exact equality test in the lru_cache decorator from working.

We'll revisit this in Chapter 16, Optimizations and Improvements. We'll look at some
additional ways to implement this.

Chapter 10

[201]

Defining classes with total ordering
The total_ordering decorator is helpful for creating new class definitions that
implement a rich set of comparison operators. This might apply to numeric classes
that subclass numbers.Number. It may also apply to semi-numeric classes.

As an example of a semi-numeric class, consider a playing card. It has a numeric
rank and a symbolic suit. The rank matters only when doing simulations of some
games. This is particularly important when simulating casino Blackjack. Like
numbers, cards have an ordering. We often sum the point values of each card,
making them number-like. However, multiplication of card × card doesn't really
make any sense.

We can almost emulate a playing card with a namedtuple() function as follows:

Card1 = namedtuple("Card1", ("rank", "suit"))

This suffers from a profound limitation: all comparisons include both a rank
and a suit by default. This leads to the following awkward behavior:

>>> c2s= Card1(2, '\u2660')

>>> c2h= Card1(2, '\u2665')

>>> c2h == c2s

False

This doesn't work well for Blackjack. It's unsuitable for certain Poker simulations also.

We'd really prefer the cards to be compared only by their rank. Following is a much
more useful class definition. We'll show this in two parts. The first part defines the
essential attributes:

@total_ordering

class Card(tuple):

 __slots__ = ()

 def __new__(class_, rank, suit):

 obj= tuple.__new__(Card, (rank, suit))

 return obj

 def __repr__(self):

 return "{0.rank}{0.suit}".format(self)

 @property

 def rank(self):

 return self[0]

 @property

 def suit(self):

 return self[1]

The Functools Module

[202]

This class extends the tuple class; it has no additional slots, thereby making it
immutable. We've overridden the __new__() method so that we can seed initial
values of a rank and a suit. We've provided a __repr__() method to print a string
representation of a Card. We've provided two properties to extract a rank and a suit
using attribute names.

The rest of the class definition shows how we can define just two comparisons:

 def __eq__(self, other):

 if isinstance(other,Card):

 return self.rank == other.rank

 elif isinstance(other,Number):

 return self.rank == other

 def __lt__(self, other):

 if isinstance(other,Card):

 return self.rank < other.rank

 elif isinstance(other,Number):

 return self.rank < other

We've defined the __eq__() and __lt__() functions. The @total_ordering
decorator handles the construction of all other comparisons. In both cases, we've
allowed comparisons between cards and also between a card and a number.

First, we get proper comparison of only the ranks as follows:

>>> c2s= Card(2, '\u2660')

>>> c2h= Card(2, '\u2665')

>>> c2h == c2s

True

>>> c2h == 2

True

We can use this class for a number of simulations with simplified syntax to
compare ranks of cards. Further, we also have a rich set of comparison operators
as follows:

>>> c2s= Card(2, '\u2660')

>>> c3h= Card(3, '\u2665')

>>> c4c= Card(4, '\u2663')

>>> c2s <= c3h < c4c

True

>>> c3h >= c3h

Chapter 10

[203]

True

>>> c3h > c2s

True

>>> c4c != c2s

True

We didn't need to write all of the comparison method functions; they were generated
by the decorator. The decorator's creation of operators isn't perfect. In our case, we've
asked for comparisons with integers as well as between Card instances. This reveals
some problems.

Operations like the c4c > 3 and 3 < c4c commands would raise TypeError
exceptions. This is a limitation in what the total_ordering decorator can do.
The problem rarely shows up in practice, since this kind of mixed-class coercion
is relatively uncommon.

Object-oriented programming is not antithetical to functional programming. There
is a realm in which the two techniques are complementary. Python's ability to create
immutable objects works particularly well with functional programming techniques.
We can easily avoid the complexities of stateful objects, but still benefit from
encapsulation to keep related method functions together. It's particularly helpful to
define class properties that involve complex calculations; this binds the calculations
to the class definition, making the application easier to understand.

Defining number classes
In some cases, we might want to extend the numeric tower available in Python.
A subclass of numbers.Number may simplify a functional program. We can, for
example, isolate parts of a complex algorithm to the Number subclass definition,
making other parts of the application simpler or clearer.

Python already offers a rich variety of numeric types. The built-in types of the
int and float variables cover a wide variety of problem domains. When working
with currency, the decimal.Decimal package handles this elegantly. In some cases,
we might find the fractions.Fraction class to be more appropriate than the
float variable.

When working with geographic data, for example, we might consider creating
a subclass of float variable that introduces additional attributes for conversion
between degrees of latitude (or longitude) and radians. The arithmetic operations
in this subclass could be done ()2mod π to simplify calculations that move across the
equator or the Greenwich meridian.

The Functools Module

[204]

Since Python Numbers class is intended to be immutable, ordinary functional design
can be applied to all of the various method functions. The exceptional Python in-
place special methods (for example, __iadd__() function) can be simply ignored.

When working with subclasses of Number, we have a fairly extensive volume of
design considerations as follows:

• Equality testing and hash value calculation. The core features of hash
calculation for numbers is documented in the 9.1.2 Notes for type implementors
section of the Python Standard Library.

• The other comparison operators (often defined via @total_ordering
decorator).

• The arithmetic operators: +, -, *, /, //, %, and **. There are special methods
for the forward operations as well as additional methods for reverse type-
matching. Given an expression like a-b, Python uses the type of a to attempt
to locate an implementation of the __sub__() method function: effectively, the
a.__sub__(b) method. If the class of the left-hand value, a in this case, doesn't
have the method or returns the NotImplemented exception, then the right-
hand value is examined to see if the b.__rsub__(a) method provides a result.
There's an additional special case that applies when b's class is a subclass of a's
class: this allows the subclass to override the left-hand side operation choice.

• The bit-fiddling operators: &, |, ^, >>, <<, and ~. These might not make
sense for floating-point values; omitting these special methods might be
the best design.

• Some additional functions like round(), pow(), and divmod() are
implemented by numeric special method names. These might be meaningful
for this class of numbers.

Chapter 7, Mastering Object-Oriented Python provides a detailed example of creating
a new type of number. Visit the link for more details:

https://www.packtpub.com/application-development/mastering-object-
oriented-python.

As we noted previously, functional programming and object-oriented programming
can be complementary. We can easily define classes that follow functional
programming design patterns. Adding new kinds of numbers is one example of
leveraging Python's object-oriented features to create more readable functional
programs.

https://www.packtpub.com/application-development/mastering-object-oriented-python
https://www.packtpub.com/application-development/mastering-object-oriented-python

Chapter 10

[205]

Applying partial arguments with partial()
The partial() function leads to something called partial application. A partially
applied function is a new function built from an old function and a subset of the
required arguments. It is closely related to the concept of currying. Much of the
theoretical background is not relevant here, since currying doesn't apply to the
way Python functions are implemented. The concept, however, can lead us to
some handy simplifications.

We can look at trivial examples as follows:

>>> exp2= partial(pow, 2)

>>> exp2(12)

4096

>>> exp2(17)-1

131071

We've created a function, exp2(y), which is the pow(2,y) function. The partial()
function bounds the first positional parameter to the pow() function. When we
evaluate the newly created exp2() function, we get values computed from the
argument bound by the partial() function, plus the additional argument provided
to the exp2() function.

The bindings of positional parameters are handed in a strict left-to-right order.
For functions that accept keyword parameters, these can also be provided when
building the partially applied function.

We can also create this kind of partially applied function with a lambda form
as follows:
exp2= lambda y: pow(2,y)

Neither is clearly superior. Measuring performance shows that the partial()
function is a hair faster than a lambda form in the following manner:

• partial 0.37
• lambda 0.42

This is 0.05 seconds over 1,000,000 iterations: not a remarkable savings.

Since lambda forms have all of the capabilities of the partial() function, it seems
that we can safely set this function aside as not being profoundly useful. We'll return
to it in Chapter 14, The PyMonad Library, and look at how we can accomplish this with
currying also.

The Functools Module

[206]

Reducing sets of data with reduce()
The sum(), len(), max(), and min() functions are—in a way— all specializations
of a more general algorithm expressed by the reduce() function. The reduce()
function is a higher-order function that folds a function into each pair of items
in an iterable.

A sequence object is given as follows:

d = [2, 4, 4, 4, 5, 5, 7, 9]

The function, reduce(lambda x,y: x+y, d), will fold in + operators to the list
as follows:

2+4+4+4+5+5+7+9

Including () can show the effective grouping as follows:

((((((2+4)+4)+4)+5)+5)+7)+9

Python's standard interpretation of expressions involves a left-to-right evaluation
of operators. The fold left isn't a big change in meaning.

We can also provide an initial value as follows:

reduce(lambda x,y: x+y**2, iterable, 0)

If we don't, the initial value from the sequence is used as the initialization. Providing
an initial value is essential when there's a map() function as well as a reduce()
function. Following is how the right answer is computed with an explicit 0 initializer:

0+ 2**2+ 4**2+ 4**2+ 4**2+ 5**2+ 5**2+ 7**2+ 9**2

If we omit the initialization of 0, and the reduce() function uses the first item as an
initial value, we get the following wrong answer:

2+ 4**2+ 4**2+ 4**2+ 5**2+ 5**2+ 7**2+ 9**2

We can define a number of built-in reductions using the reduce() higher-order
function as follows:

sum2= lambda iterable: reduce(lambda x,y: x+y**2, iterable, 0)

sum= lambda iterable: reduce(lambda x, y: x+y, iterable)

count= lambda iterable: reduce(lambda x, y: x+1, iterable, 0)

min= lambda iterable: reduce(lambda x, y: x if x < y else y,
iterable)

Chapter 10

[207]

max= lambda iterable: reduce(lambda x, y: x if x > y else y,
iterable)

The sum2() reduction function is the sum of squares, useful for computing standard
deviation of a set of samples. This sum() reduction function mimics the built-in
sum() function. The count() reduction function is similar to the len() function, but
it can work on an iterable, where the len() function can only work on a materialized
collection object.

The min() and max() functions mimic the built-in reductions. Because the first item
of the iterable is used for initialization, these two functions will work properly. If we
provided any initial value to these reduce() functions, we might incorrectly use a
value that never occurred in the original iterable.

Combining map() and reduce()
We can see how to build higher-order functions around these simple definitions.
We'll show a simplistic map-reduce function that combines the map() and reduce()
functions as follows:

def map_reduce(map_fun, reduce_fun, iterable):

 return reduce(reduce_fun, map(map_fun, iterable))

We've created a composite function from the map() and reduce() functions that take
three arguments: the mapping, the reduction operation, and the iterable or sequence
to process.

We can build a sum-squared reduction using the map() and reduce() functions
separately as follows:

def sum2_mr(iterable):

 return map_reduce(lambda y: y**2, lambda x,y: x+y, iterable)

In this case, we've used the lambda y: y**2 parameter as a mapping to square
each value. The reduction is simply lambda x,y: x+y parameter. We don't need to
explicitly provide an initial value because the initial value will be the first item in the
iterable after the map() function has squared it.

The lambda x,y: x+y parameter is merely the + operator. Python offers all of the
arithmetic operators as short functions in the operator module. Following is how
we can slightly simplify our map-reduce operation:

import operator

def sum2_mr2(iterable):

 return map_reduce(lambda y: y**2, operator.add, iterable)

The Functools Module

[208]

We've used the operator.add method to sum our values instead of the longer
lambda form.

Following is how we can count values in an iterable:

def count_mr(iterable):

 return map_reduce(lambda y: 1, operator.add, iterable)

We've used the lambda y: 1 parameter to map each value to a simple 1. The count
is then a reduce() function using the operator.add method.

The general-purpose reduce() function allows us to create any species of reduction
from a large dataset to a single value. There are some limitations, however, on what
we should do with the reduce() function.

We should avoid executing commands such as the following:

reduce(operator.add, ["1", ",", "2", ",", "3"], "")

Yes, it works. However, the "".join(["1", ",", "2", ",", "3"]) method
is considerably more efficient. We measured 0.23 seconds per million to do the
"".join() function versus 0.69 seconds to do the reduce() function.

Using reduce() and partial()

The sum() function can be seen as the partial(reduce,
operator.add) method. This, too, gives us a hint as to how we can
create other mappings and other reductions. We can, indeed, define all
of the commonly used reductions as partials instead of lambdas.

Following are two examples:

sum2= partial(reduce, lambda x,y: x+y**2)

count= partial(reduce, lambda x,y: x+1)

We can now use these functions via the sum2(some_data) or the count(some_
iter) method. As we noted previously, it's not clear how much benefit this has.
It's possible that a particularly complex calculation can be explained simply with
functions like this.

Chapter 10

[209]

Using map() and reduce() to sanitize raw data
When doing data cleansing, we'll often introduce filters of various degrees of
complexity to exclude invalid values. We may also include a mapping to sanitize
values in the cases where a valid but improperly formatted value can be replaced
with a valid but proper value.

We might produce the following output:

def comma_fix(data):

 try:

 return float(data)

 except ValueError:

 return float(data.replace(",", ""))

def clean_sum(cleaner, data):

 return reduce(operator.add, map(cleaner, data))

We've defined a simple mapping, the comma_fix() class, that will convert data
from a nearly correct format into a usable floating-point value.

We've also defined a map-reduce that applies a given cleaner function, the
comma_fix() class, in this case, to the data before doing a reduce() function
using the operator.add method.

We can apply the previously described function as follows:

>>> d = ('1,196', '1,176', '1,269', '1,240', '1,307',
... '1,435', '1,601', '1,654', '1,803', '1,734')

>>> clean_sum(comma_fix, d)

14415.0

We've cleaned the data, by fixing the commas, as well as computed a sum. The syntax
is very convenient for combining these two operations.

We have to be careful, however, of using the cleaning function more than once.
If we're also going to compute a sum of squares, we really should not execute the
following command:

comma_fix_squared = lambda x: comma_fix(x)**2

The Functools Module

[210]

If we use the clean_sum(comma_fix_squared, d) method as part of computing
a standard deviation, we'll do the comma-fixing operation twice on the data:
once to compute the sum and once to compute the sum of squares. This is a poor
design; caching the results with an lru_cache decorator can help. Materializing the
sanitized intermediate values as a temporary tuple object is probably better.

Using groupby() and reduce()
A common requirement is to summarize data after partitioning it into groups.
We can use a defaultdict(list) method to partition data. We can then analyze
each partition separately. In Chapter 4, Working with Collections, we looked at some
ways to group and partition. In Chapter 8, The Itertools Module, we looked at others.

Following is some sample data that we need to analyze:

>>> data = [('4', 6.1), ('1', 4.0), ('2', 8.3), ('2', 6.5),
... ('1', 4.6), ('2', 6.8), ('3', 9.3), ('2', 7.8), ('2', 9.2),
... ('4', 5.6), ('3', 10.5), ('1', 5.8), ('4', 3.8), ('3', 8.1),
... ('3', 8.0), ('1', 6.9), ('3', 6.9), ('4', 6.2), ('1', 5.4),
... ('4', 5.8)]

We've got a sequence of raw data values with a key and a measurement for each key.

One way to produce usable groups from this data is to build a dictionary that maps a
key to a list of members in this group as follows:

from collections import defaultdict

def partition(iterable, key=lambda x:x):

 """Sort not required."""

 pd = defaultdict(list)

 for row in iterable:

 pd[key(row)].append(row)

 for k in sorted(pd):

 yield k, iter(pd[k])

This will separate each item in the iterable into individual groups. The key()
function is used to extract a key value from each item. This key is used to append
each item to a list in the pd dictionary. The resulting value of this function matches
the results of the itertools.groupby() function: it's an iterable sequence of the
(group key, iterator) pairs.

Chapter 10

[211]

Following is the same feature done with the itertools.groupby() function:

def partition_s(iterable, key= lambda x:x):

 """Sort required"""

 return groupby(iterable, key)

The important difference in the inputs to each function is that the groupby() function
version requires data already sorted by the key whereas the defaultdict version doesn't
require sorting. For very large sets of data, the sort can be expensive measured in both time
and storage. The final sort of the keys does create an intermediate list object, but this object
might not be as large as the original set of data, depending on the cardinality of the keys.

We can summarize the grouped data as follows:

mean= lambda seq: sum(seq)/len(seq)

var= lambda mean, seq: sum((x-mean)**2/mean for x in seq)

def summarize(key_iter):

 key, item_iter= key_iter

 values= tuple((v for k,v in item_iter))

 μ= mean(values)

 return key, μ, var(μ, values)

The results of the partition() functions will be a sequence of (key, iterator)
two tuples. We'll separate the key from the item iterator. Each item in the item
iterator is one of the original objects in the source data; these are (key, value)
pairs; we only want the values, and so we've used a simple generator expression to
separate the source keys from the values.

We can also execute the following command to pick the second item from each of the
two tuples:

map(snd, item_iter)

This requires the snd= lambda x: x[1] method.

We can use the following command to apply the summarize() function to
each partition:

>>> partition1= partition(list(data), key=lambda x:x[0])

>>> groups= map(summarize, partition1)

The alternative commands are as follows:

>>> partition2= partition_s(sorted(data), key=lambda x:x[0])

>>> groups= map(summarize, partition2)

The Functools Module

[212]

Both will provide us summary values for each group. The resulting group statistics
look as follows:

1 5.34 0.93

2 7.72 0.63

3 8.56 0.89

4 5.5 0.7

The variance can be used as part of a 2X test to determine if the null hypothesis holds
for this data. The null hypothesis asserts that there's nothing to see; the variance
in the data is essentially random. We can also compare the data between the four
groups to see if the various means are consistent with the null hypothesis or there is
some statistically significant variation.

Summary
In this chapter, we've looked at a number of functions in the functools module.
This library module provides a number of functions that help us create sophisticated
functions and classes.

We've looked at the @lru_cache function as a way to boost certain types of
applications with frequent re-calculations of the same values. This decorator is of
tremendous value for certain kinds of functions that take the integer or the string
argument values. It can reduce processing by simply implementing memoization.

We looked at the @total_ordering function as a decorator to help us build
objects that support rich ordering comparisons. This is at the fringe of functional
programming, but is very helpful when creating new kinds of numbers.

The partial() function creates a new function with the partial application of
argument values. As an alternative, we can build a lambda with similar features.
The use case for this is ambiguous.

We also looked at the reduce() function as a higher-order function. This generalizes
reductions like the sum() function. We'll use this function in several examples in
the later chapters. This fits logically with the filter() and map() functions as an
important higher-order function.

In the next chapters, we'll look at how we can build higher-order functions
using decorators. These higher-order functions can lead to slightly simpler and
clearer syntax. We can use decorators to define an isolated aspect that we need to
incorporate into a number of other functions or classes.

Decorator Design Techniques
Python offers us many ways to create higher-order functions. In Chapter 5,
Higher-order Functions, we looked at two techniques: defining a function which
accepts a function as an argument and defining a subclass of Callable which is
either initialized with a function or called with a function as an argument.

In this chapter, we'll look at using a decorator to build a function based on
another function. We'll also look at two functions from the functools module,
the update_wrapper() and wraps() functions, that can help us build decorators.

One of the benefits of decorated functions is that we can create composite
functions. These are single functions that embody functionality from several
sources. A composite function, ()f g x� , can be somewhat more expressive of
a complex algorithm than ()()f g x . It's often helpful to have a number of syntax
alternatives for expressing complex processing.

Decorators as higher-order functions
The core idea of a decorator is to transform some original function into another form.
A decorator creates a kind of composite function based on the decorator and the
original function being decorated.

A decorator function can be used in one of the two following ways:

• As a prefix that creates a new function with the same name as the base
function as follows:
@decorator

def original_function():

 pass

Decorator Design Techniques

[214]

• As an explicit operation that returns a new function, possibly with
a new name:
def original_function():

 pass

original_function= decorator(original_function)

These are two different syntaxes for the same operation. The prefix notation has the
advantages of being tidy and succinct. The prefix location is more visible to some
readers. The suffix notation is explicit and slightly more flexible. While the prefix
notation is common, there is one reason for using the suffix notation: we might
not want the resulting function to replace the original function. We might want to
execute the following command that allows us to use both the decorated and the
undecorated functions:

new_function = decorator(original_function)

Python functions are first-class objects. A function that accepts a function as an
argument and returns a function as the result is clearly a built-in feature of the
language. The open question then is how do we update or adjust the internal code
structure of a function?

The answer is we don't.

Rather than messing about on the inside of the code, it's much cleaner to define a
new function that wraps the original function. We have two tiers of higher-order
functions involved in defining a decorator as follows:

• The decorator function applies a wrapper to a base function and returns the
new wrapper. This function can do some one-time only evaluation as part of
building the decorated function.

• The wrapper function can (and usually does) evaluate the base function.
This function will be evaluated every time the decorated function is evaluated.

Here's an example of a simple decorator:

from functools import wraps

def nullable(function):

 @wraps(function)

 def null_wrapper(arg):

 return None if arg is None else function(arg)

 return null_wrapper

Chapter 11

[215]

We almost always want to use the functools.wraps() function to assure that the
decorated function retains the attributes of the original function. Copying the __
name__, and __doc__ attributes, for example, assures that the resulting decorated
function has the name and docstring of the original function.

The resulting composite function, called null_wrapper() function in the definition
of the decorator, is also a kind of higher-order function that combines the original
function, the function() function, in an expression that preserves the None values.
The original function is not an explicit argument; it is a free variable that will get its
value from the context in which the wrapper() function is defined.

The decorator function's return value will return the newly minted function. It's
important that decorators only return functions, and not attempt any processing of
data. Decorators are meta-programming: a code that creates a code. The wrapper()
function, however, will be used to process the real data.

We can apply our @nullable decorator to create a composite function as follows:

nlog = nullable(math.log)

We now have a function, nlog(), which is a null-aware version of the math.log()
function. We can use our composite, nlog() function, as follows:

>>> some_data = [10, 100, None, 50, 60]

>>> scaled = map(nlog, some_data)

>>> list(scaled)

[2.302585092994046, 4.605170185988092, None, 3.912023005428146,
4.0943445622221]

We've applied the function to a collection of data values. The None value politely
leads to a None result. There was no exception processing involved.

This example isn't really suitable for unit testing. We'll need
to round the values for testing purposes. For this, we'll need
a null-aware round() function too.

Here's how we can create a null-aware rounding function using decorator notation:

@nullable

def nround4(x):

 return round(x,4)

This function is a partial application of the round() function, wrapped to be
null-aware. In some respects, this is a relatively sophisticated bit of functional
programming that's readily available to Python programmers.

Decorator Design Techniques

[216]

We could also create the null-aware rounding function using the following:

nround4= nullable(lambda x: round(x,4))

This has the same effect, at some cost in clarity.

We can use this round4() function to create a better test case for our nlog() function
as follows:

>>> some_data = [10, 100, None, 50, 60]

>>> scaled = map(nlog, some_data)

>>> [nround4(v) for v in scaled]

[2.3026, 4.6052, None, 3.912, 4.0943]

This result will be independent of any platform considerations.

This decorator makes an assumption that the decorated function is unary. We would
need to revisit this design to create a more general-purpose null-aware decorator that
works with arbitrary collections of arguments.

In Chapter 14, The PyMonad Library, we'll look at an alternative approach to this
problem of tolerating the None values. The PyMonad library defines a Maybe class of
objects which may have a proper value or may be the None value.

Using functool's update_wrapper() functions
The @wraps decorator applies the update_wrapper() function to preserve a few
attributes of a wrapped function. In general, this does everything we need by
default. This function copies a specific list of attributes from the original function to
the resulting function created by a decorator. What's the specific list of attributes? It's
defined by a module global.

The update_wrapper() function relies on a module global variable to determine what
attributes to preserve. The WRAPPER_ASSIGNMENTS variable defines the attributes that
are copied by default. The default value is this list of attributes to copy:

('__module__', '__name__', '__qualname__', '__doc__',
'__annotations__')

It's difficult to make meaningful modifications to this list. In order to copy additional
attributes, we have to assure that our functions are defined with these additional
attributes. This is challenging, since the internals of the def statement aren't open to
simple modification or change.

Chapter 11

[217]

Because we can't easily fold in new attributes, it's difficult to locate reasons to modify
or extend the way the wrapping works on a function. It's mostly interesting to use
this variable as a piece of reference information.

If we're going to use the callable objects, then we might have a class that provides
some additional attributes as part of the definition. We could then have a situation
where a decorator might need to copy these additional attributes from the original
wrapped callable object to the wrapping function being created. However, it seems
simpler to make these kinds of changes in the class definition itself, rather than
exploit tricky decorator techniques.

While there's a lot of flexibility available, much of it isn't helpful for ordinary
application development.

Cross-cutting concerns
One general principle behind decorators is to allow us to build a composite function
from the decorator and the original function to which the decorator is applied. The
idea is to have a library of common decorators that can provide implementations for
common concerns.

We often call these cross-cutting concerns because they apply across several
functions. These are the sorts of things that we would like to design once via a
decorator and have them applied in relevant classes throughout an application
or a framework.

Concerns that are often centralized as described previously include the following:

• Logging
• Auditing
• Security
• Handling incomplete data

A logging decorator, for example, might write standardized messages to the
application's logfile. An audit decorator might write details surrounding a database
update. A security decorator might check some runtime context to be sure that the
login user has the necessary permissions.

Our example of a null-aware wrapper for a function is a cross-cutting concern. In this
case, we'd like to have a number of functions handle the None values by returning
the None values instead of raising an exception. In applications where data is
incomplete, we may have a need to process rows in a simple, uniform way without
having to write lots of distracting if statements to handle missing values.

Decorator Design Techniques

[218]

Composite design
The common mathematical notation for a composite function looks as follows:

() ()()f g x f g x=�

The idea is that we can define a new function, ()f g x� , that combines two other
functions, ()f y and ()g x .

Python's multiple-line definition of the form is as follows:

@f

def g(x):

 something

This is vaguely equivalent to ()f g x� . The equivalence isn't very precise because
the @f decorator isn't the same as the mathematical abstraction of composing ()f y
and ()g x . For the purposes of discussing function composition, we'll ignore the
implementation disconnect between the abstraction of ()f y and the @f decorator.

Because decorators wrap another function, Python offers a slightly more generalized
composition. We can think of Python design as follows:

() ()()()w g w x w g w xβ α β α=i i

A decorator applied to some application function, ()g x , will include a wrapper
function. One portion of the wrapper, ()w xα , applies before the wrapped function
and the other portion, ()w xβ , applies after the wrapped function.

The Wrapper() function often looks as follows:

@wraps(argument_function)

def something_wrapper(*args, **kw):

 # The "before" part, w_α, applied to *args or **kw

 result= argument_function(*args, **kw)

 # the "after" part, w_β, applied to the result

Details will vary, and vary widely. There are many clever things that can be done
within this general framework.

Chapter 11

[219]

A great deal of functional programming amounts to ()()f g x kinds of constructs. We
often spell these functions out because there's no real benefit from summarizing the
function into a composite, ()f g x� . In some cases, however, we might want to use a
composite function with a higher-order function like map(), filter(), or reduce().

We can always resort to the map(f, map(g, x)) method. It might be more clear,
however, to use the map(f_g, x) method to apply a composite to a collection.
It's important to note that there's no inherent performance advantage to either
technique. The map() function is lazy: with two map() functions, one item will be
taken from x, processed by the g() function, and then processed by the f() function.
With a single map() function, an item will be taken from x and then processed by the
f_g() composite function.

In Chapter 14, The PyMonad Library, we'll look at an alternative approach to this
problem of creating composite functions from individual curried functions.

Preprocessing bad data
One cross-cutting concern in some exploratory data analysis applications is how
to handle numeric values that are missing or cannot be parsed. We often have a
mixture of float, int, and Decimal currency values that we'd like to process with
some consistency.

In other contexts, we have not applicable or not available data values that shouldn't
interfere with the main thread of the calculation. It's often handy to allow the Not
Applicable values to pass through an expression without raising an exception.
We'll focus on three bad-data conversion functions: bd_int(), bd_float(), and
bd_decimal(). The composite feature we're adding will be defined before the
built-in conversion function.

Here's a simple bad-data decorator:

import decimal

def bad_data(function):

 @wraps(function)

 def wrap_bad_data(text, *args, **kw):

 try:

 return function(text, *args, **kw)

 except (ValueError, decimal.InvalidOperation):

 cleaned= text.replace(",", "")

 return function(cleaned, *args, **kw)

 return wrap_bad_data

Decorator Design Techniques

[220]

This function wraps a given conversion function to try a second conversion in the
event the first conversion involved bad data. In the case of preserving the None
values as a Not Applicable code, the exception handling would simply return the
None value.

In this case, we've provided Python *args and **kw parameters. This assures that
the wrapped functions can have additional argument values provided.

We can use this wrapper as follows:

bd_int= bad_data(int)

bd_float= bad_data(float)

bd_decimal= bad_data(Decimal)

This will create a suite of functions that can do conversions of good data as well as a
limited amount of data cleansing to handle specific kinds of bad data.

Following are some examples of using the bd_int() function:

>>> bd_int("13")

13

>>> bd_int("1,371")

1371

>>> bd_int("1,371", base=16)

4977

We've applied the bd_int() function to a string that converted neatly and a string
with the specific type of punctuation that we'll tolerate. We've also shown that we
can provide additional parameters to each of these conversion functions.

We might like to have a more flexible decorator. One feature that we might like to
add is the ability to handle a variety of data scrubbing alternatives. Simple, removal
isn't always what we need. We may also need to remove $, or ° symbols, too. We'll
look at more sophisticated, parameterized decorators in the next section.

Adding a parameter to a decorator
A common requirement is to customize a decorator with additional parameters.
Rather than simply creating a composite ()f g x� , we're doing something a bit more
complex. We're creating ()()()f c g xi . We've applied a parameter, c, as part of creating
the wrapper. This parameterized composite, ()f c g� , can then be used with the actual
data, x.

Chapter 11

[221]

In Python syntax, we can write it as follows:

@deco(arg)

def func():

 something

This will provide a parameterized deco(arg) function to the base function definition.

The effect is as follows:

def func():

 something

func= deco(arg)(func)

We've done three things and they are as follows:

1. Define a function, func.
2. Apply the abstract decorator, deco(), to its arguments to create a concrete

decorator, deco(arg).
3. Apply the concrete decorator, deco(arg), to the base function to create the

decorated version of the function, deco(arg)(func).

A decorator with arguments involves indirect construction of the final function.
We seem to have moved beyond merely higher-order functions into something
even more abstract: higher-order functions that create higher-order functions.

We can expand our bad-data aware decorator to create a slightly more flexible
conversion. We'll define a decorator that can accept parameters of characters to
remove. Following is a parameterized decorator:

import decimal

def bad_char_remove(*char_list):

 def cr_decorator(function):

 @wraps(function)

 def wrap_char_remove(text, *args, **kw):

 try:

 return function(text, *args, **kw)

 except (ValueError, decimal.InvalidOperation):

 cleaned= clean_list(text, char_list)

 return function(cleaned, *args, **kw)

 return wrap_char_remove

 return cr_decorator

Decorator Design Techniques

[222]

A parameterized decorator has three parts and they are as follows:

• The overall decorator. This defines and returns the abstract decorator.
In this case, the cr_decorator is an abstract decorator. This has a free
variable, char_list, that comes from the initial decorator.

• The abstract decorator. In this case, the cr_decorator decorator will have
its free variable, char_list, bound so that it can be applied to a function.

• The decorating wrapper. In this example, the wrap_char_remove function
will replace the wrapped function. Because of the @wraps decorator,
the __name__ (and other attributes) will be replaced with the name of the
function being wrapped.

We can use this decorator to create conversion functions as follows:

@bad_char_remove("$", ",")

def currency(text, **kw):

 return Decimal(text, **kw)

We've used our decorator to wrap a currency() function. The essential feature
of the currency() function is a reference to the decimal.Decimal constructor.

This currency() function will now handle some variant data formats:

>>> currency("13")

Decimal('13')

>>> currency("$3.14")

Decimal('3.14')

>>> currency("$1,701.00")

Decimal('1701.00')

We can now process input data using a relatively simple map(currency, row)
method to convert source data from strings to usable Decimal values. The try:/
except: error-handling has been isolated to a function that we've used to build a
composite conversion function.

We can use a similar design to create Null-tolerant functions. These functions would
use a similar try:/except: wrapper, but would simply return the None values.

Chapter 11

[223]

Implementing more complex descriptors
We can easily write the following commands:

@f_wrap

@g_wrap

def h(x):

 something

There's nothing in Python to stop us. This has a meaning somewhat like ()f g h x� � .
However, the name is merely ()h x . Because of this potential confusion, we need to be
cautious when creating functions that involve deeply nested descriptors. If our intent
is simply to handle some cross-cutting concerns, then each decorator can handle a
concern without creating much confusion.

If, on the other hand, we're using a decoration to create a composite function, it
might also be better to use the following command:

f_g_h= f_wrap(g_wrap(h))

This clarifies as to what precisely is going on. Decorator functions don't correspond
precisely with the mathematical abstraction of functions being composed. The
decorator function actually contains a wrapper function that will contain the function
being composed. This distinction between a function and a decorator that creates a
composite from the function can become a problem when trying to understand
an application.

As with other aspects of functional programming, a succinct and expressive program
is the goal. Decorators who are expressive are welcome. Writing an über-meta-super-
callable that can do everything in the application with only minor customizations
may be succinct, but it's rarely expressive.

Recognizing design limitations
In the case of our data cleanup, the simplistic removal of stray characters may not
be sufficient. When working with the geolocation data, we may have a wide variety
of input formats that include simple degrees (37.549016197), degrees and minutes
(37° 32.94097′), and degrees-minutes-seconds (37° 32′ 56.46″). Of course, there
can be even more subtle cleaning problems: some devices will create an output with
the Unicode U+00BA character, º, instead of the similar-looking degree character, °,
which is U+00B0.

Decorator Design Techniques

[224]

For this reason, it is often necessary to provide a separate cleansing function that's
bundled in with the conversion function. This function will handle the more
sophisticated conversions required by inputs that are as wildly inconsistent
in format as latitudes and longitudes.

How can we implement this? We have a number of choices. Simple higher-order
functions are a good choice. A decorator, on the other hand, doesn't work out terribly
well. We'll look at a decorator-based design to see that there are limitations to what
makes sense in a decorator.

The requirements have two orthogonal design considerations and they are
as follows:

1. The output conversion (int, float, Decimal)
2. The input cleaning (clean stray characters, reformat coordinates)

Ideally, one of these aspects is an essential function that gets wrapped and the other
aspect is something that's included via a wrapper. The choice of essence versus wrap
isn't clear. One of the reasons it isn't clear is that our previous examples are a bit
more complex than a simple two-part composite.

In the previous examples, we were actually creating a three-part composite:

• The output conversion (int, float, Decimal)
• The input cleansing—either a simple replace or a more complex

multiple-character replacement
• The function which attempted the conversion, did the cleansing as a response

to an exception, and attempted the conversion again

The third part – attempting the conversion and retrying – is the actual wrapper that
also forms a part of the composite function. As we noted previously, a wrapper
contains a before phase and an after phase, which we've called ()w xα and ()w xβ ,
respectively.

We want to use this wrapper to create a composite of two additional functions.
We have two choices for the syntax. We could include the cleansing function
as an argument to the decorator on the conversion as follows:

@cleanse_before(cleanser)

def convert(text):

 something

Chapter 11

[225]

Or, we could include the conversion function as an argument to the decorator for a
cleansing function as follows:

@then_convert(converter)

def clean(text):

 something

In this case, we can choose the @then_convert(converter) style decorator because
we're relying—for the most part—on the built-in conversions. Our point is to show
that the choice is not crystal clear.

The decorator looks as follows:

def then_convert(convert_function):

 def clean_convert_decorator(clean_function):

 @wraps(clean_function)

 def cc_wrapper(text, *args, **kw):

 try:

 return convert_function(text, *args, **kw)

 except (ValueError, decimal.InvalidOperation):

 cleaned= clean_function(text)

 return convert_function(cleaned, *args, **kw)

 return cc_wrapper

 return clean_convert_decorator

We've defined a three-layer decorator. At the heart is the cc_wrapper() function that
applies the convert_function function. If this fails, then it uses a clean_function
function and then tries the convert_function function again. This function is
wrapped around the clean_function function by the then_convert_decorator()
concrete decorator function. The concrete decorator has the convert_function
function as a free variable. The concrete decorator is created by the decorator
interface, then_convert(), which is customized by a conversion function.

We can now build a slightly more flexible cleanse and convert function as follows:

@then_convert(int)

def drop_punct(text):

 return text.replace(",", "").replace("$", "")

The integer conversion is a decorator applied to the given cleansing function. In this
case, the cleansing function removes $ and , characters. The integer conversion is
wrapped around this cleansing.

Decorator Design Techniques

[226]

We can use the integer conversion as follows:

>>> drop_punct("1,701")

1701

>>> drop_punct("97")

97

While this can encapsulate some sophisticated cleansing and converting into a
very tidy package, the results are potentially confusing. The name of the function
is the name of the core cleansing algorithm; the other function's contribution to the
composite is lost.

As an alternative, we can use the integer conversion as follows:

def drop_punct(text):

 return text.replace(",", "").replace("$", "")

drop_punct_int = then_convert(int)(drop_punct)

This will allow us to provide a new name to the decorated cleaning function.
This solves the naming problem, but the construction of the final function via the
then_convert(int)(drop_punct) method is rather opaque.

It seems like we've reached the edge of the envelope here. The decorator model
isn't ideal for this kind of design. Generally, decorators work well when we have a
number of relatively simple and fixed aspects that we want to include with a given
function (or a class). Decorators are also important when these additional aspects
can be looked at as an infrastructure or a support, and not something essential to the
meaning of the application code.

For something that involves multiple orthogonal dimensions, we might want to
result to the Callables function with various kinds of plugin strategy objects.
This might provide something more palatable. We might want to look closely at
creating higher-order functions. We can then create partial functions with various
combinations of parameters for the higher-order functions.

The typical examples of logging or security testing can be considered as the kind
of background processing that isn't specific to the problem domain. When we have
processing that is as ubiquitous as the air that surrounds us, then a decorator might
be more appropriate.

Chapter 11

[227]

Summary
In this chapter, we've looked at two kinds of decorators: the simple decorator with
no arguments and parameterized decorators. We've seen how decorators involve
an indirect composition between functions: the decorator wraps a function (defined
inside the decorator) around another function.

Using the functools.wraps() decorator assures that our decorators will properly
copy attributes from the function being wrapped. This should be a piece of every
decorator we write.

In the next chapter, we'll look at the multiprocessing and multithreading techniques
that are available to us. These packages become particularly helpful in a functional
programming context. When we eliminate a complex shared state and design around
nonstrict processing, we can leverage parallelism to improve the performance.

The Multiprocessing and
Threading Modules

When we eliminate complex, shared state and design around non-strict processing,
we can leverage parallelism to improve performance. In this chapter, we'll look at
the multiprocessing and multithreading techniques that are available to us. Python
library packages become particularly helpful when applied to algorithms that permit
lazy evaluation.

The central idea here is to distribute a functional program across several threads
within a process or across several processes. If we've created a sensible functional
design, we don't have complex interactions among application components; we have
functions that accept argument values and produce results. This is an ideal structure
for a process or a thread.

We'll focus on the multiprocessing and concurrent.futures modules.
These modules allow a number of parallel execution techniques.

We'll also focus on process-level parallelism instead of multithreading. The idea
behind process parallelism allows us to ignore Python's Global Interpreter Lock
(GIL) and achieve outstanding performance.

For more information on Python's GIL, see https://docs.python.org/3.3/c-api/
init.html#thread-state-and-the-global-interpreter-lock.

We won't emphasize features of the threading module. This is often used for
parallel processing. If we have done our functional programming design well, any
issues that stem from multithreaded write access should be minimized. However, the
presence of the GIL means that multithreaded applications in CPython suffer from
some small limitations. As waiting for I/O doesn't involve the GIL, it's possible that
some I/O bound programs might have unusually good performance.

https://docs.python.org/3.3/c-api/init.html#thread-state-and-the-global-interpreter-lock
https://docs.python.org/3.3/c-api/init.html#thread-state-and-the-global-interpreter-lock

The Multiprocessing and Threading Modules

[230]

The most effective parallel processing occurs where there are no dependencies
among the tasks being performed. With some careful design, we can approach
parallel programming as an ideal processing technique. The biggest difficulty in
developing parallel programs is coordinating updates to shared resources.

When following functional design patterns and avoiding stateful programs, we can
also minimize concurrent updates to shared objects. If we can design software where
lazy, non-strict evaluation is central, we can also design software where concurrent
evaluation is possible.

Programs will always have some strict dependencies where ordering of operations
matters. In the 2*(3+a) expression, the (3+a) subexpression must be evaluated
first. However, when working with a collection, we often have situations where the
processing order among items in the collection doesn't matter.

Consider the following two examples:

x = list(func(item) for item in y)

x = list(reversed([func(item) for item in y[::-1]]))

Both of these commands have the same result even though the items are evaluated in
the reverse order.

Indeed, even this following command snippet has the same result:

import random

indices= list(range(len(y)))

random.shuffle(indices)

x = [None]*len(y)

for k in indices:

 x[k] = func(y[k])

The evaluation order is random. As the evaluation of each item is independent, the
order of evaluation doesn't matter. This is the case with many algorithms that permit
non-strict evaluation.

What concurrency really means
In a small computer, with a single processor and a single core, all evaluations are
serialized only through the core of the processor. The operating system will interleave
multiple processes and multiple threads through clever time-slicing arrangements.

Chapter 12

[231]

On a computer with multiple CPUs or multiple cores in a single CPU, there can
be some actual concurrent processing of CPU instructions. All other concurrency
is simulated through time slicing at the OS level. A Mac OS X laptop can have 200
concurrent processes that share the CPU; this is far more processes than the number
of available cores. From this, we can see that the OS time slicing is responsible for
most of the apparently concurrent behavior.

The boundary conditions
Let's consider a hypothetical algorithm which has O n()

2 . Assume that there is an
inner loop that involves 1,000 bytes of Python code. When processing 10,000 objects,
we're executing 100 billion Python operations. This is the essential processing
budget. We can try to allocate as many processes and threads as we feel might be
helpful, but the processing budget can't change.

The individual CPython bytecode doesn't have a simple execution timing. However,
a long-term average on a Mac OS X laptop shows that we can expect about 60 MB of
code to be executed per second. This means that our 100 billion bytecode operation
will take about 1,666 seconds, or 28 minutes.

If we have a dual processor, four-core computer, then we might cut the elapsed time
to 25 percent of the original total: 7 minutes. This presumes that we can partition the
work into four (or more) independent OS processes.

The important consideration here is that our budget of 100 billion bytecodes can't be
changed. Parallelism won't magically reduce the workload. It can only change the
schedule to, perhaps, reduce the elapsed time.

Switching to a better algorithm which is O n n(log) can reduce the workload to 132 MB
of operations. At 60 MBps, this workload is considerably smaller. Parallelism won't
have the kind of dramatic improvements that algorithm change will have.

Sharing resources with process or threads
The OS assures that there is little or no interaction between processes. For two
processes to interact, some common OS resource must be explicitly shared. This can
be a common file, a specific shared memory object, or a semaphore with a shared
state between the processes. Processes are inherently independent, interaction is
exceptional.

The Multiprocessing and Threading Modules

[232]

Multiple threads, on the other hand, are part of a single process; all threads of a
process share OS resources. We can make an exception to get some thread-local
memory that can be freely written without interference from other threads. Outside
thread-local memory, operations that write to memory can set the internal state
of the process in a potentially unpredictable order. Explicit locking must be used
to avoid problems with these stateful updates. As noted previously, the overall
sequence of instruction executions is rarely, strictly speaking, concurrent. The
instructions from concurrent threads and processes are generally interleaved in an
unpredictable order. With threading comes the possibility of destructive updates to
shared variables and the need for careful locking. With parallel processing come the
overheads of OS-level process scheduling.

Indeed, even at the hardware level, there are some complex memory write situations.
For more information on issues in memory writes, visit http://en.wikipedia.org/
wiki/Memory_disambiguation.

The existence of concurrent object updates is what raises havoc with trying to design
multithreaded applications. Locking is one way to avoid concurrent writes to shared
objects. Avoiding shared objects is another viable design technique. This is more
applicable to functional programming.

In CPython, the GIL is used to assure that OS thread scheduling will not interfere
with updates to Python data structures. In effect, the GIL changes the granularity of
scheduling from machine instructions to Python virtual machine operations. Without
the GIL, it's possible that an internal data structure might be corrupted by the
interleaved interaction of competing threads.

Where benefits will accrue
A program that does a great deal of calculation and relatively little I/O will not see
much benefit from concurrent processing. If a calculation has a budget of 28 minutes
of computation, then interleaving the operations in different ways won't have very
much impact. Switching from strict to non-strict evaluation of 100 billion bytecodes
won't shrink the elapsed execution time.

However, if a calculation involves a great deal of I/O, then interleaving CPU
processing and I/O requests can have an impact on performance. Ideally, we'd like
to do our computations on some pieces of data while waiting for the OS to complete
input of the next pieces of data.

http://en.wikipedia.org/wiki/Memory_disambiguation
http://en.wikipedia.org/wiki/Memory_disambiguation

Chapter 12

[233]

We have two approaches to interleaving computation and I/O. They are as follows:

• We can try to interleave I/O and calculation for the entire problem as a
whole. We might create a pipeline of processing with read, compute, and
write as operations. The idea is to have individual data objects flowing
through the pipe from one stage to the next. Each stage can operate in
parallel.

• We can decompose the problem into separate, independent pieces that can be
processed from the beginning to the end in parallel.

The differences between these approaches aren't crisp; there is a blurry middle
region that's not clearly one or the other. For example, multiple parallel pipelines are
a hybrid mixture of both designs. There are some formalisms that make it somewhat
easier to design concurrent programs. The Communicating Sequential Processes
(CSP) paradigm can help design message-passing applications. Packages such as
pycsp can be used to add CSP formalisms to Python.

I/O-intensive programs often benefit from concurrent processing. The idea is
to interleave I/O and processing. CPU-intensive programs rarely benefit from
attempting concurrent processing.

Using multiprocessing pools and tasks
To make non-strict evaluation available in a larger context, the multiprocessing
package introduces the concept of a Pool object. We can create a Pool object of
concurrent worker processes, assign tasks to them, and expect the tasks to be
executed concurrently. As noted previously, this creation does not actually mean
simultaneous creation of Pool objects. It means that the order is difficult to predict
because we've allowed OS scheduling to interleave execution of multiple processes.
For some applications, this permits more work to be done in less elapsed time.

To make the most use of this capability, we need to decompose our application into
components for which non-strict concurrent execution is beneficial. We'd like to
define discrete tasks that can be processed in an indefinite order.

An application that gathers data from the Internet via web scraping is often optimized
through parallel processing. We can create a Pool object of several identical website
scrapers. The tasks are URLs to be analyzed by the pooled processes.

The Multiprocessing and Threading Modules

[234]

An application that analyzes multiple logfiles is also a good candidate for
parallelization. We can create a Pool object of analytical processes. We can assign
each logfile to an analyzer; this allows reading and analysis to proceed in parallel
among the various workers in the Pool object. Each individual worker will involve
serialized I/O and computation. However, one worker can be analyzing the
computation while other workers are waiting for I/O to complete.

Processing many large files
Here is an example of a multiprocessing application. We'll scrape Common Log
Format (CLF) lines in web logfiles. This is the generally used format for an access
log. The lines tend to be long, but look like the following when wrapped to the
book's margins:

99.49.32.197 - - [01/Jun/2012:22:17:54 -0400] "GET /favicon.ico
HTTP/1.1" 200 894 "-" "Mozilla/5.0 (Windows NT 6.0)
AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.52
Safari/536.5"

We often have large numbers of large files that we'd like to analyze. The presence
of many independent files means that concurrency will have some benefit for our
scraping process.

We'll decompose the analysis into two broad areas of functionality. The first phase of
any processing is the essential parsing of the logfiles to gather the relevant pieces of
information. We'll decompose this into four stages. They are as follows:

1. All the lines from multiple source logfiles are read.
2. Then, create simple namedtuples from the lines of log entries in a collection

of files.
3. The details of more complex fields such as dates and URLs are parsed.
4. Uninteresting paths from the logs are rejected; we can also think of this

as passing only the interesting paths.

Once past the parsing phase, we can perform a large number of analyses. For our
purposes in demonstrating the multiprocessing module, we'll look at a simple
analysis to count occurrences of specific paths.

The first portion, reading from source files, involves the most input processing.
The Python use of file iterators will translate into lower-level OS requests for
buffering of data. Each OS request means that the process must wait for the data
to become available.

Chapter 12

[235]

Clearly, we want to interleave the other operations so that they are not waiting for
I/O to complete. We can interleave operations along a spectrum from individual
rows to whole files. We'll look at interleaving whole files first, as this is relatively
simple to implement.

The functional design for parsing Apache CLF files can look as follows:

data = path_filter(access_detail_iter(access_iter(local_gzip
(filename))))

We've decomposed the larger parsing problem into a number of functions that
will handle each portion of the parsing problem. The local_gzip() function reads
rows from locally-cached GZIP files. The access_iter() function creates a simple
namedtuple object for each row in the access log. The access_detail_iter()
function will expand on some of the more difficult to parse fields. Finally, the
path_filter() function will discard some paths and file extensions that aren't
of much analytical value.

Parsing log files – gathering the rows
Here is the first stage in parsing a large number of files: reading each file and
producing a simple sequence of lines. As the logfiles are saved in the .gzip format,
we need to open each file with the gzip.open() function instead of the io.open()
function or the __builtins__.open() function.

The local_gzip() function reads lines from locally cached files, as shown in the
following command snippet:

def local_gzip(pattern):

 zip_logs= glob.glob(pattern)

 for zip_file in zip_logs:

 with gzip.open(zip_file, "rb") as log:

 yield (line.decode('us-ascii').rstrip() for line in log)

The preceding function iterates through all files. For each file, the yielded value
is a generator function that will iterate through all lines within that file. We've
encapsulated several things, including wildcard file matching, the details of opening
a logfile compressed with the .gzip format, and breaking a file into a sequence of
lines without any trailing \n characters.

The essential design pattern here is to yield values that are generator expressions for
each file. The preceding function can be restated as a function and a mapping that
applies that function to each file.

The Multiprocessing and Threading Modules

[236]

There are several other ways to produce similar output. For example, here is an
alternative version of the inner for loop in the preceding example. The line_iter()
function will also emit lines of a given file:

 def line_iter(zip_file):

 log= gzip.open(zip_file, "rb")

 return (line.decode('us-ascii').rstrip() for line in log)

The line_iter() function applies the gzip.open() function and some line cleanup.
We can use a mapping to apply the line_iter() function to all files that match a
pattern as follows:

map(line_iter, glob.glob(pattern))

While this alternative mapping is succinct, it has the disadvantage of leaving
open file objects lying around waiting to be properly garbage-collected when there
are no more references. When processing a large number of files, this seems like a
needless bit of overhead. For this reason, we'll focus on the local_gzip() function
shown previously.

The previous alternative mapping has the distinct advantage of fitting well with the
way the multiprocessing module works. We can create a worker pool and map
tasks (such as file reading) to the pool of processes. If we do this, we can read these
files in parallel; the open file objects will be part of separate processes.

An extension to this design will include a second function to transfer files from
the web host using FTP. As the files are collected from the web server, they can be
analyzed using the local_gzip() function.

The results of the local_gzip() function are used by the access_iter() function
to create namedtuples for each row in the source file that describes a file access.

Parsing log lines into namedtuples
Once we have access to all of the lines of each logfile, we can extract details of
the access that's described. We'll use a regular expression to decompose the line.
From there, we can build a namedtuple object.

Here is a regular expression to parse lines in a CLF file:

format_pat= re.compile(
 r"(?P<host>[\d\.]+)\s+"
 r"(?P<identity>\S+)\s+"
 r"(?P<user>\S+)\s+"
 r"\[(?P<time>.+?)\]\s+"
 r'"(?P<request>.+?)"\s+'

Chapter 12

[237]

 r"(?P<status>\d+)\s+"
 r"(?P<bytes>\S+)\s+"
 r'"(?P<referer>.*?)"\s+' # [SIC]
 r'"(?P<user_agent>.+?)"\s*'
)

We can use this regular expression to break each row into a dictionary of nine
individual data elements. The use of []and " to delimit complex fields such as the
time, request, referrer, and user_agent parameters are handled gracefully by the
namedtuple pattern.

Each individual access can be summarized as a namedtuple() function as follows:

Access = namedtuple('Access', ['host', 'identity', 'user', 'time',
'request', 'status', 'bytes', 'referrer', 'user_agent'])

We've taken pains to assure that the namedtuple function's fields
match the regular expression group names in the (?P<name>)
constructs for each portion of the record. By making sure the names
match, we can very easily transform the parsed dictionary into a tuple
for further processing.

Here is the access_iter() function that requires each file to be represented
as an iterator over the lines of the file:

def access_iter(source_iter):

 for log in source_iter:

 for line in log:

 match= format_pat.match(line)

 if match:

 yield Access(**match.groupdict())

The output from the local_gzip() function is a sequence of sequences. The outer
sequence consists of individual logfiles. For each file, there is an iterable sequence
of lines. If the line matches the given pattern, it's a file access of some kind. We can
create an Access namedtuple from the match dictionary.

The essential design pattern here is to build a static object from the results of a
parsing function. In this case, the parsing function is a regular expression matcher.

The Multiprocessing and Threading Modules

[238]

There are some alternative ways to do this. For example, we can revise the use of the
map() function as follows:

 def access_builder(line):

 match= format_pat.match(line)

 if match:

 return Access(**match.groupdict())

The preceding alternative function embodies just the essential parse and builds an
Access object processing. It will either return an Access or a None object. This differs
from the version above that also filters items that don't match the regular expression.

Here is how we can use this function to flatten logfiles into a single stream of the
Access objects:

 map(access_builder, (line for log in source_iter for line in
 log))

This shows how we can transform the output from the local_gzip() function into
a sequence of the Access instances. In this case, we apply the access_builder()
function to the nested iterator of iterable structure that results from reading a
collection of files.

Our point here is to show that we have a number of functional styles for parsing
files. In Chapter 4, Working with Collections we showed very simple parsing. Here,
we're performing more complex parsing, using a variety of techniques.

Parsing additional fields of an Access object
The initial Access object created previously doesn't decompose some inner
elements in the nine fields that comprise an access log line. We'll parse those items
separately from the overall decomposition into high-level fields. It keeps the regular
expressions for parsing somewhat simpler if we break this down into separate
parsing operations.

The resulting object is a namedtuple object that will wrap the original Access tuple.
It will have some additional fields for the details parsed separately:

AccessDetails = namedtuple('AccessDetails', ['access', 'time',
'method', 'url', 'protocol', 'referrer', 'agent'])

Chapter 12

[239]

The access attribute is the original Access object. The time attribute is the
parsed access.time string. The method, url, and protocol attributes come from
decomposing the access.request field. The referrer attribute is a parsed URL.
The agent attribute can also be broken down into fine-grained fields. Here are the
fields that comprise agent details:

AgentDetails= namedtuple('AgentDetails', ['product', 'system',
'platform_details_extensions'])

These fields reflect the most common syntax for agent descriptions. There is
considerable variation in this area, but this particular subset of values seems to be
reasonably common.

We'll combine three detailed parser functions into a single overall parsing function.
Here is the first part with the various detail parsers:

def access_detail_iter(iterable):

 def parse_request(request):

 words = request.split()

 return words[0], ' '.join(words[1:-1]), words[-1]

 def parse_time(ts):

 return datetime.datetime.strptime(ts, "%d/%b/%Y:%H:%M:%S %z")

 agent_pat= re.compile(r"(?P<product>\S*?)\s+"

 r"\((?P<system>.*?)\)\s*"

 r"(?P<platform_details_extensions>.*)")

 def parse_agent(user_agent):

 agent_match= agent_pat.match(user_agent)

 if agent_match:

 return AgentDetails(**agent_match.groupdict())

We've written three parsers for the HTTP request, the time stamp, and the user agent
information. The request is usually a three-word string such as GET /some/path
HTTP/1.1. The parse_request() function extracts these three space-separated values.
In the unlikely event that the path has spaces in it, we'll extract the first word and the
last word as the method and protocol; all the remaining words are part of the path.

Time parsing is delegated to the datetime module. We've simply provided the
proper format in the parse_time() function.

The Multiprocessing and Threading Modules

[240]

Parsing the user agent is challenging. There are many variations; we've chosen
a common one for the parse_agent() function. If the user agent matches the
given regular expression, we'll have the attributes of an AgentDetails namedtuple.
If the user agent information doesn't match the regular expression, we'll simply use
the None value instead.

We'll use these three parsers to build AccessDetails instances from the given
Access objects. The main body of the access_detail_iter() function looks
as follows:

 for access in iterable:

 try:

 meth, uri, protocol = parse_request(access.request)

 yield AccessDetails(
 access= access,
 time= parse_time(access.time),
 method= meth,
 url= urllib.parse.urlparse(uri),
 protocol= protocol,
 referrer = urllib.parse.urlparse(access.referer),
 agent= parse_agent(access.user_agent)
)

 except ValueError as e:

 print(e, repr(access))

We've used a similar design pattern to the previous access_iter() function. A new
object is built from the results of parsing some input object. The new AccessDetails
object will wrap the previous Access object. This technique allows us to use
immutable objects, yet still contain more refined information.

This function is essentially a mapping from an Access object to an AccessDetails
object. We can imagine changing the design to use map() as follows:

def access_detail_iter2(iterable):

 def access_detail_builder(access):

 try:

 meth, uri, protocol = parse_request(access.request)

 return AccessDetails(
 access= access,
 time= parse_time(access.time),
 method= meth,
 url= urllib.parse.urlparse(uri),
 protocol= protocol,
 referrer = urllib.parse.urlparse(access.referer),
 agent= parse_agent(access.user_agent)
)

Chapter 12

[241]

 except ValueError as e:

 print(e, repr(access))

 return filter(None, map(access_detail_builder, iterable))

We've changed the construction of the AccessDetails object to be a function
that returns a single value. We can map that function to the iterable input stream
of the Access objects. This also fits nicely with the way the multiprocessing
module works.

In an object-oriented programming environment, these additional parsers might be
method functions or properties of a class definition. The advantage of this design
is that items aren't parsed unless they're needed. This particular functional design
parses everything, assuming that it's going to be used.

A different function design might rely on the three parser functions to extract and
parse the various elements from a given Access object as needed. Rather than using
the details.time attribute, we'd use the parse_time(access.time) parameter.
The syntax is longer, but the attribute is only parsed as needed.

Filtering the access details
We'll look at several filters for the AccessDetails objects. The first is a collection of
filters that reject a lot of overhead files that are rarely interesting. The second filter
will be part of the analysis functions, which we'll look at later.

The path_filter() function is a combination of three functions:

1. Exclude empty paths.
2. Exclude some specific filenames.
3. Exclude files that have a given extension.

An optimized version of the path_filter() function looks as follows:

def path_filter(access_details_iter):

 name_exclude = {
 'favicon.ico', 'robots.txt', 'humans.txt',
 'crossdomain.xml' ,
 '_images', 'search.html', 'genindex.html',
 'searchindex.js', 'modindex.html', 'py-modindex.html',
 }

 ext_exclude = {
 '.png', '.js', '.css',
 }

 for detail in access_details_iter:

 path = detail.url.path.split('/')

The Multiprocessing and Threading Modules

[242]

 if not any(path):

 continue

 if any(p in name_exclude for p in path):

 continue

 final= path[-1]

 if any(final.endswith(ext) for ext in ext_exclude):

 continue

 yield detail

For each individual AccessDetails object, we'll apply three filter tests. If the path
is essentially empty or the part includes one of the excluded names or the path's
final name has an excluded extension, the item is quietly ignored. If the path doesn't
match any of these criteria, it's potentially interesting and is part of the results
yielded by the path_filter() function.

This is an optimization because all of the tests are applied using an imperative style
for loop body.

The design started with each test as a separate first-class filter-style function.
For example, we might have a function like the following to handle empty paths:

 def non_empty_path(detail):

 path = detail.url.path.split('/')

 return any(path)

This function simply assures that the path contains a name. We can use the filter()
function as follows:

filter(non_empty_path, access_details_iter)

We can write similar tests for the non_excluded_names() and non_excluded_ext()
functions. The entire sequence of filter() functions will look as follows:

filter(non_excluded_ext,
 filter(non_excluded_names,
 filter(non_empty_path, access_details_iter)))

This applies each filter() function to the results of the previous filter()
function. The empty paths are rejected; from this subset, the excluded names and the
excluded extensions are rejected. We can also state the preceding example as a series
of assignment statements as follows:

 ne= filter(non_empty_path, access_details_iter)

 nx_name= filter(non_excluded_names, ne)

 nx_ext= filter(non_excluded_ext, nx_name)

 return nx_ext

Chapter 12

[243]

This version has the advantage of being slightly easier to expand when we add new
filter criteria.

The use of generator functions (such as the filter() function)
means that we aren't creating large intermediate objects. Each of the
intermediate variables, ne, nx_name, and nx_ext, are proper lazy
generator functions; no processing is done until the data is consumed
by a client process.

While elegant, this suffers from a small inefficiency because each function will need
to parse the path in the AccessDetails object. In order to make this more efficient,
we will need to wrap a path.split('/') function with the lru_cache attribute.

Analyzing the access details
We'll look at two analysis functions we can use to filter and analyze the individual
AccessDetails objects. The first function, a filter() function, will pass only specific
paths. The second function will summarize the occurrences of each distinct path.

We'll define the filter() function as a small function and combine this with the
built-in filter() function to apply the function to the details. Here is the composite
filter() function:

def book_filter(access_details_iter):

 def book_in_path(detail):

 path = tuple(l for l in detail.url.path.split('/') if l)

 return path[0] == 'book' and len(path) > 1

 return filter(book_in_path, access_details_iter)

We've defined a rule, the book_in_path() attribute, that we'll apply to each
AccessDetails object. If the path is not empty and the first-level attribute of the
path is book, then we're interested in these objects. All other AccessDetails objects
can be quietly rejected.

Here is the final reduction that we're interested in:

from collections import Counter

def reduce_book_total(access_details_iter):

 counts= Counter()

 for detail in access_details_iter:

 counts[detail.url.path] += 1

 return counts

The Multiprocessing and Threading Modules

[244]

This function will produce a Counter() object that shows the frequency of each path
in an AccessDetails object. In order to focus on a particular set of paths, we'll use
the reduce_total(book_filter(details)) method. This provides a summary of
only items that are passed by the given filter.

The complete analysis process
Here is the composite analysis() function that digests a collection of logfiles:

def analysis(filename):

 details= path_filter(access_detail_iter(access_iter(local_gzip
 (filename))))

 books= book_filter(details)

 totals= reduce_book_total(books)

 return totals

The preceding command snippet will work with a single filename or file pattern.
It applies a standard set of parsing functions, path_filter(), access_detail_
iter(), access_iter(), and local_gzip(), to a filename or file pattern and returns
an iterable sequence of the AccessDetails objects. It then applies our analytical
filter and reduction to that sequence of the AccessDetails objects. The result is a
Counter object that shows the frequency of access for certain paths.

A specific collection of saved .gzip format logfiles totals about 51 MB. Processing
the files serially with this function takes over 140 seconds. Can we do better using
concurrent processing?

Using a multiprocessing pool for
concurrent processing
One elegant way to make use of the multiprocessing module is to create a
processing Pool object and assign work to the various processes in that pool.
We will use the OS to interleave execution among the various processes. If each
of the processes has a mixture of I/O and computation, we should be able to assure
that our processor is very busy. When processes are waiting for I/O to complete,
other processes can do their computation. When an I/O completes, a process will be
ready to run and can compete with others for processing time.

The recipe for mapping work to a separate process looks as follows:

 import multiprocessing

 with multiprocessing.Pool(4) as workers:

 workers.map(analysis, glob.glob(pattern))

Chapter 12

[245]

We've created a Pool object with four separate processes and assigned this Pool
object to the workers variable. We've then mapped a function, analysis, to an
iterable queue of work to be done, using the pool of processes. Each process in the
workers pool will be assigned items from the iterable queue. In this case, the queue
is the result of the glob.glob(pattern) attribute, which is a sequence of file names.

As the analysis() function returns a result, the parent process that created the Pool
object can collect those results. This allows us to create several concurrently-built
Counter objects and merge them into a single, composite result.

If we start p processes in the pool, our overall application will include p+1 processes.
There will be one parent process and p children. This often works out well because
the parent process will have little to do after the subprocess pools are started.
Generally, the workers will be assigned to separate CPUs (or cores) and the parent
will share a CPU with one of the children in the Pool object.

The ordinary Linux parent/child process rules apply to the subprocesses
created by this module. If the parent crashes without properly collecting
final status from the child processes, then "zombie" processes can be left
running. For this reason, a process Pool object is a context manager.
When we use a pool via the with statement, at the end of the context, the
children are properly terminated.

By default, a Pool object will have a number of workers based on the value of
the multiprocessing.cpu_count() function. This number is often optimal, and
simply using the with multiprocessing.Pool() as workers: attribute might
be sufficient.

In some cases, it can help to have more workers than CPUs. This might be true when
each worker has I/O-intensive processing. Having many worker processes waiting
for I/O to complete can improve the elapsed running time of an application.

If a given Pool object has p workers, this mapping can cut the processing time to
almost 1p of the time required to process all of the logs serially. Pragmatically, there
is some overhead involved with communication between the parent and child
processes in the Pool object. Therefore, a four-core processor might only cut the
processing time in half.

The multiprocessing Pool object has four map-like methods to allocate work to a
pool: map(), imap(), imap_unordered(), and starmap(). Each of these is a variation
on the common theme of mapping a function to a pool of processes. They differ in
the details of allocating work and collecting results.

The Multiprocessing and Threading Modules

[246]

The map(function, iterable) method allocates items from the iterable to each
worker in the pool. The finished results are collected in the order they were allocated
to the Pool object so that order is preserved.

The imap(function, iterable) method is described as "lazier" than map.
By default, it sends each individual item from the iterable to the next available
worker. This might involve more communication overhead. For this reason,
a chunk size larger than 1 is suggested.

The imap_unordered(function, iterable) method is similar to the imap()
method, but the order of the results is not preserved. Allowing the mapping to be
processed out of order means that, as each process finishes, the results are collected.
Otherwise, the results must be collected in order.

The starmap(function, iterable) method is similar to the itertools.
starmap() function. Each item in the iterable must be a tuple; the tuple is passed
to the function using the * modifier so that each value of the tuple becomes a
positional argument value. In effect, it's performing function(*iterable[0]),
function(*iterable[1]), and so on.

Here is one of the variations on the preceding mapping theme:

 import multiprocessing

 pattern = "*.gz"

 combined= Counter()

 with multiprocessing.Pool() as workers:

 for result in workers.imap_unordered(analysis,
 glob.glob(pattern)):

 combined.update(result)

We've created a Counter() function that we'll use to consolidate the results from
each worker in the pool. We created a pool of subprocesses based on the number of
available CPUs and used the Pool object as a context manager. We then mapped our
analysis() function to each file in our file-matching pattern. The resulting Counter
objects from the analysis() function are combined into a single resulting counter.

This takes about 68 seconds. The time to analyze the logs was cut in half using
several concurrent processes.

We've created a two-tiered map-reduce process with the multiprocessing module's
Pool.map() function. The first tier was the analysis() function, which performed
a map-reduce on a single logfile. We then consolidated these reductions in a
higher-level reduce operation.

Chapter 12

[247]

Using apply() to make a single request
In addition to the map() function's variants, a pool also has an apply(function,
*args, **kw) method that we can use to pass one value to the worker pool. We
can see that the map() method is really just a for loop wrapped around the apply()
method, we can, for example, use the following command:

list(workers.apply(analysis, f) for f in glob.glob(pattern))

It's not clear, for our purposes, that this is a significant improvement. Almost
everything we need to do can be expressed as a map() function.

Using map_async(), starmap_async(), and
apply_async()
The behavior of the map(), starmap(), and apply() functions is to allocate work to
a subprocess in the Pool object and then collect the response from the subprocess
when that response is ready. This can cause the child to wait for the parent to gather
the results. The _async() function's variations do not wait for the child to finish.
These functions return an object that can be queried to get the individual results from
the child processes.

The following is a variation using the map_async() method:

 import multiprocessing

 pattern = "*.gz"

 combined= Counter()

 with multiprocessing.Pool() as workers:

 results = workers.map_async(analysis, glob.glob(pattern))

 data= results.get()

 for c in data:

 combined.update(c)

We've created a Counter() function that we'll use to consolidate the results from
each worker in the pool. We created a pool of subprocesses based on the number of
available CPUs and used this Pool object as a context manager. We then mapped
our analysis() function to each file in our file-matching pattern. The response from
the map_async() function is a MapResult object; we can query this for results and
overall status of the pool of workers. In this case, we used the get() method to get
the sequence of the Counter objects.

The Multiprocessing and Threading Modules

[248]

The resulting Counter objects from the analysis() function are combined into a
single resulting Counter object. This aggregate gives us an overall summary of a
number of logfiles. This processing is not any faster than the previous example.
The use of the map_async() function allows the parent process to do additional
work while waiting for the children to finish.

More complex multiprocessing architectures
The multiprocessing package supports a wide variety of architectures. We can
easily create multiprocessing structures that span multiple servers and provide
formal authentication techniques to create a necessary level of security. We can
pass objects from process to process using queues and pipes. We can share memory
between processes. We can also share lower-level locks between processes as a way
to synchronize access to shared resources such as files.

Most of these architectures involve explicitly managing state among several working
processes. Using locks and shared memory, in particular, are imperative in nature
and don't fit well with a functional programming approach.

We can, with some care, treat queues and pipes in a functional manner. Our
objective is to decompose a design into producer and consumer functions. A
producer can create objects and insert them into a queue. A consumer will take
objects out of a queue and process them, perhaps putting intermediate results into
another queue. This creates a network of concurrent processors and the workload is
distributed among these various processes. Using the pycsp package can simplify
the queue-based exchange of messages among processes. For more information, visit
https://pypi.python.org/pypi/pycsp.

This design technique has some advantages when designing a complex application
server. The various subprocesses can exist for the entire life of the server, handling
individual requests concurrently.

Using the concurrent.futures module
In addition to the multiprocessing package, we can also make use of the
concurrent.futures module. This also provides a way to map data to a concurrent
pool of threads or processes. The module API is relatively simple and similar in
many ways to the multiprocessing.Pool() function's interface.

https://pypi.python.org/pypi/pycsp

Chapter 12

[249]

Here is an example to show just how similar they are:

 import concurrent.futures

 pool_size= 4

 pattern = "*.gz"

 combined= Counter()

 with concurrent.futures.ProcessPoolExecutor
 (max_workers=pool_size) as workers:

 for result in workers.map(analysis, glob.glob(pattern)):

 combined.update(result)

The most significant change between the preceding example and previous examples
is that we're using an instance of the concurrent.futures.ProcessPoolExecutor
object instead of the multiprocessing.Pool method. The essential design pattern
is to map the analysis() function to the list of filenames using the pool of available
workers. The resulting Counter objects are consolidated to create a final result.

The performance of the concurrent.futures module is nearly identical to the
multiprocessing module.

Using concurrent.futures thread pools
The concurrent.futures module offers a second kind of executor that we can use in
our applications. Instead of creating a concurrent.futures.ProcessPoolExecutor
object, we can use the ThreadPoolExecutor object. This will create a pool of threads
within a single process.

The syntax is otherwise identical to using a ProcessPoolExecutor object. The
performance, however, is remarkably different. The logfile processing is dominated
by I/O. All of the threads in a process share the same OS scheduling constraints.
Due to this, the overall performance of multithreaded logfile analysis is about the
same as processing the logfiles serially.

Using sample logfiles and a small four-core laptop running Mac OS X, these are the
kinds of results that indicate the difference between threads that share I/O resources
and processes:

• Using the concurrent.futures thread pool, the elapsed time was
168 seconds

• Using a process pool, the elapsed time was 68 seconds

In both cases, the Pool object's size was 4. It's not clear which kind of applications
benefit from a multithreading approach. In general, multiprocessing seems to be best
for Python applications.

The Multiprocessing and Threading Modules

[250]

Using the threading and queue modules
The Python threading package involves a number of constructs helpful for
building imperative applications. This module is not focused on writing functional
applications. We can make use of thread-safe queues in the queue module to pass
objects from thread to thread.

The threading module doesn't have a simple way to distribute work to various
threads. The API isn't ideally suited to functional programming.

As with the more primitive features of the multiprocessing module, we can try
to conceal the stateful and imperative nature of locks and queues. It seems easier,
however, to make use of the ThreadPoolExecutor method in the concurrent.
futures module. The ProcessPoolExecutor.map() method provides us with a
very pleasant interface to concurrent processing of the elements of a collection.

The use of the map() function primitive to allocate work seems to fit nicely with
our functional programming expectations. For this reason, it's best to focus on
the concurrent.futures module as the most accessible way to write concurrent
functional programs.

Designing concurrent processing
From a functional programming perspective, we've seen three ways to use
the map() function concept applied to data items concurrently. We can use any
one of the following:

• multiprocessing.Pool

• concurrent.futures.ProcessPoolExecutor

• concurrent.futures.ThreadPoolExecutor

These are almost identical in the way we interact with them; all three have a map()
method that applies a function to items of an iterable collection. This fits elegantly
with other functional programming techniques. The performance is different because
of the nature of concurrent threads versus concurrent processes.

As we stepped through the design, our log analysis application decomposed into
two overall areas:

• The lower-level parsing: This is generic parsing that will be used by almost
any log analysis application

• The higher-level analysis application: This is more specific filtering and
reduction focused on our application needs

Chapter 12

[251]

The lower-level parsing can be decomposed into four stages:

• Reading all the lines from multiple source logfiles. This was the
local_gzip() mapping from file name to a sequence of lines.

• Creating simple namedtuples from the lines of log entries in a collection of
files. This was the access_iter() mapping from text lines to Access objects.

• Parsing the details of more complex fields such as dates and URLs.
This was the access_detail_iter() mapping from Access objects to
AccessDetails objects.

• Rejecting uninteresting paths from the logs. We can also think of this
as passing only the interesting paths. This was more of a filter than
a map operation. This was a collection of filters bundled into the
path_filter() function.

We defined an overall analysis() function that parsed and analyzed a given
logfile. It applied the higher-level filter and reduction to the results of the lower-level
parsing. It can also work with a wild-card collection of files.

Given the number of mappings involved, we can see several ways to decompose
this problem into work that can be mapped to into a pool of threads or processes.
Here are some of the mappings we can consider as design alternatives:

• Map the analysis() function to individual files. We use this as a consistent
example throughout this chapter.

• Refactor the local_gzip() function out of the overall analysis() function.
We can now map the revised analysis() function to the results of the
local_gzip() function.

• Refactor the access_iter(local_gzip(pattern)) function out of the
overall analysis() function. We can map this revised analysis() function
against the iterable sequence of the Access objects.

• Refactor the access_detail_iter(access-iter(local_gzip(pattern)))
function into a separate iterable. We will then map the path_filter()
function and the higher-level filter and reduction against the iterable
sequence of the AccessDetail objects.

• We can also refactor the lower-level parsing into a function that is separate
from the higher-level analysis. We can map the analysis filter and reduction
against the output from the lower-level parsing.

All of these are relatively simple restructurings of the example application. The
benefit of using functional programming techniques is that each part of the overall
process can be defined as a mapping. This makes it practical to consider different
architectures to locate an optimal design.

The Multiprocessing and Threading Modules

[252]

In this case, however, we need to distribute the I/O processing to as many CPUs or
cores as we have available. Most of these potential refactorings will perform all of
the I/O in the parent process; these will only distribute the computations to multiple
concurrent processes with little resulting benefit. Then, we want to focus on the
mappings, as these distribute the I/O to as many cores as possible.

It's often important to minimize the amount of data being passed from process to
process. In this example, we provided just short filename strings to each worker
process. The resulting Counter object was considerably smaller than the 10 MB
of compressed detail data in each logfile. We can further reduce the size of each
Counter object by eliminating items that occur only once; or we can limit our
application to only the 20 most popular items.

The fact that we can reorganize the design of this application freely doesn't mean
we should reorganize the design. We can run a few benchmarking experiments to
confirm our suspicion that logfile parsing is dominated by the time required to read
the files.

Summary
In this chapter, we've looked at two ways to support concurrent processing of
multiple pieces of data:

• The multiprocessing module: Specifically, the Pool class and the various
kinds of mappings available to a pool of workers.

• The concurrent.futures module: Specifically the ProcessPoolExecutor
and ThreadPoolExecutor class. These classes also support a mapping that
will distribute work among workers that are threads or processes.

We've also noted some alternatives that don't seem to fit well with functional
programming. There are numerous other features of the multiprocessing module,
but they're not a good fit with functional design. Similarly, the threading and queue
modules can be used to build multithreaded applications, but the features aren't a
good fit with functional programs.

In the next chapter, we'll look at the operator module. This can be used to simplify
some kinds of algorithms. We can use a built-in operator function instead of defining
a lambda form. We'll also look at some techniques to design flexible decision making
and allow expressions to be evaluated in a non-strict order.

Conditional Expressions and
the Operator Module

Functional programming emphasizes lazy or non-strict ordering of operations.
The idea is to allow the compiler or runtime to do as little work as possible to
compute the answer. Python tends to impose strict ordering on evaluations.

For example, we used the Python if, elif, and else statements. They're clear
and readable, but they imply a strict ordering on the evaluation of the conditions.
We can, to an extent, free ourselves from the strict ordering here, and develop a
limited kind of non-strict conditional statement. It's not clear if this is helpful but it
shows some alternative ways to express an algorithm in a functional style.

The first part of this chapter will look at ways we can implement non-strict
evaluation. This is a tool that's interesting because it can lead to performance
optimizations.

In the previous chapters, we looked at a number of higher-order functions. In some
cases, we used these higher-order functions to apply fairly sophisticated functions to
collections of data. In other cases, we applied simple functions to collections of data.

Indeed, in many cases, we wrote tiny lambda objects to apply a single Python
operator to a function. For example, we can use the following to define a
prod() function:

>>> prod= lambda iterable: functools.reduce(lambda x, y: x*y,
iterable, 1)

>>> prod((1,2,3))

6

Conditional Expressions and the Operator Module

[254]

The use of the lambda x,y: x*y parameter seems a bit wordy for multiplication.
After all, we just want to use the multiplication operator, *. Can we simplify the
syntax? The answer is yes; the operator module provides us with definitions
of the built-in operators.

There are a number of features of the operator module that lead to some
simplification and potential clarification to create higher-order functions. While
important conceptually, the operator module isn't as interesting as it initially appears.

Evaluating conditional expressions
Python imposes relatively strict ordering on expressions; the notable exceptions are
the short-circuit operators, and and or. It imposes very strict ordering on statement
evaluation. This makes it challenging to find different ways to avoid this strict
evaluation.

It turns out that evaluating condition expressions is one way in which we can
experiment with non-strict ordering of statements. We'll examine some ways to
refactor the if and else statements to explore this aspect of non-strict evaluation
in Python.

The Python if, elif, and else statements are evaluated in a strict order from first to
last. Ideally, a language might relax this rule so that an optimizing compiler can find
a faster order for evaluating the conditional expressions. The idea is for us to write
the expressions in an order that makes sense to a reader, even if the actual evaluation
order is non-strict.

Lacking an optimizing compiler, this concept is a bit of a stretch for Python.
Nonetheless, we do have alternative ways to express conditions that involve the
evaluation of functions instead of the execution of imperative statements. This can
allow you to make some rearrangement at runtime.

Python does have a conditional if and else expression. This expression form can be
used when there's a single condition. When we have multiple conditions, however,
it can get awkwardly complex: we'd have to carefully nest the subexpressions. We
might wind up with a command, as follows, which is rather difficult to comprehend:

(x if n==1 else (y if n==2 else z))

Chapter 13

[255]

We can use dictionary keys and the lambda objects to create a very complex set of
conditions. Here's a way to express the factorial function as expressions:

def fact(n):

 f= { n == 0: lambda n: 1,

 n == 1: lambda n: 1,

 n == 2: lambda n: 2,

 n > 2: lambda n: fact(n-1)*n }[True]

 return f(n)

This rewrites the conventional if, elif, elif, and else sequence of statements into
a single expression. We've decomposed it into two steps to make what's happening
slightly clearer.

In the first step, we'll evaluate the various conditions. One of the given conditions
will evaluate to True, the others should all evaluate to False. The resulting
dictionary will have two items in it: a True key with a lambda object and a False key
with a lambda object. We'll select the True item and assign it to the f variable.

We used lambdas as the values in this mapping so that the value expressions aren't
evaluated when the dictionary is built. We want to evaluate just one of the value
expressions. The return statement evaluates the one expression associated with the
True condition.

Exploiting non-strict dictionary rules
A dictionary's keys have no order. If we try to create a dictionary with multiple
items that share a common key value, we'll only have one item in the resulting
dict object. It's not clear which of the duplicated key values will be preserved,
and it shouldn't matter.

Here's a situation where we explicitly don't care which of the duplicated keys is
preserved. We'll look at a degenerate case of the max() function, it simply picks the
largest of two values:

def max(a, b):

 f = {a >= b: lambda: a, b >= a: lambda: b}[True]

 return f()

In the case where a == b, both items in the dictionary will have a key of the True
condition. Only one of the two will actually be preserved. Since the answer is the same,
it doesn't matter which is kept and which is treated as a duplicate and overwritten.

Conditional Expressions and the Operator Module

[256]

Filtering true conditional expressions
We have a number of ways of determining which expression is True. In the previous
example, we loaded the keys into a dictionary. Because of the way the dictionary is
loaded, only one value will be preserved with a key of True.

Here's another variation to this theme, written using the filter() function:

def semifact(n):

 alternatives= [(n == 0, lambda n: 1),

 (n == 1, lambda n: 1),

 (n == 2, lambda n: 2),

 (n > 2, lambda n: semifact(n-2)*n)]

 c, f= next(filter(itemgetter(0), alternatives))

 return f(n)

We defined the alternatives as a sequence of condition and function pairs. When
we apply the filter() function using the itemgetter(0) parameter, we'll select
those pairs with a True condition. Of those which are True, we'll select the first item
in the iterable created by the filter() function. The selected condition is assigned
to the c variable, the selected function is assigned to the f variable. We can ignore the
condition (it will be True), and we can evaluate the filter() function.

As with the previous example, we used lambdas to defer evaluation of the functions
until after the conditions have been evaluated.

This semifact() function is also called double factorial. The definition of the
semifactorial is similar to the definition of factorial. The important difference is that it
is the product of alternate numbers instead of all numbers. For example, take a look
at the following formulas:

5!! 5 3 1= × × , and 7!! 7 5 3 1= × × ×

Using the operator module instead
of lambdas
When using the max(), min(), and sorted() functions, we have an optional
key= parameter. The function provided as an argument value modifies the behavior
of the higher-order function. In many cases, we used simple lambda forms to pick
items from a tuple. Here are two examples we heavily relied on:

fst = lambda x: x[0]

snd = lambda x: x[1]

Chapter 13

[257]

These match built-in functions in other functional programming languages.

We don't really need to write these functions. There's a version available in the
operator module which describes these functions.

Here's some sample data we can work with:

>>> year_cheese = [(2000, 29.87), (2001, 30.12), (2002, 30.6),
(2003, 30.66), (2004, 31.33), (2005, 32.62), (2006, 32.73),
(2007, 33.5), (2008, 32.84), (2009, 33.02), (2010, 32.92)]

This is the annual cheese consumption. We used this example in Chapter 2,
Introducing Some Functional Features and Chapter 9, More Itertools Techniques.

We can locate the data point with minimal cheese using the following commands:

>>> min(year_cheese, key=snd)

(2000, 29.87)

The operator module gives us an alternative to pick particular elements from
a tuple. This saves us from using a lambda variable to pick the second item.

Instead of defining our own fst() and snd() functions, we can use the
itemgetter(0) and the itemgetter(1) parameters, as shown in the
following command:

>>> from operator import *

>>> max(year_cheese, key=itemgetter(1))

(2007, 33.5)

The itemgetter() function relies on the special method, __getitem__(), to pick
items out of a tuple (or list) based on their index position.

Getting named attributes when using
higher-order functions
Let's look at a slightly different collection of data. Let's say we were working with
namedtuples instead of anonymous tuples. We have two ways to locate the range
of cheese consumption shown as follows:

>>> from collections import namedtuple

>>> YearCheese = namedtuple("YearCheese", ("year", "cheese"))

>>> year_cheese_2 = list(YearCheese(*yc) for yc in year_cheese)

>>> year_cheese_2

Conditional Expressions and the Operator Module

[258]

[YearCheese(year=2000, cheese=29.87), YearCheese(year=2001,
cheese=30.12), YearCheese(year=2002, cheese=30.6),
YearCheese(year=2003, cheese=30.66), YearCheese(year=2004,
cheese=31.33), YearCheese(year=2005, cheese=32.62),
YearCheese(year=2006, cheese=32.73), YearCheese(year=2007,
cheese=33.5), YearCheese(year=2008, cheese=32.84),
YearCheese(year=2009, cheese=33.02), YearCheese(year=2010,
cheese=32.92)]

We can use lambda forms or we can use the attrgetter() function, as follows:

>>> min(year_cheese_2, key=attrgetter('cheese'))

YearCheese(year=2000, cheese=29.87)

>>> max(year_cheese_2, key=lambda x: x.cheese)

YearCheese(year=2007, cheese=33.5)

What's important here is that with a lambda object, the attribute name is expressed as
a token in the code. With the attrgetter() function, the attribute name is a character
string. This could be a parameter, which allows us to be considerably flexible.

Starmapping with operators
The itertools.starmap() function can be applied to an operator and a sequence
of pairs of values. Here's an example:

>>> d= starmap(pow, zip_longest([], range(4), fillvalue=60))

The itertools.zip_longest() function will create a sequence of pairs such as
the following:

[(60, 0), (60, 1), (60, 2), (60, 3)]

It does this because we provided two sequences: the [] brackets and the range(4)
parameter. The fillvalue parameter will be used when the shorter sequence runs
out of data.

When we use the starmap() function, each pair becomes the argument to the given
function. In this case, we provided the operator.pow() function, which is the **
operator. We've calculated values for [60**0, 60**1, 60**2, 60**3]. The value
of the d variable is [1, 60, 3600, 216000].

The starmap() function is useful when we have a sequence of tuples. We have a tidy
equivalence between the map(f, x, y) and starmap(f, zip(x,y)) functions.

Chapter 13

[259]

Here's a continuation of the preceding example of the itertools.starmap() function:

>>> p = (3, 8, 29, 44)

>>> pi = sum(starmap(truediv, zip(p, d)))

We've zipped together two sequences of four values. We used the starmap()
function with the operator.truediv() function, which is the / operator.
This will compute a sequence of fractions that we sum. The sum is really an
approximation of π
Here's a simpler version that uses the map(f, x, y) function instead of the
starmap(f, zip(x,y)) function:

>>> pi = sum(map(truediv, p, d))

>>> pi

3.1415925925925925

In this example, we effectively converted a base 60 fractional value to base 10. The
sequence of values in the d variable are the appropriate denominators. A technique
similar to the one explained earlier in this section can be used to convert other bases.

Some approximations involve potentially infinite sums (or products). These can
be evaluated using similar techniques explained previously in this section. We can
leverage the count() function in the itertools module to generate an arbitrary
number of terms in an approximation. We can then use the takewhile() function to
only use values that contribute a useful level of precision to the answer.

Here's an example of a potentially infinite sequence:

>>> num= map(fact, count())

>>> den= map(semifact, (2*n+1 for n in count()))

>>> terms= takewhile(lambda t: t > 1E-10, map(truediv, num, den))

>>> 2*sum(terms)

3.1415926533011587

The num variable is a potentially infinite sequence of numerators, based on a factorial
function. The den variable is a potentially infinite sequence of denominators, based
on the semifactorial (sometimes called the double factorial) function.

To create terms, we used the map() function to apply the operators.truediv()
function, the / operator, to each pair of values. We wrapped this in a takewhile()
function so that we only take values while the fraction is greater than some relatively
small value; in this case, 101 10−× .

Conditional Expressions and the Operator Module

[260]

This is a series expansion based on 4 arctan(1)=π . The expansion is ()0

!2
2 1 !!n

n
n

π ∞

=
=

+∑
An interesting variation to the series expansion theme is to replace the operator.
truediv() function with the fractions.Fraction() function. This will create exact
rational values that don't suffer from the limitations of floating-point approximations.

All of the Python operators are available in the operators module. This includes
all of the bit-fiddling operators as well as the comparison operators. In some cases,
a generator expression may be more succinct or expressive than a rather complex-
looking starmap() function with a function that represents an operator.

The issue is that the operator module provides only a single operator, essentially
a shorthand for lambda. We can use the operator.add method instead of the
add=lambda a,b: a+b method. If we have more complex expressions, then the
lambda object is the only way to write them.

Reducing with operators
We'll look at one more way that we might try to use the operator definitions. We can
use them with the built-in functools.reduce() function. The sum() function, for
example, can be defined as follows:

sum= functools.partial(functools.reduce, operator.add)

We created a partially evaluated version of the reduce() function with the first
argument supplied. In this case, it's the + operator, implemented via the operator.
add() function.

If we have a requirement for a similar function that computes a product, we can
define it like this:

prod= functools.partial(functools.reduce, operator.mul)

This follows the pattern shown in the preceding example. We have a partially
evaluated reduce() function with the first argument of * operator, as implemented
by the operator.mul() function.

It's not clear whether we can do similar things with too many of the other operators.
We might be able to find a use for the operator.concat() function as well as the
operator.and() and operator.or() functions.

The and() and or() functions are the bit-wise & and / operators.
If we want the proper Boolean operators, we have to use the all()
and any() functions instead of the reduce() function.

Chapter 13

[261]

Once we have a prod() function, this means that the factorial can be defined
as follows:

fact= lambda n: 1 if n < 2 else n*prod(range(1,n))

This has the advantage of being succinct: it provides a single line definition of
factorial. It also has the advantage of not relying on recursion but has the potential
of running afoul Python's stack limit.

It's not clear that this has any dramatic advantages over the many alternatives we
have in Python. The concept of building a complex function from primitive pieces
like the partial() and reduce() functions, and the operator module is very
elegant. In most cases, though, the simple functions in the operator module aren't
very helpful; we'll almost always want to use more complex lambdas.

Summary
In this chapter, we looked at alternatives to the if, elif, and else statement
sequence. Ideally, using a conditional expression allows some optimization to be
done. Pragmatically, Python doesn't optimize, so there's little tangible benefit to the
more exotic ways to handle conditions.

We also looked at how we can use the operator module with higher order functions
like max(), min(), sorted(), and reduce(). Using operators can save us from
having to create a number of small lambdas.

In the next chapter, we'll look at the PyMonad library to express a functional
programming concept directly in Python. We don't require monads generally
because Python is an imperative programming language under the hood.

Some algorithms might be expressed more clearly with monads than with stateful
variable assignments. We'll look at an example where monads lead to a succinct
expression of a rather complex set of rules. Most importantly, the operator module
shows off many functional programming techniques.

The PyMonad Library
A monad allows us to impose an order on expression evaluation in an otherwise
lenient language. We can use a monad to insist that an expression such as a + b + c
is evaluated in left-to-right order. Generally, there seems to be no point to a monad.
When we want files to have their content read or written in a specific order, however,
a monad is a handy way to assure that the read() and write() functions are
evaluated in a particular order.

Languages that are lenient and have optimizing compilers benefit from monads to
impose order on evaluation of expressions. Python, for the most part, is strict and
does not optimize. We have little practical use for monads.

However, the PyMonad module is more than just monads. There are a number of
functional programming features that have a distinctive implementation. In some
cases, the PyMonad module can lead to programs which are more succinct and
expressive than those written using only the standard library modules.

Downloading and installing
The PyMonad module is available on Python Package Index (PyPi). In order to add
PyMonad to your environment, you'll need to use pip or Easy Install. Here are some
typical situations:

• If you have Python 3.4 or higher, you have both of these installation
package tools

• If you have Python 3.x, you may already have either one of the necessary
installers because you've added packages already

• If you have Python 2.x, you should consider an upgrade to Python 3.4
• If you don't have pip or Easy Install, you'll need to install them first; consider

upgrading to Python 3.4 to get these installation tools

Visit https://pypi.python.org/pypi/PyMonad/ for more information.

https://pypi.python.org/pypi/PyMonad/

The PyMonad Library

[264]

For Mac OS and Linux developers, the command pip install PyMonad or
easy_install-3.3 pymonad must be run using the sudo command. When running
a command such as sudo easy_install-3.3 pymonad, you'll be prompted for your
password to assure that you have the administrative permissions necessary to do the
installation. For Windows developers, the sudo command is not relevant, but you do
need to have administrative rights.

Once the pymonad package is installed, you can confirm it using the following
commands:

>>> import pymonad

>>> help(pymonad)

This will display the docstring module and confirm that things really are
properly installed.

Functional composition and currying
Some functional languages work by transforming a multiargument function syntax
into a collection of single argument functions. This process is called currying—it's
named after logician Haskell Curry, who developed the theory from earlier concepts.

Currying is a technique for transforming a multiargument function into higher order
single argument functions. In the simple case, we have a function (),f x y z→ ; given
two arguments x and y, this will return some resulting value, z. We can curry this
into two functions: () ()1 2c cf x f y→ and ()2cf y z→ . Given the first argument value,
x, the function returns a new one-argument function, ()1cf x returns a new one-
argument function, ()2cf y . This second function can be given an argument, y, and
will return the resulting value, z.

We can evaluate a curried function in Python as follows: f_c(2)(3). We apply the
curried function to the first argument value of 2, creating a new function. Then, we
apply that new function to the second argument value of 3.

This applies recursively to functions of any complexity. If we start with a function
(), ,g a b c z→ , we curry this into a function () () ()1 2 3c c cg a g b g c z→ → → . This is done

recursively. First, the ()1cg a function returns a new function with the b and c
arguments, ()2 ,cg b c z→ . Then we can curry the returned two-argument function to
create () ()2 3c cg b g c→ .

We can evaluate this curried function with g_c(1)(2)(3). When we apply 1cg to an
argument of 1, we get a function; when we apply this returned function to 2, we get
another function. When we apply the final function to 3, we get the expected result.
Clearly, formal syntax is bulky, so we use some syntactic sugar to reduce g_c(1)(2)
(3) to something more palatable like g(1,2,3).

Chapter 14

[265]

Let's look at a concrete example in Python, for example, we have a function like the
following one:

from pymonad import curry

@curry

def systolic_bp(bmi, age, gender_male, treatment):

 return 68.15+0.58*bmi+0.65*age+0.94*gender_male+6.44*treatment

This is a simple, multiple-regression-based model for systolic blood pressure.
This predicts blood pressure from body mass index (BMI), age, gender (1 means
male), and history of previous treatment (1 means previously treated). For more
information on the model and how it's derived, visit http://sphweb.bumc.bu.edu/
otlt/MPH-Modules/BS/BS704_Multivariable/BS704_Multivariable7.html.

We can use the systolic_bp() function with all four arguments, as follows:

>>> systolic_bp(25, 50, 1, 0)

116.09

>>> systolic_bp(25, 50, 0, 1)

121.59

A male person with a BMI of 25, age 50, and no previous treatment will likely have a
blood pressure of 116. The second example shows a similar woman with a history of
treatment who will likely have a blood pressure of 121.

Because we've used the @curry decorator, we can create intermediate results that are
similar to partially applied functions. Take a look at the following command snippet:

>>> treated= systolic_bp(25, 50, 0)

>>> treated(0)

115.15

>>> treated(1)

121.59

In the preceding case, we evaluated the systolic_bp(25, 50, 0) method to create
a curried function and assigned this to the variable treatment. The BMI, age, and
gender values don't typically change for a given patient. We can now apply the new
function, treatment, to the remaining argument to get different blood pressure
expectations based on patient history.

http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Multivariable/BS704_Multivariable7.html
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Multivariable/BS704_Multivariable7.html

The PyMonad Library

[266]

This is similar in some respects to the functools.partial() function. The important
difference is that currying creates a function that can work in a variety of ways. The
functools.partial() function creates a more specialized function that can only be
used with the given set of bound values.

Here's an example of creating some additional curried functions:

>>> g_t= systolic_bp(25, 50)

>>> g_t(1, 0)

116.09

>>> g_t(0, 1)

121.59

This is a gender-based treatment function based on our initial model. We must
provide gender and treatment values to get a final value from the model.

Using curried higher-order functions
While currying is simple to visualize using ordinary functions, the real value shows
up when we apply currying to higher-order functions. In the ideal situation, the
functools.reduce() function would be "curryable" so that we can do this:

sum= reduce(operator.add)

prod= reduce(operator.mul)

The reduce() function, however, isn't curryable by the pymonad library, so this
doesn't actually work. If we define our own reduce() function, however, we can
then curry it as shown previously. Here's an example of a home-brewed reduce()
function that can be used as shown earlier:

import collections.abc

from pymonad import curry

@curry

def myreduce(function, iterable_or_sequence):

 if isinstance(iterable_or_sequence, collections.abc.Sequence):

 iterator= iter(iterable_or_sequence)

 else:

 iterator= iterable_or_sequence

 s = next(iterator)

 for v in iterator:

 s = function(s,v)

 return s

Chapter 14

[267]

The myreduce() function will behave like the built-in reduce() function. The
myreduce() function works with an iterable or a sequence object. Given a sequence,
we'll create an iterator; given an iterable object, we'll simply use it. We initialize the
result with the first item in the iterator. We apply the function to the ongoing sum
(or product) and each subsequent item.

It's also possible to wrap the built-in reduce() function to create a
curryable version. That's only two lines of code; an exercise left for
you.

Since the myreduce() function is a curried function, we can now use it to create
functions based on our higher-order function, myreduce():

>>> from operator import *

>>> sum= myreduce(add)

>>> sum([1,2,3])

6

>>> max= myreduce(lambda x,y: x if x > y else y)

>>> max([2,5,3])

5

We defined our own version of the sum() function using the curried reduce applied
to the add operator. We also defined our own version of the default max() function
using a lambda object that picks the larger of two values.

We can't easily create the more general form of the max() function this way, because
currying is focused on positional parameters. Trying to use the key= keyword
parameter adds too much complexity to make the technique work toward our
overall goals of succinct and expressive functional programs.

To create a more generalized version of the max() function, we need to step
outside the key= keyword parameter paradigm that functions such as max(),
min(), and sorted() rely on. We would have to accept the higher-order function
as the first argument in the same way as filter(), map(), and reduce() functions
do. We could also create our own library of more consistent higher-order curried
functions. These functions would rely exclusively on positional parameters.
The higher-order function would be provided first so that our own curried
max(function, iterable) method would follow the pattern set by the map(),
filter(), and functools.reduce() functions.

The PyMonad Library

[268]

Currying the hard way
We can create curried functions manually, without using the decorator from the
pymonad library; one way of doing this is to execute the following commands:

def f(x, *args):

 def f1(y, *args):

 def f2(z):

 return (x+y)*z

 if args:

 return f2(*args)

 return f2

 if args:

 return f1(*args)

 return f1

This curries a function, () (), ,F x y z x y z→ + × , into a function, f(x), which returns a
function. Conceptually, () (),f x F y z′→ . We then curried the intermediate function to
create the f1(y) and f2(z) function.

When we evaluate the f(x) function, we'll get a new function, f1, as a result.
If additional arguments are provided, those arguments are passed to the f1
function for evaluation, either resulting in a final value or another function.

Clearly, this is potentially error-prone. It does, however, serve to define what
currying really means and how it's implemented in Python.

Functional composition and the PyMonad
multiplication operator
One of the significant values of curried functions is the ability to combine
them via functional composition. We looked at functional composition in
Chapter 5, Higher-order Functions, and Chapter 11, Decorator Design Techniques.

When we've created a curried function, we can easily perform function composition
to create a new, more complex curried function. In this case, the PyMonad package
defines the * operator for composing two functions. To show how this works, we'll
define two curried functions that we can compose. First, we'll define a function that
computes the product, and then we'll define a function that computes a specialized
range of values.

Chapter 14

[269]

Here's our first function that computes the product:

import operator

prod = myreduce(operator.mul)

This is based on our curried myreduce() function that was defined previously.
It uses the operator.mul() function to compute a "times-reduction" of an iterable:
we can call a product a times-reduce of a sequence.

Here's our second curried function that will produce a range of values:

@curry

def alt_range(n):

 if n == 0: return range(1,2) # Only 1

 if n % 2 == 0:

 return range(2,n+1,2)

 else:

 return range(1,n+1,2)

The result of the alt_range() function will be even values or odd values. It will
have only values up to (and including) n, if n is odd. If n is even, it will have only
even values up to n. The sequences are important for implementing the semifactorial
or double factorial function, !!n .

Here's how we can combine the prod() and alt_range() functions into a new
curried function:

>>> semi_fact= prod * alt_range

>>> semi_fact(9)

945

The PyMonad * operator here combines two functions into a composite function,
named semi_fact. The alt_range() function is applied to the arguments. Then,
the prod() function is applied to the results of the alt_range function.

By doing this manually in Python, we're effectively creating a new lambda object:

semi_fact= lambda x: prod(alt_range(x))

The composition of curried functions involves somewhat less syntax than creating
a new lambda object.

Ideally, we would like to use functional composition and curried functions like this:

sumwhile= sum * takewhile(lambda x: x > 1E-7)

The PyMonad Library

[270]

This will define a version of the sum() function that works with infinite sequences,
stopping the generation of values when the threshold had been met. This doesn't
seem to work because the pymonad library doesn't seem to handle infinite iterables
as well as it handles the internal List objects.

Functors and applicative functors
The idea of a functor is a functional representation of a piece of simple data.
A functor version of the number 3.14 is a function of zero arguments that returns
this value. Consider the following example:

pi= lambda : 3.14

We created a zero-argument lambda object that has a simple value.

When we apply a curried function to a functor, we're creating a new curried functor.
This generalizes the idea of "apply a function to an argument to get value" by using
functions to represent the arguments, the values, and the functions themselves.

Once everything in our program is a function, then all processing is simply a
variation on the theme of functional composition. The arguments and results
of curried functions can be functors. At some point, we'll apply a getValue()
method to a functor object to get a Python-friendly, simple type that we can use in
uncurried code.

Since all we've done is functional composition, no calculation needs to be done until
we actually demand a value using the getValue() method. Instead of performing
a lot of calculations, our program defines a complex object that can produce a value
when requested. In principle, this composition can be optimized by a clever compiler
or runtime system.

When we apply a function to a functor object, we're going to use a method similar
to map() that is implemented as the * operator. We can think of the function *
functor or map(function, functor) methods as a way to understand the role a
functor plays in an expression.

In order to work politely with functions that have multiple arguments, we'll use the
& operator to build composite functors. We'll often see functor & functor method
to build a functor object from a pair of functors.

We can wrap Python simple types with a subclass of the Maybe functor. The Maybe
functor is interesting, because it gives us a way to deal gracefully with missing data.
The approach we used in Chapter 11, Decorator Design Techniques, was to decorate
built-in functions to make them None aware. The approach taken by the PyMonad
library is to decorate the data so that it gracefully declines being operated on.

Chapter 14

[271]

There are two subclasses of the Maybe functor:

• Nothing

• Just(some simple value)

We use Nothing as a stand-in for the simple Python value of None. This is how we
represent missing data. We use Just(some simple value) to wrap all other Python
objects. These functors are function-like representations of constant values.

We can use a curried function with these Maybe objects to tolerate missing data
gracefully. Here's a short example:

>>> x1= systolic_bp * Just(25) & Just(50) & Just(1) & Just(0)

>>> x1.getValue()

116.09

>>> x2= systolic_bp * Just(25) & Just(50) & Just(1) & Nothing

>>> x2.getValue() is None

True

The * operator is functional composition: we're composing the systolic_bp()
function with an argument composite. The & operator builds a composite functor
that can be passed as an argument to a curried function of multiple arguments.

This shows us that we get an answer instead of a TypeError exception. This can
be very handy when working with large, complex datasets in which data could be
missing or invalid. It's much nicer than having to decorate all of our functions to
make them None aware.

This works nicely for curried functions. We can't operate on the Maybe functors in
uncurried Python code as functors have very few methods.

We must use the getValue() method to extract the simple
Python value for uncurried Python code.

Using the lazy List() functor
The List() functor can be confusing at first. It's extremely lazy, unlike Python's
built-in list type. When we evaluate the built-in list(range(10)) method, the
list() function will evaluate the range() object to create a list with 10 items.
The PyMonad List() functor, however, is too lazy to even do this evaluation.

The PyMonad Library

[272]

Here's the comparison:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> List(range(10))

[range(0, 10)]

The List() functor did not evaluate the range() object, it just preserved it without
being evaluated. The PyMonad.List() function is useful to collect functions without
evaluating them. We can evaluate them later as required:

>>> x= List(range(10))

>>> x

[range(0, 10)]

>>> list(x[0])

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

We created a lazy List object with a range() object. Then we extracted and
evaluated a range() object at position 0 in that list.

A List object won't evaluate a generator function or range() object; it treats any
iterable argument as a single iterator object. We can, however, use the * operator
to expand the values of a generator or the range() object.

Note that there are several meanings for * operator: it is the built-in
mathematical times operator, the function composition operator defined
by PyMonad, and the built-in modifier used when calling a function
to bind a single sequence object as all of the positional parameters of
a function. We're going to use the third meaning of the * operator to
assign a sequence to multiple positional parameters.

Here's a curried version of the range() function. This has a lower bound of 1
instead of 0. It's handy for some mathematical work because it allows us to avoid
the complexity of the positional arguments in the built-in range() function.

@curry

def range1n(n):

 if n == 0: return range(1,2) # Only 1

 return range(1,n+1)

We simply wrapped the built-in range() function to make it curryable by the
PyMonad package.

Chapter 14

[273]

Since a List object is a functor, we can map functions to the List object.
The function is applied to each item in the List object. Here's an example:

>>> fact= prod * range1n

>>> seq1 = List(*range(20))

>>> f1 = fact * seq1

>>> f1[:10]

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]

We defined a composite function, fact(), which was built from the prod() and
range1n() functions shown previously. This is the factorial function, !n . We created
a List() functor, seq1, which is a sequence of 20 values. We mapped the fact()
function to the seq1 functor, which created a sequence of factorial values, f1. We
showed the first 10 of these values earlier.

There is a similarity between the composition of functions and the
composition of a function and a functor. Both prod*range1n and
fact*seq1 use functional composition: one combines things that are
obviously functions, and the other combines a function and a functor.

Here's another little function that we'll use to extend this example:

@curry

def n21(n):

 return 2*n+1

This little n21() function does a simple computation. It's curried, however,
so we can apply it to a functor like a List() function. Here's the next part of the
preceding example:

>>> semi_fact= prod * alt_range

>>> f2 = semi_fact * n21 * seq1

>>> f2[:10]

[1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075]

We've defined a composite function from the prod() and alt_range() functions
shown previously. The function f2 is semifactorial or double factorial, !!n . The value
of the function f2 is built by mapping our small n21() function applied to the seq1
sequence. This creates a new sequence. We then applied the semi_fact function to
this new sequence to create a sequence of 2 1!!n + values that parallels the sequence
of !n values.

The PyMonad Library

[274]

We can now map the / operator to the map() and operator.truediv parallel
functors:

>>> 2*sum(map(operator.truediv, f1, f2))

3.1415919276751456

The map() function will apply the given operator to both functors, yielding a
sequence of fractions that we can add.

The f1 & f2 method will create all combinations of values from the two
List objects. This is an important feature of List objects: they readily
enumerate all combinations allowing a simple algorithm to compute
all alternatives and filter the alternatives for the proper subset. This is
something we don't want; that's why we used the map() function instead
of the operator.truediv * f1 & f2 method.

We defined a fairly complex calculation using a few functional composition techniques
and a functor class definition. Here's the full definition for this calculation:

()0

!2
2 1 !!n

n
n

π ∞

=
=

+∑

Ideally, we prefer not to use a fixed sized List object. We'd prefer to have a lazy and
potentially infinite sequence of integer values. We could then use a curried version
of sum() and takewhile() functions to find the sum of values in the sequence
until the values are too small to contribute to the result. This would require an even
lazier version of the List() object that could work with the itertools.counter()
function. We don't have this potentially infinite list in PyMonad 1.3; we're limited to
a fixed sized List() object.

Monad concepts, the bind() function
and the Binary Right Shift operator
The name of the PyMonad library comes from the functional programming concept
of a monad, a function that has a strict order. The underlying assumption behind
much functional programming is that functional evaluation is liberal: it can be
optimized or rearranged as necessary. A monad provides an exception that imposes
a strict left-to-right ordering.

Chapter 14

[275]

Python, as we have seen, is strict. It doesn't require monads. We can, however, still
apply the concept in places where it can help clarify a complex algorithm.

The technology for imposing strict evaluation is a binding between a monad and a
function that will return a monad. A flat expression will become nested bindings that
can't be reordered by an optimizing compiler. The bind() function is mapped to the
>> operator, allowing us to write expressions like this:

Just(some file) >> read header >> read next >> read next

The preceding expression would be converted to the following:

bind(bind(bind(Just(some file), read header), read next), read next)

The bind() functions assure that a strict left-to-right evaluation is imposed on
this expression when it's evaluated. Also, note that the preceding expression is an
example of functional composition. When we create a monad with the >> operator,
we're creating a complex object that will be evaluated when we finally use the
getValue() method.

The Just() subclass is required to create a simple monad compatible object that
wraps a simple Python object.

The monad concept is central to expressing a strict evaluation order—in a language
that's heavily optimized and lenient. Python doesn't require a monad because it uses
left-to-right strict evaluation. This makes the monad difficult to demonstrate because
it doesn't really do something completely novel in a Python context. Indeed, the
monad redundantly states the typical strict rules that Python follows.

In other languages, such as Haskell, a monad is crucial for file input and output
where strict ordering is required. Python's imperative mode is much like a Haskell
do block, which has an implicit Haskell >>= operator to force the statements to be
evaluated in order. (PyMonad uses the bind() function and the >> operator for
Haskell's >>= operation.)

Implementing simulation with monads
Monads are expected to pass through a kind of "pipeline": a monad will be passed as
an argument to a function and a similar monad will be returned as the value of the
function. The functions must be designed to accept and return similar structures.

We'll look at a simple pipeline that can be used for simulation of a process. This
kind of simulation may be a formal part of some Monte Carlo simulation. We'll take
the Monte Carlo simulation literally and simulate a casino dice game, Craps. This
involves what might be thought of as stateful rules for a fairly complex simulation.

The PyMonad Library

[276]

There's a lot of very strange gambling terminology involved. We can't provide much
background about the various buzzwords involved. In some cases, the origins are
lost in history.

Craps involves someone rolling the dice (a shooter) and additional bettors. The game
works like this:

The first roll is called a come out roll. There are three conditions:

1. If the dice total is 7 or 11, the shooter wins. Anyone betting on the pass line
will be paid off as a winner, and all other bets lose. The game is over, and the
shooter can play again.

2. If the dice total is 2, 3, or 12, the shooter loses. Anyone betting on the don't
pass line will win, and all other bets lose. The game is over, and the shooter
must pass the dice to another shooter.

3. Any other total (that is, 4, 5, 6, 8, 9, or 10) establishes a point. The game
changes state from the come out roll to the point roll. The game continues.

If a point was established, each point roll is evaluated with three conditions:

• If the dice total is 7, the shooter loses. Indeed, almost all bets are losers except
for don't pass bets and a special proposition bet. Since the shooter lost, the
dice are passed to another shooter.

• If the dice totals the original point, the shooter wins. Anyone betting on the
pass line will be paid off as a winner, and all other bets lose. The game is
over, and the shooter can play again.

• Any other total continues the game with no resolution.

The rules involve a kind of state change. We can look at this as a sequence of
operations rather than a state change. There's one function that must be used first.
Another recursive function is used after that. In this way, it fits the monad design
pattern nicely.

As a practical matter, a casino allows numerous fairly complex side bets during the
game. We can evaluate those separately from the essential rules of the game. Many
of those bets (the propositions, field bets, and buying a number) are bets a player
simply makes during the point roll phase of the game. There's an additional come and
don't come pair of bets that establishes a point-within-a-point nested game. We'll stick
the the basic outline of the game for the following example.

We'll need a source of random numbers:

import random

def rng():

 return (random.randint(1,6), random.randint(1,6))

Chapter 14

[277]

The preceding function will generate a pair of dice for us.

Here's our expectation from the overall game:

def craps():

 outcome= Just(("",0, [])) >> come_out_roll(rng) >> point_roll
 (rng)

 print(outcome.getValue())

We create an initial monad, Just(("",0, [])), to define the essential type we're
going to work with. A game will produce a three tuple with an outcome, a point,
and a sequence of rolls. Initially, it's a default three tuple to define the type we're
working with.

We pass this monad to two other functions. This will create a resulting monad,
outcome, with the results of the game. We used the >> operator to connect the
functions in the specific order they must be executed. In an optimizing language,
this will prevent the expression from being rearranged.

We get the value of the monad at the end using the getValue() method. Since the
monad objects are lazy, this request is what triggers the evaluation of the various
monads to create the required output.

The come_out_roll() function has the rng() function curried as the first argument.
The monad will become the second argument to this function. The come_out_roll()
function can roll the dice and apply the come out rules to determine if we have a
win, a loss, or a point.

The point_roll() function also has the rng() function curried as the first
argument. The monad will become the second argument. The point_roll()
function can then roll the dice to see if the bet is resolved. If the bet is unresolved,
this function will operate recursively to continue looking for resolution.

The come_out_roll() function looks like this:

@curry

def come_out_roll(dice, status):

 d= dice()

 if sum(d) in (7, 11):

 return Just(("win", sum(d), [d]))

 elif sum(d) in (2, 3, 12):

 return Just(("lose", sum(d), [d]))

 else:

 return Just(("point", sum(d), [d]))

The PyMonad Library

[278]

We rolled the dice once to determine if we have a first-roll win, loss, or point.
We return an appropriate monad value that includes the outcome, a point value,
and the roll of the dice. The point values for an immediate win and immediate
loss aren't really meaningful. We could sensibly return a 0 here, since no point
was really established.

The point_roll() function looks like this:

@curry

def point_roll(dice, status):

 prev, point, so_far = status

 if prev != "point":

 return Just(status)

 d = dice()

 if sum(d) == 7:

 return Just(("craps", point, so_far+[d]))

 elif sum(d) == point:

 return Just(("win", point, so_far+[d]))

 else:

 return Just(("point", point, so_far+[d])) >> point_roll(dice)

We decomposed the status monad into the three individual values of the tuple.
We could have used small lambda objects to extract the first, second, and third
values. We could also have used the operator.itemgetter() function to extract
the tuples' items. Instead, we used multiple assignment.

If a point was not established, the previous state will be "win" or "lose". The game
was resolved in a single throw, and this function simply returns the status monad.

If a point was established, the dice are rolled and rules applied to the new roll.
If roll is 7, the game is a loser and a final monad is returned. If the roll is the point,
the game is a winner and the appropriate monad is returned. Otherwise, a slightly
revised monad is passed to the point_roll() function. The revised status monad
includes this roll in the history of rolls.

A typical output looks like this:

>>> craps()

('craps', 5, [(2, 3), (1, 3), (1, 5), (1, 6)])

Chapter 14

[279]

The final monad has a string that shows the outcome. It has the point that was
established and the sequence of dice rolls. Each outcome has a specific payout that
we can use to determine the overall fluctuation in the bettor's stake.

We can use simulation to examine different betting strategies. We might be searching
for a way to defeat any house edge built into the game.

There's a small asymmetry in the basic rules of the game. Having 11 as
an immediate winner is balanced by having 3 as an immediate loser.
The fact that 2 and 12 are also losers is the basis of the house's edge of
5.5 percent (1/18 = 5.5) in this game. The idea is to determine which of
the additional betting opportunities will dilute this edge.

A great deal of clever Monte Carlo simulation can be built with a few simple,
functional programming design techniques. The monad, in particular, can help
structure these kinds of calculations when there are complex orders or internal states.

Additional PyMonad features
One of the other features of PyMonad is the confusingly named monoid. This comes
directly from mathematics and it refers to a group of data elements that have an
operator, an identity element, and the group is closed with respect to that operator.
When we think of natural numbers, the add operator, and an identity element 0, this
is a proper monoid. For positive integers, with an operator *, and an identity value
of 1, we also have a monoid; strings using | as an operator and an empty string as an
identity element also qualifies.

PyMonad includes a number of predefined monoid classes. We can extend this
to add our own monoid class. The intent is to limit a compiler to certain kinds of
optimizations. We can also use the monoid class to create data structures which
accumulate a complex value, perhaps including a history of previous operations.

Much of this provides insight into functional programming. To paraphrase the
documentation, this is an easy way to learn about functional programming in,
perhaps, a slightly more forgiving environment. Rather than learning an entire
language and toolset to compile and run functional programs, we can just
experiment with interactive Python.

Pragmatically, we don't need too many of these features because Python is already
stateful and offers strict evaluation of expressions. There's no practical reason to
introduce stateful objects in Python, or strictly-ordered evaluation. We can write
useful programs in Python by mixing functional concepts with Python's imperative
implementation. For that reason, we won't delve any more deeply into PyMonad.

The PyMonad Library

[280]

Summary
In this chapter, we looked at how we can use the PyMonad library to express some
functional programming concepts directly in Python. The module shows many
important functional programming techniques.

We looked at the idea of currying, a function that allows combinations of arguments
to be applied to create new functions. Currying a function also allows us to use
functional composition to create more complex functions from simpler pieces.
We looked at functors that wrap simple data objects to make them into functions
which can also be used with functional composition.

Monads are a way to impose a strict evaluation order when working with an
optimizing compiler and lazy evaluation rules. In Python, we don't have a good use
case for monads, because Python is an imperative programming language under the
hood. In some cases, imperative Python may be more expressive and succinct than a
monad construction.

In the next chapter, we'll look at how we can apply functional programming
techniques to build web services applications. The idea of HTTP could be
summarized as response = httpd(request). Ideally, HTTP is stateless, making it
a perfect match for functional design. However, most web sites will maintain state,
using cookies to track session state.

A Functional Approach
to Web Services

We'll step away from Exploratory Data Analysis and look closely at web servers and
web services. These are, to an extent, a cascade of functions. We can apply a number
of functional design patterns to the problem of presenting web content. Our goal is to
look at ways in which we can approach Representational State Transfer (REST). We
want to build RESTful web services using functional design patterns.

We don't need to invent yet another Python web framework; there are plenty of
frameworks to choose from. We'll avoid creating a large, general-purpose solution.

We don't want to select among the available frameworks, either. There are many,
each with a distinct set of features and advantages.

We'll present some principles that can be applied to most of the available frameworks.
We should be able to leverage functional design patterns for presenting web content.
This will allow us to build web-based applications that have the advantages of a
functional design.

For example, when we look at extremely large datasets, or extremely complex
datasets, we might want a web service which supports subsetting or searching.
We might want a web site which can download subsets in a variety of formats.
In this case, we might need to use functional designs to create RESTful web services
to support these more sophisticated requirements.

The most complex web applications often have stateful sessions that make the site
easier to use. The session information is updated with data provided via HTML
forms or fetched from databases, or recalled from caches of previous interactions.
While the overall interaction involves state changes, the application programming
can be largely functional. Some of the application functions can be non-strict in their
use of request data, cache data, and database objects.

A Functional Approach to Web Services

[282]

In order to avoid details of a specific web framework, we'll focus on the Web Server
Gateway Interface (WSGI) design pattern. This will allow us to implement a simple
web server. A great deal of information is present at the following link:

http://wsgi.readthedocs.org/en/latest/

Some important background of WSGI can be found at

https://www.python.org/dev/peps/pep-0333/

We'll start by looking at the HTTP protocol. From there, we can consider servers
such as Apache httpd to implement this protocol and see how mod_wsgi becomes
a sensible extension to a base server. With this background, we can look at the
functional nature of WSGI and how we can leverage functional design to implement
sophisticated web search and retrieval tools.

The HTTP request-response model
The essential HTTP protocol is, ideally, stateless. A user agent or client can take
a functional view of the protocol. We can build a client using the http.client
or urllib library. An HTTP user agent essentially executes something similar
to the following:

import urllib.request

with urllib.request.urlopen(""http://slott-softwarearchitect.
blogspot.com"") as response:

 print(response.read())

A program like wget or curl does this at the command line; the URL is taken from
the arguments. A browser does this in response to the user pointing and clicking;
the URL is taken from the user's actions, in particular, the action of clicking on linked
text or images.

The practical considerations of the internetworking protocols, however, lead to some
implementation details which are stateful. Some of the HTTP status codes indicate
that an additional action on the part of the user agent is required.

Many status codes in the 3xx range indicate that the requested resource has
been moved. The user agent is then required to request a new location based
on information sent in the Location header. The 401 status code indicates that
authentication is required; the user agent can respond with an authorization header
that contains credentials for access to the server. The urllib library implementation
handles this stateful overhead. The http.client library doesn't automatically follow
3xx redirect status codes.

http://wsgi.readthedocs.org/en/latest/
https://www.python.org/dev/peps/pep-0333/

Chapter 15

[283]

The techniques for a user agent to handle 3xx and 401 codes aren't deeply stateful.
A simple recursion can be used. If the status doesn't indicate a redirection, it is the
base case, and the function has a result. If redirection is required, the function can be
called recursively with the redirected address.

Looking at the other end of the protocol, a static content server should also be
stateless. There are two layers to the HTTP protocol: the TCP/IP socket machinery
and a higher layer HTTP structure that depends on the lower level sockets. The
lower level details are handled by the scoketserver library. The Python http.
server library is one of the libraries that provide a higher level implementation.

We can use the http.server library as follows:

from http.server import HTTPServer, SimpleHTTPRequestHandler

running = True

httpd = HTTPServer(('localhost',8080), SimpleHTTPRequestHandler)

while running:

 httpd.handle_request()

httpd.shutdown()

We created a server object, and assigned it to the httpd variable. We provided the
address and port number to which we'll listen for connection requests. The TCP/IP
protocol will spawn a connection on a separate port. The HTTP protocol will read the
request from this other port and create an instance of the handler.

In this example, we provided SimpleHTTPRequestHandler as the class to instantiate
with each request. This class must implement a minimal interface, which will send
headers and then send the body of the response to the client. This particular class
will serve files from the local directory. If we wish to customize this, we can create
a subclass, which implements methods such as do_GET() and do_POST() to alter
the behavior.

Often, we use the serve_forever() method instead of writing our own loop. We've
shown the loop here to clarify that the server must, generally, be crashed. If we want
to close the server down politely, we'll require some way in which we can change the
value of the shutdown variable. The Ctrl + C signal, for example, is commonly used
for this.

A Functional Approach to Web Services

[284]

Injecting a state via cookies
The addition of cookies changes the overall relationship between a client and server
to become stateful. Interestingly, it involves no change to the HTTP protocol itself.
The state information is communicated via headers on the request and the reply. The
user agent will send cookies in request headers that match the host and path. The
server will send cookies to the user agent in response headers.

The user agent or browser must, therefore, retain a cache of cookie values and
include appropriate cookies in each request. The web server must accept cookies in
the request header and send cookies in the response header. The web server doesn't
need to cache cookies. A server merely uses cookies as additional arguments in a
request and additional details in a response.

While a cookie can, in principle, contain almost anything, the use of cookies has
rapidly evolved to contain just an identifier for a session state object. The server can
then use the cookie information to locate session state in some kind of persistent
storage. This means the server can also update the session state based on user agent
requests. It also means the server can discard sessions which are old.

The concept of a "session" exists outside the HTTP protocol. It is commonly defined
as a series of requests with the same session cookie. When an initial request is made,
no cookie is available, and a new session is created. Every subsequent request would
include the cookie. The cookie would identify the session state object on the server;
this object would have the information required by the server to provide consistent
web content gracefully.

The REST approach to web services, however, does not rely on cookies. Each REST
request is distinct and does not fit into an overall session framework. This makes
it less "user-friendly" than an interactive site that uses cookies to simplify a user's
interactions.

This also means that each individual REST request is, in principle, separately
authenticated. In many cases, a simple token is generated by the server to avoid the
client sending more complex credentials with every request. This leads to having the
REST traffic secured using Secured Socket Layer (SSL) protocols; the https scheme
is then used instead of http. We'll call both schemes HTTP throughout this chapter.

Considering a server with a functional design
One core idea behind HTTP is that the daemon's response is a function of the
request. Conceptually, a web service should have a top-level implementation that
can be summarized as follows:

response = httpd(request)

Chapter 15

[285]

However, this is impractical. It turns out that an HTTP request isn't a simple,
monolithic data structure. It actually has some required parts and some optional
parts. A request may have headers, there's a method and a path, and there may be
attachments. The attachments may include forms or uploaded files or both.

To make things more complex, a browser's form data can be sent as a query string
in the path of a GET request. Alternatively, it can be sent as an attachment to a POST
request. While there's a possibility for confusion, most web application frameworks
will create HTML form tags that provide their data via a "method=POST" statement in
the <form> tag; the form data will then be an attachment.

Looking more deeply into the functional view
Both HTTP response and request have headers and a body. The request can have
some attached form data. Therefore, we can think of a web server like this:

headers, content = httpd(headers, request, [uploads])

The request headers may include cookie values, which can be seen as adding
yet more arguments. Additionally, a web server is often dependent on the OS
environment in which it's running. This OS environment data can be considered as
yet more arguments being provided as part of the request.

There's a large but reasonably well defined spectrum of content. The Multipurpose
Internet Mail Extension (MIME) types define the kinds of content that a web service
might return. This can include plain text, HTML, JSON, XML, or any of the wide
variety of non-text media that a website might serve.

As we look more closely at the processing required to build a response to an HTTP
request, we'll see some common features that we'd like to reuse. This idea of reusable
elements is what leads to the creation of web service frameworks that fill a spectrum
from simple to sophisticated. The ways that functional designs allow us to reuse
functions indicate that the functional approach seems very appropriate to build
web services.

We'll look at functional design of web services by examining how we can create a
pipeline of the various elements of a service response. We'll do this by nesting the
functions for request processing so that inner elements are free from the generic
overheads, which are provided by outer elements. This also allows the outer
elements to act as filters: invalid requests can yield error responses, allowing the
inner function to focus narrowly on the application processing.

A Functional Approach to Web Services

[286]

Nesting the services
We can look at web request handling as a number of nested contexts. An outer
context, for example, might cover session management: examining the request to
determine if this is another request in an existing session or a new session. An inner
context might provide tokens used for form processing that can detect Cross-Site
Request Forgeries (CSRF). Another context might handle user authentication within
a session.

A conceptual view of the functions explained previously is something like this:

response= content(authentication(csrf(session(headers, request,
[forms]))))

The idea here is that each function can build on the results of the previous function.
Each function either enriches the request or rejects it because it's invalid. The
session function, for example, can use headers to determine if this is an existing
session or a new session. The csrf function will examine form input to ensure
that proper tokens were used. The CSRF handling requires a valid session. The
authentication function can return an error response for a session that lacks valid
credentials; it can enrich the request with user information when valid credentials
are present.

The content function is free from worrying about sessions, forgeries, and non-
authenticated users. It can focus on parsing the path to determine what kind of
content should be provided. In a more complex application, the content function
may include a rather complex mapping from path elements to functions that
determine the appropriate content.

The nested function view, however, still isn't quite right. The problem is that each
nested context may also need to tweak the response instead of or in addition to
tweaking the request.

We really want something more like this:

def session(headers, request, forms):

 pre-process: determine session

 content= csrf(headers, request, forms)

 post-processes the content

 return the content

def csrf(headers, request, forms):

 pre-process: validate csrf tokens

 content= authenticate(headers, request, forms)

 post-processes the content

 return the content

Chapter 15

[287]

This concept points toward a functional design for creating web content via a nested
collection of functions that provide enriched input or enriched output or both. With
a little bit of cleverness, we should be able to define a simple, standard interface that
various functions can use. Once we've standardized an interface, we can combine
functions in different ways and add features. We should be able to meet our
functional programming objectives of having succinct and expressive programs that
provide web content.

The WSGI standard
The Web Server Gateway Interface (WSGI) defines a relatively simple, standardized
design pattern for creating a response to a web request. The Python library's wsgiref
package includes a reference implementation of WSGI.

Each WSGI "application" has the same interface:

def some_app(environ, start_response):

 return content

The environ is a dictionary that contains all of the arguments of the request
in a single, uniform structure. The headers, the request method, the path, any
attachments for forms or file uploads will all be in the environment. In addition to
this, the OS-level context is also provided along with a few items that are part of
WSGI request handling.

The start_response is a function that must be used to send the status and headers
of a response. The portion of a WSGI server that has final responsibility for building
the response will use a start_response function to send the headers and the status
as well as to build the response text. For some applications, this function might need
to be wrapped with a higher-order function so that additional headers can be added
to the response.

The return value is a sequence of strings or string-like file wrappers that will be
returned to the user agent. If an HTML template tool is used, then the sequence
may have a single item. In some cases, like the Jinja2 templates, the template can
be rendered lazily as a sequence of text chunks, interleaving template filling with
downloading to the user agent.

Due to the way they nest, WSGI applications can also be viewed as a chain. Each
application will either return an error or will hand the request to another application
that will determine the result.

A Functional Approach to Web Services

[288]

Here's a very simple routing application:

SCRIPT_MAP = {

 ""demo"": demo_app,

 ""static"": static_app,

 """": welcome_app,

}

def routing(environ, start_response):

 top_level= wsgiref.util.shift_path_info(environ)

 app= SCRIPT_MAP.get(top_level, SCRIPT_MAP[''])

 content= app(environ, start_response)

 return content

This app will use the wsgiref.util.shift_path_info() function to tweak the
environment. This does a "head/tail split" on the items in the request path, available
in the environ['PATH_INFO'] dictionary. The head of the path—up to the first
"split"—will be moved into the SCRIPT_NAME item in the environment; the
PATH_INFO item will be updated to have the tail of the path. The returned value
will also be the head of the path. In the case where there's no path to parse,
the return value is None and no environment updates are made.

The routing() function uses the first item on the path to locate an application in the
SCRIPT_MAP dictionary. We use the SCRIPT_MAP[''] dictionary as a default in case
the requested path doesn't fit the mapping. This seems a little better than an HTTP
404 NOT FOUND error.

This WSGI application is a function that chooses between a number of other functions.
It's a higher-order function, since it evaluates functions defined in a data structure.

It's easy to see how a framework could generalize the path-matching process using
regular expressions. We can imagine configuring the routing() function with a
sequence of Regular Expression's (REs) and WSGI applications instead of a mapping
from a string to the WSGI application. The enhanced routing() function application
would evaluate each RE looking for a match. In the case of a match, any match.
groups() function could be used to update the environment before calling the
requested application.

Throwing exceptions during WSGI processing
One central feature of WSGI applications is that each stage along the chain is
responsible for filtering the requests. The idea is to reject faulty requests as early in the
processing as possible. Python's exception handling makes this particularly simple.

Chapter 15

[289]

We can define a WSGI application that provides static content as follows:

def static_app(environ, start_response):

 try:

 with open(CONTENT_HOME+environ['PATH_INFO']) as static:

 content= static.read().encode(""utf-8"")

 headers= [

 (""Content-Type"",'text/plain; charset=""utf-8""'),
 (""Content-Length"",str(len(content))),
]

 start_response('200 OK', headers)

 return [content]

 except IsADirectoryError as e:

 return index_app(environ, start_response)

 except FileNotFoundError as e:

 start_response('404 NOT FOUND', [])

 return([repr(e).encode(""utf-8"")])

In this case, we simply tried to open the requested path as a text file. There are
two common reasons why we can't open a given file, both of which are handled
as exceptions:

• If the file is a directory, we'll use a different application to present
directory contents

• If the file is simply not found, we'll return an HTTP 404 NOT FOUND
response

Any other exceptions raised by this WSGI application will not be caught.
The application that invoked this should be designed with some generic error
response capability. If it doesn't handle the exceptions, a generic WSGI failure
response will be used.

Our processing involves a strict ordering of operations. We must read
the entire file so that we can create a proper HTTP Content-Length
header.

Further, we must provide the content as bytes. This means that the Python
strings must be properly encoded and we must provide the encoding information
to the user agent. Even the error message, repr(e), is properly encoded before
being downloaded.

A Functional Approach to Web Services

[290]

Pragmatic WSGI applications
The intent of the WSGI standard is not to define a complete web framework; the
intent is to define a minimum set of standards that allow flexible interoperability
of web-related processing. A framework can take a wildly different approach than
an internal architecture to provide web services. However, its outermost interface
should be compatible with WSGI so that it can be used in a variety of contexts.

Web servers such as Apache httpd and Nginx have adapters, which provide a
WSGI-compatible interface from the web server to Python applications. For more
information on WSGI implementations, visit

https://wiki.python.org/moin/WSGIImplementations.

Embedding our applications in a larger server allows us to have a tidy separation
of concerns. We can use Apache httpd to serve completely static content, such as
.css, .js, and image files. For HTML pages, though, we can use Apache's mod_wsgi
interface to hand off requests to a separate Python process, which handles only the
interesting HTML portions of the web content.

This means that we must either create a separate media server, or define our website
to have two sets of paths. If we take the second approach, some paths will have the
completely static content and can be handled by Apache httpd. Other paths will have
dynamic content, which will be handled by Python.

When working with WSGI functions, it's important to note that we can't modify
or extend the WSGI interface in any way. For example, it seems like a good idea to
provide an additional parameter with a sequence of functions that define the chain
of processing. Each stage would pop the first item from the list as the next step in the
processing. An additional parameter like this might be typical for functional design,
but the change in the interface defeats the purpose of WSGI.

A consequence of the WSGI definition is that configuration is either done with
global variables, the request environment, or with a function, which fetches some
global configuration objects from a cache. Using module-level globals works for
small examples. For more complex applications, a configuration cache might be
required. It might also be sensible to have a WSGI app, which merely updates the
environ dictionary with configuration parameters and passes control to another
WSGI application.

https://wiki.python.org/moin/WSGIImplementations

Chapter 15

[291]

Defining web services as functions
We'll look at a RESTful web service, which can "slice and dice" a source of data
and provide downloads as JSON, XML, or CSV files. We'll provide an overall
WSGI-compatible wrapper but the functions which do the "real work" of the
application won't be narrowly constrained to fit the WSGI.

We'll use a simple dataset with four subcollections: the Anscombe Quartet. We
looked at ways to read and parse this data in Chapter 3, Functions, Iterators, and
Generators". It's a small set of data but it can be used to show the principles of a
RESTful web service.

We'll split our application into two tiers: a web tier, which will be a simple WSGI
application, and the rest of the processing, which will be more typical functional
programming. We'll look at the web tier first so that we can focus on a functional
approach to provide meaningful results.

We need to provide two pieces of information to the web service:

• The quartet that we want—this is a "slice and dice" operation. For this
example, it's mostly just a "slice".

• The output format we want.

The data selection is commonly done via the request path. We can request "/
anscombe/I/" or "/anscombe/II/" to pick specific datasets from the quartet.
The idea is that a URL defines a resource, and there's no good reason for the
URL to ever change. In this case, the dataset selectors aren't dependent on dates,
or some organizational approval status or other external factors. The URL is timeless
and absolute.

The output format is not a first class part of the URL. It's just a serialization
format—not the data itself. In some cases, the format is requested via the HTTP
Accept header. This is hard to use from a browser but easy to use from an
application using a RESTful API. When extracting data from the browser, a query
string is commonly used to specify the output format. We'll use the "?form=json"
method at the end of the path to specify the JSON output format.

A URL we can use will look like this:

http://localhost:8080/anscombe/III/?form=csv

This would request a CSV download of the third dataset.

A Functional Approach to Web Services

[292]

Creating the WSGI application
First, we'll use a simple URL pattern-matching expression to define the one and only
routing in our application. In a larger or more complex application, we might have
more than one such patterns:

import re

path_pat= re.compile(r""^/anscombe/(?P<dataset>.*?)/?$"")

This pattern allows us to define an overall "script" in the WSGI sense at the top level
of the path. In this case, the script is "anscombe". We'll take the next level of the path
as a dataset to select from the Anscombe Quartet. The dataset value should be one of
I, II, III, or IV.

We used a named parameter for the selection criteria. In many cases, RESTful APIs
are described using a syntax, as follows:

/anscombe/{dataset}/

We translated this idealized pattern into a proper, regular expression, and preserved
the name of the dataset selector in the path.

Here's the kind of unit test that demonstrates how this pattern works:

test_pattern= """"""

>>> m1= path_pat.match(""/anscombe/I"")

>>> m1.groupdict()

{'dataset': 'I'}

>>> m2= path_pat.match(""/anscombe/II/"")

>>> m2.groupdict()

{'dataset': 'II'}

>>> m3= path_pat.match(""/anscombe/"")

>>> m3.groupdict()

{'dataset': ''}

""""""

We can include the three previously mentioned examples as part of the overall
doctest using the following command:

__test__ = {

 ""test_pattern"": test_pattern,

}

Chapter 15

[293]

This will ensure that our routing works as expected. It's important to be able to
test this separately from the rest of the WSGI application. Testing a complete web
server means starting the server process and then trying to connect with a browser
or a test tool, such as Postman or Selenium. Visit http://www.getpostman.com or
http://www.seleniumhq.org to get more information on the usage of Postman and
Selenium. We prefer to test each feature in isolation.

Here's the overall WSGI application, with two lines of command highlighted:

import traceback

import urllib

def anscombe_app(environ, start_response):

 log= environ['wsgi.errors']

 try:

 match= path_pat.match(environ['PATH_INFO'])

 set_id= match.group('dataset').upper()

 query= urllib.parse.parse_qs(environ['QUERY_STRING'])

 print(environ['PATH_INFO'], environ['QUERY_STRING'],
 match.groupdict(), file=log)

 log.flush()

 dataset= anscombe_filter(set_id, raw_data())

 content, mime= serialize(query['form'][0], set_id, dataset)

 headers= [

 ('Content-Type', mime),
 ('Content-Length', str(len(content))),]

 start_response(""200 OK"", headers)

 return [content]

 except Exception as e:

 traceback.print_exc(file=log)

 tb= traceback.format_exc()

 page= error_page.substitute(title=""Error"",
 message=repr(e), traceback=tb)

 content= page.encode(""utf-8"")

 headers = [

 ('Content-Type', ""text/html""),
 ('Content-Length', str(len(content))),
]

 start_response(""404 NOT FOUND"", headers)

 return [content]

http://www.getpostman.com
http://www.seleniumhq.org

A Functional Approach to Web Services

[294]

This application will extract two pieces of information from the request: the PATH_
INFO and the QUERY_STRING methods. The PATH_INFO request will define which set
to extract. The QUERY_STRING request will specify an output format.

The application processing is broken into three functions. A raw_data() function
reads the raw data from a file. The result is a dictionary with lists of Pair objects.
The anscombe_filter() function accepts a selection string and the dictionary of
raw data and returns a single list of Pair objects. The list of pairs is then serialized
into bytes by the serialize() function. The serializer is expected to produce bytes,
which can then be packaged with an appropriate header and returned.

We elected to produce an HTTP Content-Length header. This isn't required, but it's
polite for large downloads Because we decided to emit this header, we are forced to
materialize the results of the serialization so that we can count the bytes.

If we elected to omit the Content-Length header, we could change the structure
of this application dramatically. Each serializer could be changed to a generator
function, which would yield bytes as they are produced. For large datasets, this
can be a helpful optimization. For the user watching a download, however, it might
not be so pleasant because the browser can't display how much of the download
is complete.

All errors are treated as a 404 NOT FOUND error. This could be misleading, since a
number of individual things might go wrong. A more sophisticated error handling
would provide more try:/except: blocks to provide more informative feedback.

For debugging purposes, we've provided a Python stack trace in the resulting web
page. Outside the context of debugging, this is a very bad idea. Feedback from
an API should be just enough to fix the request and nothing more. A stack trace
provides too much information to potentially malicious users.

Getting raw data
The raw_data() function is largely copied from Chapter 3, Functions, Iterators,
and Generators. We included some important changes. Here's what we're using
for this application:

from Chapter_3.ch03_ex5 import series, head_map_filter, row_iter,
Pair

def raw_data():

 """"""

 >>> raw_data()['I'] #doctest: +ELLIPSIS

 (Pair(x=10.0, y=8.04), Pair(x=8.0, y=6.95), ...

 """"""

Chapter 15

[295]

 with open(""Anscombe.txt"") as source:

 data = tuple(head_map_filter(row_iter(source)))

 mapping = dict((id_str, tuple(series(id_num,data)))

 for id_num, id_str in enumerate(['I', 'II', 'III', 'IV'])

)

 return mapping

We opened the local data file, and applied a simple row_iter() function to
return each line of the file parsed into a row of separate files. We applied the
head_map_filter() function to remove the heading from the file. The result
created a tuple-of-tuple structure with all of the data.

We transformed the tuple-of-tuple into a more useful dict() function by
selecting particular series from the source data. Each series will be a pair of
columns. For series "I," it's columns 0 and 1. For series "II," it's columns 2 and 3.

We used the dict() function with a generator expression for consistency with the
list() and tuple() functions. While it's not essential, it's sometimes helpful to see
the similarities with these three data structures and their use of generator expressions.

The series() function creates the individual Pair objects for each x,y pair in the
dataset. In retrospect, we can see the the output value after modifying this function
so that the resulting namedtuple class is an argument to this function, not an implicit
feature of the function. We'd prefer to see the series(id_num,Pair,data) method
to see where the Pair objects are created. This extension requires rewriting some of
the examples in Chapter 3, Functions, Iterators, and Generators. We'll leave that as an
exercise for the reader.

The important change here is that we're showing the formal doctest test case. As
we noted earlier, web applications—as a whole—are difficult to test. The web server
must be started and then a web client must be used to run the test cases. Problems
then have to be resolved by reading the web log, which can be difficult unless
complete tracebacks are displayed. It's much better to debug as much of the web
application as possible using ordinary doctest and unittest testing techniques.

Applying a filter
In this application, we're using a very simple filter. The entire filter process is
embodied in the following function:

def anscombe_filter(set_id, raw_data):

 """"""

 >>> anscombe_filter(""II"", raw_data()) #doctest: +ELLIPSIS

A Functional Approach to Web Services

[296]

 (Pair(x=10.0, y=9.14), Pair(x=8.0, y=8.14), Pair(x=13.0, y=8.74),
 ...

 """"""

 return raw_data[set_id]

We made this trivial expression into a function for three reasons:

• The functional notation is slightly more consistent and a bit more flexible
than the subscript expression

• We can easily expand the filtering to do more
• We can include separate unit tests in the docstring for this function

While a simple lambda would work, it wouldn't be quite as convenient to test.

For error handling, we've done exactly nothing. We've focused on what's sometimes
called the "happy path:" an ideal sequence of events. Any problems that arise in
this function will raise an exception. The WSGI wrapper function should catch all
exceptions and return an appropriate status message and error response content.

For example, it's possible that the set_id method will be wrong in some way. Rather
than obsess over all the ways it could be wrong, we'll simply allow Python to throw
an exception. Indeed, this function follows the Python I advice that, "it's better to
seek forgiveness than to ask permission." This advice is materialized in code by
avoiding "permission-seeking": there are no preparatory if statements that seek to
qualify the arguments as valid. There is only "forgiveness" handling: an exception
will be raised and handled in the WSGI wrapper. This essential advice applies to the
preceding raw data and the serialization that we will see now.

Serializing the results
Serialization is the conversion of Python data into a stream of bytes, suitable for
transmission. Each format is best described by a simple function that serializes just
that one format. A top-level generic serializer can then pick from a list of specific
serializers. The picking of serializers leads to the following collection of functions:

serializers = {

 'xml': ('application/xml', serialize_xml),

 'html': ('text/html', serialize_html),

 'json': ('application/json', serialize_json),

 'csv': ('text/csv', serialize_csv),

}

def serialize(format, title, data):

Chapter 15

[297]

 """"""json/xml/csv/html serialization.

 >>> data = [Pair(2,3), Pair(5,7)]

 >>> serialize(""json"", ""test"", data)

 (b'[{""x"": 2, ""y"": 3}, {""x"": 5, ""y"": 7}]', 'application/json')

 """"""

 mime, function = serializers.get(format.lower(), ('text/html',
serialize_html))

 return function(title, data), mime

The overall serialize() function locates a specific serializer and a specific MIME
type that must be used in the response to characterize the results. It then calls one
of the specific serializers. We've also shown a doctest test case here. We didn't
patiently test each serializer, since showing that one works seems adequate.

We'll look at the serializers separately. What we'll see is that the serializers fall into
two groups: those that produce strings and those that produce bytes. A serializer
that produces a string will need to have the string encoded as bytes. A serializer that
produces bytes doesn't need any further work.

For the serializers, which produce strings, we need to do some function composition
with a standard convert-to-bytes. We can do functional composition using a
decorator. Here's how we can standardize the conversion to bytes:

from functools import wraps

def to_bytes(function):

 @wraps(function)

 def decorated(*args, **kw):

 text= function(*args, **kw)

 return text.encode(""utf-8"")

 return decorated

We've created a small decorator named @to_bytes. This will evaluate the given
function and then encode the results using UTF-8 to get bytes. We'll show how this
is used with JSON, CSV, and HTML serializers. The XML serializer produces bytes
directly and doesn't need to be composed with this additional function.

We could also do the functional composition in the initialization of the serializers
mapping. Instead of decorating the function definition, we could decorate the
reference to the function object:

serializers = {

 'xml': ('application/xml', serialize_xml),

 'html': ('text/html', to_bytes(serialize_html)),

A Functional Approach to Web Services

[298]

 'json': ('application/json', to_bytes(serialize_json)),

 'csv': ('text/csv', to_bytes(serialize_csv)),

}

Though this is possible, this doesn't seem to be helpful. The distinction between
serializers that produce strings and those that produce bytes isn't an important part
of the configuration.

Serializing data into the JSON or CSV format
The JSON and CSV serializers are similar functions because both rely on Python's
libraries to serialize. The libraries are inherently imperative, so the function bodies
are strict sequences of statements.

Here's the JSON serializer:

import json

@to_bytes

def serialize_json(series, data):

 """"""

 >>> data = [Pair(2,3), Pair(5,7)]

 >>> serialize_json(""test"", data)

 b'[{""x"": 2, ""y"": 3}, {""x"": 5, ""y"": 7}]'

 """"""

 obj= [dict(x=r.x, y=r.y) for r in data]

 text= json.dumps(obj, sort_keys=True)

 return text

We created a list of dictionaries structure and used the json.dumps() function
to create a string representation. The JSON module requires a materialized list
object; we can't provide a lazy generator function. The sort_keys=True argument
value is essential for unit testing. However, it's not required for the application and
represents a bit of overhead.

Here's the CSV serializer:

import csv, io

@to_bytes

def serialize_csv(series, data):

 """"""

Chapter 15

[299]

 >>> data = [Pair(2,3), Pair(5,7)]

 >>> serialize_csv(""test"", data)

 b'x,y\\r\\n2,3\\r\\n5,7\\r\\n'

 """"""

 buffer= io.StringIO()

 wtr= csv.DictWriter(buffer, Pair._fields)

 wtr.writeheader()

 wtr.writerows(r._asdict() for r in data)

 return buffer.getvalue()

The CSV module's readers and writers are a mixture of imperative and functional
elements. We must create the writer, and properly create headings in a strict
sequence. We've used the _fields attribute of the Pair namedtuple to determine
the column headings for the writer.

The writerows() method of the writer will accept a lazy generator function.
In this case, we used the _asdict() method of each Pair object to return a
dictionary suitable for use with the CSV writer.

Serializing data into XML
We'll look at one approach to XML serialization using the built-in libraries. This will
build a document from individual tags. A common alternative approach is to use
Python introspection to examine and map Python objects and class names to XML
tags and attributes.

Here's our XML serialization:

import xml.etree.ElementTree as XML

def serialize_xml(series, data):

 """"""

 >>> data = [Pair(2,3), Pair(5,7)]

 >>> serialize_xml(""test"", data)

 b'<series name=""test""><row><x>2</x><y>3</y></row><row><x>5</x>
 <y>7</y></row></series>'

 """"""

 doc= XML.Element(""series"", name=series)

 for row in data:

 row_xml= XML.SubElement(doc, ""row"")

 x= XML.SubElement(row_xml, ""x"")

A Functional Approach to Web Services

[300]

 x.text= str(row.x)

 y= XML.SubElement(row_xml, ""y"")

 y.text= str(row.y)

 return XML.tostring(doc, encoding='utf-8')

We created a top-level element, <series>, and placed <row> subelements underneath
that top element. Within each <row> subelement, we've created <x> and <y> tags and
assigned text content to each tag.

The interface for building an XML document using the ElementTree library tends
to be heavily imperative. This makes it a poor fit for an otherwise functional design.
In addition to the imperative style, note that we haven't created a DTD or XSD. We
have not properly assigned a namespace to our tags. We also omitted the <?xml
version=""1.0""?> processing instruction that is generally the first item in an
XML document.

A more sophisticated serialization library would be helpful. There are many
to choose from. Visit https://wiki.python.org/moin/PythonXml for a list
of alternatives.

Serializing data into HTML
In our final example of serialization, we'll look at the complexity of creating an
HTML document. The complexity arises because in HTML, we're expected to
provide an entire web page with some context information. Here's one way to
tackle this HTML problem:

import string

data_page = string.Template(""""""<html>
<head><title>Series ${title}</title></head>
<body><h1>Series ${title}</h1>
<table><thead><tr><td>x</td><td>y</td></tr></thead>
<tbody>
${rows}
</tbody></table></body></html>"""""")

@to_bytes

def serialize_html(series, data):

 """"""
 >>> data = [Pair(2,3), Pair(5,7)]
 >>> serialize_html(""test"", data) #doctest: +ELLIPSIS
 b'<html>...<tr><td>2</td><td>3</td></tr>\\n<tr><td>5</td>
 <td>7</td></tr>...
 """"""

https://wiki.python.org/moin/PythonXml

Chapter 15

[301]

 text= data_page.substitute(title=series,
 rows=""\n"".join(

 ""<tr><td>{0.x}</td><td>{0.y}</td></tr>"".format(row)

 for row in data)

)

 return text

Our serialization function has two parts. The first part is a string.Template()
function that contains the essential HTML page. It has two placeholders where
data can be inserted into the template. The ${title} method shows where title
information can be inserted and the ${rows} method shows where the data rows
can be inserted.

The function creates individual data rows using a simple format string. These are
joined into a longer string, which is then substituted into the template.

While workable for simple cases like the preceding example, this isn't ideal for
more complex result sets. There are a number of more sophisticated template tools
to create HTML pages. A number of these include the ability to embed the looping
in the template, separate from the function that initializes serialization. Visit
https://wiki.python.org/moin/Templating for a list of alternatives.

Tracking usage
Many publicly available APIs require the use of an "API Key". The supplier of
the API requests you to sign up and provide an email address or other contact
information. In exchange for this, they provide an API Key which activates the API.

The API Key is used to authenticate access. It may also be used to authorize specific
features. Finally, it's also used to track usage. This may include throttling requests if
an API Key is used too often in a given time period.

The variations in the business models are numerous. For example, use of the API
Key is a billable event and charges are incurred. For other businesses, traffic must
reach some threshold before payments are required.

What's important is non-repudiation of the use of the API. This, in turn, means
creating API Keys that can act as a user's authentication credentials. The key must be
difficult to forge and relatively easy to verify.

https://wiki.python.org/moin/Templating

A Functional Approach to Web Services

[302]

One easy way to create API Keys is to use a cryptographic random number to
generate a difficult-to-predict key string. A small function, like the following,
should be good enough:

import random

rng= random.SystemRandom()

import base64

def make_key_1(rng=rng, size=1):

 key_bytes= bytes(rng.randrange(0,256) for i in range(18*size))

 key_string= base64.urlsafe_b64encode(key_bytes)

 return key_string

We've used the random.SystemRandom class as the class for our secure random
number generator. This will seed the generator with the os.urandom() bytes, which
assures a reliably unpredictable seed value. We've created this object separately so
that it can be reused each time a key is requested. Best practice is to get a number of
keys from a generator using a single random seed.

Given some random bytes, we used a base 64 encoding to create a sequence of
characters. Using a multiple of three in the initial sequence of random bytes, we'll
avoid any trailing "=" signs in the base 64 encoding. We've used the URL safe base
64 encoding, which won't include the "/" or "+" characters in the resulting string,
characters that might be confusing if used as part of a URL or query string.

The more elaborate methods won't lead to more random data. The
use of random.SystemRandom assures that no one can counterfeit
a key assigned to another user. We're using 18×8 random bits,
giving us a large number of random keys.

How many random keys? Take a look at the following command and its output:

>>> 2**(18*8)

22300745198530623141535718272648361505980416

The odds of someone successfully forging a duplicate of someone else's key
are small.

Another choice is to use uuid.uuid4() to create a random Universally Unique
Identifier (UUID). This will be a 36-character string that has 32 hex digits and
four "-" punctuation marks. A random UUID is also difficult to forge. A UUID that
includes data such as username or host IP address is a bad idea because this encodes
information, which can be decoded and used to forge a key. The reason for using a
cryptographic random number generator is to avoid encoding any information.

Chapter 15

[303]

The RESTful web server will then need a small database with the valid keys and
perhaps some client contact information. If an API request includes a key that's in the
database, the associated user is responsible for the request. If the API request doesn't
include a known key, the request can be rejected with a simple 401 UNAUTHORIZED
response. Since the key itself is a 24-character string, the database will be rather small
and can easily be cached in memory.

Ordinary log-scraping might be sufficient to show the usage for a given key. A more
sophisticated application might record API requests in a separate logfile or database
to simplify analysis.

Summary
In this chapter, we looked at ways in which we can apply functional design to the
problem of serving content with REST-based web services. We looked at the ways
that the WSGI standard leads to somewhat functional overall applications. We
also looked at how we can embed a more functional design into a WSGI context by
extracting elements from the request for use by our application functions.

For simple services, the problem often decomposes down into three distinct
operations: getting the data, searching or filtering, and then serializing the results.
We tackled this with three functions: raw_data(), anscombe_filter(), and
serialize(). We wrapped these functions in a simple WSGI-compatible application
to divorce the web services from the "real" processing around extracting and filtering
the data.

We also looked at the way that web services functions can focus on the "happy path"
and assume that all of the inputs are valid. If inputs are invalid, the ordinary Python
exception handling will raise exceptions. The WSGI wrapper function will catch the
errors and return appropriate status codes and error content.

We avoided looking at more complex problems associated with uploading data
or accepting data from forms to update a persistent data store. These are not
significantly more complex than getting data and serializing the results. They are
already solved in a better manner.

For simple queries and data sharing, a small web service application can be helpful.
We can apply functional design patterns and assure that the website code is succinct
and expressive. For more complex web applications, we should consider using a
framework that handles the details properly.

In the next chapter, we'll look at a few optimization techniques that are available to
us. We'll expand on the @lru_cache decorator from Chapter 10, The Functools Module.
We'll also look at some other optimization techniques that were presented in Chapter 6,
Recursions and Reductions.

Optimizations and
Improvements

In this chapter, we'll look at a few optimizations that we can make to create high
performance functional programs. We'll expand on the @lru_cache decorator
from Chapter 10, The Functools Module. We have a number of ways to implement the
memoization algorithm. We'll also discuss how to write our own decorators. More
importantly, we'll see how we use a Callable object to cache memoized results.

We'll also look at some optimization techniques that were presented in Chapter
6, Recursions and Reductions. We'll review the general approach to tail recursion
optimization. For some algorithms, we can combine memoization with a recursive
implementation and achieve good performance. For other algorithms, memoization
isn't really very helpful and we have to look elsewhere for performance improvements.

In most cases, small changes to a program will lead to small improvements in
performance. Replacing a function with a lambda object will have a tiny impact on
performance. If we have a program that is unacceptably slow, we often have to locate
a completely new algorithm or data structure. Some algorithms have bad "big-O"
complexity; nothing will make them magically run faster.

One place to start is http://www.algorist.com. This is a resource that may help to
locate better algorithms for a given problem.

Memoization and caching
As we saw in Chapter 10, The Functools Module, many algorithms can benefit from
memoization. We'll start with a review of some previous examples to characterize
the kinds of functions that can be helped with memoization.

http://www.algorist.com

Optimizations and Improvements

[306]

In Chapter 6, Recursions and Reductions, we looked at a few common kinds of
recursions. The simplest kind of recursion is a tail recursion with arguments that
can be easily matched to values in a cache. If the arguments are integers, strings, or
materialized collections, then we can compare arguments quickly to determine if the
cache has a previously computed result.

We can see from these examples that integer numeric calculations such as computing
factorial or locating a Fibonacci number will be obviously improved. Locating prime
factors and raising integers to powers are more examples of numeric algorithms that
apply to integer values.

When we looked at the recursive version of a Fibonacci number calculator, we saw
that it contained two tail-call recursions. Here's the definition:

1 2n n nF F F− −= +

This can be turned into a loop, but the design change requires some thinking.
The memoized version of this can be quite fast and doesn't require quite so much
thinking to design.

The Syracuse function, shown in Chapter 6, Recursions and Reductions, is an example
of the kind of function used to compute fractal values. It contains a simple rule that's
applied recursively. Exploring the Collatz conjecture ("does the Syracuse function
always lead to 1?") requires memoized intermediate results.

The recursive application of the Syracuse function is an example of a function
with an "attractor," where the value is attracted to 1. In some higher dimensional
functions, the attractor can be a line or perhaps a fractal. When the attractor is a
point, memoization can help; otherwise, memoization may actually be a hindrance,
since each fractal value is unique.

When working with collections, the benefits of caching may vanish. If the collection
happens to have the same number of integer values, strings, or tuples, then there's
a chance that the collection is a duplicate and time can be saved. However, if a
calculation on a collection will be needed more than once, manual optimization is
best: do the calculation once and assign the results to a variable.

When working with iterables, generator functions, and other lazy objects, caching of
an overall object is essentially impossible. In these cases, memoization is not going to
help at all.

Chapter 16

[307]

Raw data that includes measurements often use floating point values. Since an
exact equality comparison between floating point values may not work out well,
memoizing intermediate results may not work out well either.

Raw data that includes counts, however, may benefit from memoization.
These are integers, and we can trust exact integer comparisons to (potentially)
save recalculating a previous value. Some statistical functions, when applied to
counts, can benefit from using the fractions module instead of floating point
values. When we replace x/y with the Fraction(x,y) method, we've preserved
the ability to do exact value matching. We can produce the final result using the
float(some_fraction) method.

Specializing memoization
The essential idea of memoization is so simple that it can be captured by the
@lru_cache decorator. This decorator can be applied to any function to implement
memoization. In some cases, we might be able to improve on the generic idea with
something more specialized. There are a large number of potentially optimizable
multivalued functions. We'll pick one here and look at another in a more complex
case study.

The binomial,
n
m

 , shows the number of ways n different things can be arranged in

groups of size m. The value is as follows:

()
!

! !
n n
m m n m

= −

Clearly, we should cache the factorial calculations rather than redo all those
multiplications. However, we may also benefit from caching the overall binomial
calculation, too.

We'll create a Callable object that contains multiple internal caches. Here's a helper
function that we'll need:

from functools import reduce

from operator import mul

prod = lambda x: reduce(mul, x)

The prod() function computes the product of an iterable of numbers. It's defined as
a reduction using the * operator.

Optimizations and Improvements

[308]

Here's a Callable object with two caches that uses this prod() function:

from collections.abc import Callable

class Binomial(Callable):

 def __init__(self):

 self.fact_cache= {}

 self.bin_cache= {}

 def fact(self, n):

 if n not in self.fact_cache:

 self.fact_cache[n] = prod(range(1,n+1))

 return self.fact_cache[n]

 def __call__(self, n, m):

 if (n,m) not in self.bin_cache:

 self.bin_cache[n,m] = self.fact(n)//(self.fact(m)*self.
fact(n-m))

 return self.bin_cache[n,m]

We created two caches: one for factorial values and one for binomial coefficient
values. The internal fact() method uses the fact_cache attribute. If the value isn't
in the cache, it's computed and added to the cache. The external __call__() method
uses the bin_cache attribute in a similar way: if a particular binomial has already
been calculated, the answer is simply returned. If not, the internal fact() method is
used to compute a new value.

We can use the preceding Callable class like this:

>>> binom= Binomial()

>>> binom(52,5)

2598960

This shows how we can create a Callable object from our class and then invoke the
object on a particular set of arguments. There are a number of ways that a 52-card
deck can be dealt into 5-card hands. There are 2.6 million possible hands.

Tail recursion optimizations
In Chapter 6, Recursions and Reductions, among many others, we looked at how a
simple recursion can be optimized into a for loop. The general approach is this:

Chapter 16

[309]

• Design the recursion. This means the base case and the recursive cases.
For example, this is a definition of computing:

()! 1 !n n n= × −

To design the recursion execute the following commands:

def fact(n):

 if n == 0: return 1

 else: return n*fact(n-1)

• If the recursion has a simple call at the end, replace the recursive case with
a for loop. The command is as follows:

def facti(n):

 if n == 0: return 1

 f= 1

 for i in range(2,n):

 f= f*i

 return f

When the recursion appears at the end of a simple function, it's described
as a tail–call optimization. Many compilers will optimize this into a loop.
Python—lacking this optimization in its compiler—doesn't do this kind
of tail-call transformation.

This pattern is very common. Performing the tail-call optimization improves
performance and removes any upper bound on the number of recursions that
can be done.

Prior to doing any optimization, it's absolutely essential that the function already
works. For this, a simple doctest string is often sufficient. We might use annotation
on our factorial functions like this:

def fact(n):

 """Recursive Factorial

 >>> fact(0)

 1

 >>> fact(1)

 1

 >>> fact(7)

 5040

Optimizations and Improvements

[310]

 """

 if n == 0: return 1

 else: return n*fact(n-1)

We added two edge cases: the explicit base case and the first item beyond the base
case. We also added another item that would involve multiple iterations. This allows
us to tweak the code with confidence.

When we have a more complex combination of functions, we might need to execute
commands like this:

test_example="""

>>> binom= Binomial()

>>> binom(52,5)

2598960

"""

__test__ = {

 "test_example": test_example,

}

The __test__ variable is used by the doctest.testmod() function. All of the
values in the dictionary associated with the __test__ variable are examined for the
doctest strings. This is a handy way to test features that come from compositions
of functions. This is also called integration testing, since it tests the integration of
multiple software components.

Having working code with a set of tests gives us the confidence to make optimizations.
We can easily confirm the correctness of the optimization. Here's a popular quote that
is used to describe optimization:

"Making a wrong program worse is no sin."

 -Jon Bentley

This appeared in the Bumper Sticker Computer Science chapter of More Programming
Pearls, published by Addison-Wesley, Inc. What's important here is that we should
only optimize code that's actually correct.

Chapter 16

[311]

Optimizing storage
There's no general rule for optimization. We often focus on optimizing performance
because we have tools like the Big O measure of complexity that show us whether
or not an algorithm is an effective solution to a given problem. Optimizing storage is
usually tackled separately: we can look at the steps in an algorithm and estimate the
size of the storage required for the various storage structures.

In many cases, the two considerations are opposed. In some cases, an algorithm that
has outstandingly good performance requires a large data structure. This algorithm
can't scale without dramatic increases in the amount of storage required. Our goal is
to design an algorithm that is reasonably fast and also uses an acceptable amount
of storage.

We may have to spend time researching algorithmic alternatives to locate
a way to make the space-time trade off properly. There are some common
optimization techniques. We can often follow links from Wikipedia:
http://en.wikipedia.org/wiki/Space–time_tradeoff.

One memory optimization technique we have in Python is to use an iterable.
This has some properties of a proper materialized collection, but doesn't necessarily
occupy storage. There are few operations (such as the len() function) that can't
work on an iterable. For other operations, the memory saving feature can allow a
program to work with very large collections.

Optimizing accuracy
In a few cases, we need to optimize the accuracy of a calculation. This can be
challenging and may require some fairly advanced math to determine the limits
on the accuracy of a given approach.

An interesting thing we can do in Python is replace floating point approximations
with fractions.Fraction value. For some applications, this can create more
accurate answers than floating point, because more bits are used for numerator
and denominator than a floating point mantissa.

It's important to use decimal.Decimal values to work with currency. It's a common
error to use a float value. When using a float value, additional noise bits are
introduced because of the mismatch between Decimal values provided as input
and the binary approximation used by floating point values. Using Decimal values
prevents the introduction of tiny inaccuracies.

http://en.wikipedia.org/wiki/Space-time_tradeoff

Optimizations and Improvements

[312]

In many cases, we can make small changes to a Python application to switch from
float values to Fraction or Decimal values. When working with transcendental
functions, this change isn't necessarily beneficial. Transcendental functions—by
definition—involve irrational numbers.

Reducing accuracy based on audience
requirements
For some calculations, a fraction value may be more intuitively meaningful than
a floating point value. This is part of presenting statistical results in a way that an
audience can understand and take action on.

For example, the chi-squared test generally involves computing the 2X comparison
between actual values and expected values. We can then subject this comparison
value to a test against the 2X cumulative distribution function. When the expected
and actual values have no particular relationship—we can call this a null
relationship—the variation will be random; 2X the value tends to be small. When we
accept the null hypothesis, then we'll look elsewhere for a relationship. When the
actual values are significantly different from the expected values, we may reject the
null hypothesis. By rejecting the null hypothesis, we can explore further to determine
the precise nature of the relationship.

The decision is often based on the table of the 2X Cumulative Distribution Function
(CDF) for selected 2X values and given degrees of freedom. While the tabulated CDF
values are mostly irrational values, we don't usually use more than two or three
decimal places. This is merely a decision-making tool, there's no practical difference
in meaning between 0.049 and 0.05.

A widely used probability is 0.05 for rejecting the null hypothesis. This is a Fraction
object less than 1/20. When presenting data to an audience, it sometimes helps to
characterize results as fractions. A value like 0.05 is hard to visualize. Describing a
relationship has having 1 chance in 20 can help to characterize the likelihood of
a correlation.

Case study – making a chi-squared
decision
We'll look at a common statistical decision. The decision is described in detail at
http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm.

http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm

Chapter 16

[313]

This is a chi-squared decision on whether or not data is distributed randomly.
In order to make this decision, we'll need to compute an expected distribution and
compare the observed data to our expectations. A significant difference means there's
something that needs further investigation. An insignificant difference means we can
use the null hypothesis that there's nothing more to study: the differences are simply
random variation.

We'll show how we can process the data with Python. We'll start with some
backstory—some details that are not part of the case study, but often features
an Exploratory Data Analysis (EDA) application. We need to gather the raw data
and produce a useful summary that we can analyze.

Within the production quality assurance operations, silicon wafer defect data is
collected into a database. We might use SQL queries to extract defect details for
further analysis. For example, a query could look like this:

SELECT SHIFT, DEFECT_CODE, SERIAL_NUMBER

FROM some tables;

The output from this query could be a CSV file with individual defect details:

shift,defect_code,serial_number
1,None,12345
1,None,12346
1,A,12347
1,B,12348
and so on. for thousands of wafers

We need to summarize the preceding data. We might summarize at the SQL query
level using the COUNT and GROUP BY statements. We might also summarize at the
Python application level. While a pure database summary is often described as being
more efficient, this isn't always true. In some cases, a simple extract of raw data and a
Python application to summarize can be faster than a SQL summary. If performance
is important, both alternatives must be measured, rather than hoping that the
database is fastest.

In some cases, we may be able to get summary data from the database efficiently.
This summary must have three attributes: the shift, type of defect, and a count of
defects observed. The summary data looks like this:

shift,defect_code,count
1,A,15
2,A,26
3,A,33
and so on.

Optimizations and Improvements

[314]

The output will show all of the 12 combinations of shift and defect type.

In the next section, we'll focus on reading the raw data to create summaries. This
is the kind of context in which Python is particularly powerful: working with raw
source data.

We need to observe and compare shift and defect counts with an overall expectation.
If the difference between observed counts and expected counts can be attributed to
random fluctuation, we have to accept the null hypothesis that nothing interesting
is going wrong. If, on the other hand, the numbers don't fit with random variation,
then we have a problem that requires further investigation.

Filtering and reducing the raw data with a
Counter object
We'll represent the essential defect counts as a collections.Counter parameter.
We will build counts of defects by shift and defect type from the detailed raw data.
Here's a function to read some raw data from a CSV file:

import csv

from collections import Counter

from types import SimpleNamespace

def defect_reduce(input):

 rdr= csv.DictReader(input)

 assert sorted(rdr.fieldnames) == ["defect_type", "serial_number",
 "shift"]

 rows_ns = (SimpleNamespace(**row) for row in rdr)

 defects = ((row.shift, row.defect_type) for row in rows_ns:

 if row.defect_type)

 tally= Counter(defects)

 return tally

The preceding function will create a dictionary reader based on an open file
provided via the input parameter. We've confirmed that the column names match
the three expected column names. In some cases, we'll have extra columns in the file;
in this case, the assertion will be something like all((c in rdr.fieldnames) for
c in […]). Given a tuple of column names, this will assure that all of the required
columns are present in the source. We can also use sets to assure that set(rdr.
fieldnames) <= set([...]).

Chapter 16

[315]

We created a types.SimpleNamespace parameter for each row. In the preceding
example, the supplied column names are valid Python variable names that allow us
to easily turn a dictionary into a namespace. In some cases, we'll need to map column
names to Python variable names to make this work.

A SimpleNamespace parameter allows us to use slightly simpler syntax to refer
to items within the row. Specifically, the next generator expression uses references
such as row.shift and row.defect_type instead of the bulkier row['shift']
or row['defect_type'] references.

We can use a more complex generator expression to do a map-filter combination.
We'll filter each row to ignore rows with no defect code. For rows with a defect code,
we're mapping an expression which creates a two tuple from the row.shift and
row.defect_type references.

In some applications, the filter won't be a trivial expression such as row.defect_
type. It may be necessary to write a more sophisticated condition. In this case, it
may be helpful to use the filter() function to apply the complex condition to the
generator expression that provides the data.

Given a generator that will produce a sequence of (shift, defect) tuples, we can
summarize them by creating a Counter object from the generator expression. Creating
this Counter object will process the lazy generator expressions, which will read the
source file, extract fields from the rows, filter the rows, and summarize the counts.

We'll use the defect_reduce() function to gather and summarize the data
as follows:

with open("qa_data.csv", newline="") as input:

 defects= defect_reduce(input)

print(defects)

We can open a file, gather the defects, and display them to be sure that we've
properly summarized by shift and defect type. Since the result is a Counter object,
we can combine it with other Counter objects if we have other sources of data.

The defects value looks like this:

Counter({('3', 'C'): 49, ('1', 'C'): 45, ('2', 'C'): 34,
('3', 'A'): 33, ('2', 'B'): 31, ('2', 'A'): 26, ('1', 'B'): 21,
('3', 'D'): 20, ('3', 'B'): 17, ('1', 'A'): 15, ('1', 'D'): 13,
('2', 'D'): 5})

We have defect counts organized by shift and defect types. We'll look at alternative
input of summarized data next. This reflects a common use case where data is
available at the summary level.

Optimizations and Improvements

[316]

Once we've read the data, the next step is to develop two probabilities so that we
can properly compute expected defects for each shift and each type of defect. We
don't want to divide the total defect count by 12, since that doesn't reflect the actual
deviations by shift or defect type. The shifts may be more or less equally productive.
The defect frequencies are certainly not going to be similar. We expect some defects
to be very rare and others to be more common.

Reading summarized data
As an alternative to reading all of the raw data, we can look at processing only
the summary counts. We want to create a Counter object similar to the previous
example; this will have defect counts as a value with a key of shift and defect code.
Given summaries, we simply create a Counter object from the input dictionary.

Here's a function that will read our summary data:

from collections import Counter

import csv

def defect_counts(source):

 rdr= csv.DictReader(source)

 assert rdr.fieldnames == ["shift", "defect_code", "count"]

 convert = map(
 lambda d: ((d['shift'], d['defect_code']),
 int(d['count'])),

 rdr)

 return Counter(dict(convert))

We require an open file as the input. We'll create a csv.DictReader() function that
helps parse the raw CSV data that we got from the database. We included an assert
statement to confirm that the file really has the expected data.

We defined a lambda object that creates a two tuple with the key and the integer
conversion of the count. The key is itself a two tuple with the shift and defect
information. The result will be a sequence such as ((shift,defect), count),
((shift,defect), count), …). When we map the lambda to the DictReader
parameter, we'll have a generator function that can emit the sequence of two tuples.

We will create a dictionary from the collection of two tuples and use this dictionary
to build a Counter object. The Counter object can easily be combined with other
Counter objects. This allows us to combine details acquired from several sources.
In this case, we only have a single source.

Chapter 16

[317]

We can assign this single source to the variable defects. The value looks like this:

Counter({('3', 'C'): 49, ('1', 'C'): 45, ('2', 'C'): 34,
('3', 'A'): 33, ('2', 'B'): 31, ('2', 'A'): 26,('1', 'B'): 21,
('3', 'D'): 20, ('3', 'B'): 17, ('1', 'A'): 15, ('1', 'D'): 13,
('2', 'D'): 5})

This matches the detail summary shown previously. The source data, however, was
already summarized. This is often the case when data is extracted from a database
and SQL is used to do group-by operations.

Computing probabilities from a Counter
object
We need to compute the probabilities of defects by shift and defects by type.
In order to compute the expected probabilities, we need to start with some simple
sums. The first is the overall sum of all defects, which can be calculated by executing
the following command:

total= sum(defects.values())

This is done directly from the values in the Counter object assigned to the defects
variable. This will show that there are 309 total defects in the sample set.

We need to get defects by shift as well as defects by type. This means that we'll
extract two kinds of subsets from the raw defect data. The "by-shift" extract will use
just one part of the (shift,defect type) key in the Counter object. The "by-type"
will use the other half of the key pair.

We can summarize by creating additional Counter objects extracted from the
initial set of the Counter objects assigned to the defects variable. Here's the
by-shift summary:

shift_totals= sum((Counter({s:defects[s,d]}) for s,d in defects),
Counter())

We've created a collection of individual Counter objects that have a shift, s, as the
key and the count of defects associated with that shift defects[s,d]. The generator
expression will create 12 such Counter objects to extract data for all combinations of
four defect types and three shifts. We'll combine the Counter objects with a sum()
function to get three summaries organized by shift.

Optimizations and Improvements

[318]

We can't use the default initial value of 0 for the sum() function.
We must provide an empty Counter() function as an initial
value.

The type totals are created with an expression similar to the one used to create
shift totals:

type_totals= sum((Counter({d:defects[s,d]}) for s,d in defects),
Counter())

We created a dozen Counter objects using the defect type, d, as the key instead
of shift type; otherwise, the processing is identical.

The shift totals look like this:

Counter({'3': 119, '2': 96, '1': 94})

The defect type totals look like this:

Counter({'C': 128, 'A': 74, 'B': 69, 'D': 38})

We've kept the summaries as Counter objects, rather than creating simple dict
objects or possibly even list instances. We'll generally use them as simple dicts
from this point forward. However, there are some situations where we will want
proper Counter objects instead of reductions.

Alternative summary approaches
We've read the data and computed summaries in two separate steps. In some cases,
we may want to create the summaries while reading the initial data. This is an
optimization that might save a little bit of processing time. We could write a more
complex input reduction that emitted the grand total, the shift totals, and the defect
type totals. These Counter objects would be built one item at a time.

We've focused on using the Counter instances, because they seem to allow us
flexibility. Any changes to the data acquisition will still create Counter instances
and won't change the subsequent analysis.

Here's how we can compute the probabilities of defect by shift and by defect type:

from fractions import Fraction

P_shift = dict((shift, Fraction(shift_totals[shift],total))

for shift in sorted(shift_totals))

P_type = dict((type, Fraction(type_totals[type],total)) for type in
sorted(type_totals))

Chapter 16

[319]

We've created two dictionaries: P_shift and P_type. The P_shift dictionary maps
a shift to a Fraction object that shows the shift's contribution to the overall number
of defects. Similarly, the P_type dictionary maps a defect type to a Fraction object
that shows the type's contribution to the overall number of defects.

We've elected to use Fraction objects to preserve all of the precision of the input
values. When working with counts like this, we may get probability values that
make more intuitive sense to people reviewing the data.

We've elected to use dict objects because we've switched modes. At this point in the
analysis, we're no longer accumulating details; we're using reductions to compare
actual and observed data.

The P_shift data looks like this:

{'2': Fraction(32, 103), '3': Fraction(119, 309), '1':
Fraction(94, 309)}

The P_type data looks like this:

{'B': Fraction(23, 103), 'C': Fraction(128, 309),
'A': Fraction(74, 309), 'D': Fraction(38, 309)}

A value such as 32/103 or 96/309 might be more meaningful to some people than
0.3106. We can easily get float values from Fraction objects, as we'll see later.

The shifts all seem to be approximately at the same level of defect production. The
defect types vary, which is typical. It appears that the defect C is a relatively common
problem, whereas the defect B is much less common. Perhaps the second defect
requires a more complex situation to arise.

Computing expected values and
displaying a contingency table
The expected defect production is a combined probability. We'll compute the shift
defect probability multiplied by the probability based on defect type. This will allow
us to compute all 12 probabilities from all combinations of shift and defect type. We
can weight these with the observed numbers and compute the detailed expectation
for defects.

Here's the calculation of expected values:

expected = dict(
 ((s,t), P_shift[s]*P_type[t]*total) for t in P_type:
 for s in P_shift
)

Optimizations and Improvements

[320]

We'll create a dictionary that parallels the initial defects Counter object. This
dictionary will have a sequence of two tuples with keys and values. The keys will
be two tuples of shift and defect type. Our dictionary is built from a generator
expression that explicitly enumerates all combinations of keys from the P_shift
and P_type dictionaries.

The value of the expected dictionary looks like this:

{('2', 'B'): Fraction(2208, 103), ('2', 'D'): Fraction(1216, 103),
('3', 'D'): Fraction(4522, 309), ('2', 'A'): Fraction(2368, 103),
('1', 'A'): Fraction(6956, 309), ('1', 'B'): Fraction(2162, 103),
('3', 'B'): Fraction(2737, 103), ('1', 'C'): Fraction(12032, 309),
('3', 'C'): Fraction(15232, 309), ('2', 'C'): Fraction(4096, 103),
('3', 'A'): Fraction(8806, 309), ('1', 'D'): Fraction(3572, 309)}

Each item of the mapping has a key with shift and defect type. This is associated
with a Fraction value based on the probability of defect based on shift times, the
probability of a defect based on defect type times the overall number of defects.
Some of the fractions are reduced, for example, a value of 6624/309 can be simplified
to 2208/103.

Large numbers are awkward as proper fractions. Displaying large values as float
values is often easier. Small values (such as probabilities) are sometimes easier to
understand as fractions.

We'll print the observed and expected times in pairs. This will help us visualize the
data. We'll create something that looks like the following to help summarize what
we've observed and what we expect:

obs exp obs exp obs exp obs exp

15 22.51 21 20.99 45 38.94 13 11.56 94

26 22.99 31 21.44 34 39.77 5 11.81 96

33 28.50 17 26.57 49 49.29 20 14.63 119

74 69 128 38 309

This shows 12 cells. Each cell has values with the observed number of defects and
an expected number of defects. Each row ends with the shift totals, and each column
has a footer with the defect totals.

In some cases, we might export this data in CSV notation and build a spreadsheet.
In other cases, we'll build an HTML version of the contingency table and leave the
layout details to a browser. We've shown a pure text version here.

Chapter 16

[321]

Here's a sequence of statements to create the contingency table shown previously:

print("obs exp"*len(type_totals))

for s in sorted(shift_totals):

 pairs= ["{0:3d} {1:5.2f}".format(defects[s,t],
 float(expected[s,t])) for t in sorted(type_totals)]

 print("{0} {1:3d}".format("".join(pairs), shift_totals[s]))

footers= ["{0:3d}".format(type_totals[t]) for t in
sorted(type_totals)]

print("{0} {1:3d}".format("".join(footers), total))

This spreads the defect types across each line. We've written enough obs exp
column titles to cover all defect types. For each shift, we'll emit a line of observed and
actual pairs, followed by a shift total. At the bottom, we'll emit a line of footers with
just the defect type totals and the grand total.

A contingency table like this one helps us to visualize the comparison between
observed and expected values. We can compute a chi-squared value for these two
sets of values. This will help us decide if the data is random or if there's something
that deserves further investigation.

Computing the chi-squared value
The 2X value is based on

()2i i
i

i

e o
e
−

∑ , where the e values are the expected values and
the o values are the observed values.

We can compute the specified formula's value as follows:

diff= lambda e,o: (e-o)**2/e

chi2= sum(diff(expected[s,t], defects[s,t]) for s in shift_totals:

 for t in type_totals

)

We've defined a small lambda to help us optimize the calculation. This allows us to
execute the expected[s,t] and defects[s,t] attributes just once, even though the
expected value is used in two places. For this dataset, the final 2X value is 19.18.

There are a total of six degrees of freedom based on three shifts and four defect
types. Since we're considering them independent, we get 2×3=6. A chi-squared table
shows us that anything below 12.5916 would reflect 1 chance in 20 of the data being
truly random. Since our value is 19.18, the data is unlikely to be random.

Optimizations and Improvements

[322]

The cumulative distribution function for 2X shows that a value of 19.18 has a
probability of the order of 0.00387: about 4 chances in 1000 of being random. The
next step is a follow-up study to discover the details of the various defect types and
shifts. We'll need to see which independent variable has the biggest correlation with
defects and continue the analysis.

Instead of following up with this case study, we'll look at a different and
interesting calculation.

Computing the chi-squared threshold
The essence of the 2X test is a threshold value based on the number of degrees
of freedom and the level of uncertainty we're willing to entertain in accepting or
rejecting the null hypothesis. Conventionally, we're advised to use a threshold
around 0.05 (1/20) to reject the null hypothesis. We'd like there to be only 1 chance
in 20 that the data is simply random and it appears meaningful. In other words, we'd
like there to be 19 chances in 20 that the data reflects simple random variation.

The chi-squared values are usually provided in tabular form because the calculation
involves a number of transcendental functions. In some cases, libraries will provide
the 2X cumulative distribution function, allowing us to compute a value rather than
look one up on tabulation of important values.

The cumulative distribution function for a 2X value, x, and degrees of freedom, f,
is defined as follows:

()
,
2 2;

2

k x

F x k
k

γ

Γ

 =

It's common to the probability of being random as ()21 ;p F kχ= − . That is, if p > 0.05,
the data can be understood as random; the null hypothesis is true.

This requires two calculations: the incomplete gamma function, (),s zγ , and the
complete gamma function, ()xΓ . These can involve some fairly complex math.
We'll cut some corners and implement two pretty-good approximations that are
narrowly focused on just this problem. Each of these functions will allow us to look
at functional design issues.

Chapter 16

[323]

Both of these functions will require a factorial calculation, !n . We've seen several
variations on the fractions theme. We'll use the following one:

@lru_cache(128)

def fact(k):

 if k < 2: return 1

 return reduce(operator.mul, range(2, int(k)+1))

This is 2! i kk i≤ ≤= Π : a product of numbers from 2 to k (inclusive). We've omitted the
unit test cases.

Computing the partial gamma value
The partial gamma function has a simple series expansion. This means that we're
going to compute a sequence of values and then do a sum on those values. For more
information, visit http://dlmf.nist.gov/8.

() ()
0

1
,

!

k s k

k

zs z
k s k

γ
+

≤ ≤∞

−
=

+∑

This series will have a sequence of terms that—eventually—become too small to be
relevant. The calculation ()1 k− will yield alternating signs:

0 1 2 31 1, 1 1, 1 1, 1 1− = − = − − = − = −

The sequence of terms looks like this with s=1 and z=2:

 2/1, -2/1, 4/3, -2/3, 4/15, -4/45, ..., -2/638512875

At some point, each additional term won't have any significant impact on the result.

When we look back at the cumulative distribution function, ();F x k , we can consider
working with fractions.Fraction values. The degrees of freedom, k, will be an
integer divided by 2. The 2X value, x, may be either a Fraction or a float value; it
will rarely be a simple integer value.

When evaluating the terms of γ , the value of
()1
!

k

k
−

 will involve integers and can be
represented as a proper Fraction value. The value of

s kz +
 could be a Fraction or

float value; it will lead to irrational values when s k+ is not an integer value. The
value of s k+ will be a proper Fraction value, sometimes it will have the integer
values, and sometimes it will have values that involve 1/2.

http://dlmf.nist.gov/8

Optimizations and Improvements

[324]

The use of Fraction value here—while possible—doesn't seem to be helpful because
there will be an irrational value computed. However, when we look at the complete
gamma function given here, we'll see that Fraction values are potentially helpful. In
this function, they're merely incidental.

Here's an implementation of the previously explained series expansion:

def gamma(s, z):

 def terms(s, z):

 for k in range(100):

 t2= Fraction(z**(s+k))/(s+k)

 term= Fraction((-1)**k,fact(k))*t2

 yield term

 warnings.warn("More than 100 terms")

 def take_until(function, iterable):

 for v in iterable:

 if function(v): return

 yield v

 ε= 1E-8

 return sum(take_until(lambda t:abs(t) < ε, terms(s, z)))

We defined a term() function that will yield a series of terms. We used a for
statement with an upper limit to generate only 100 terms. We could have used the
itertools.count() function to generate an infinite sequence of terms. It seems
slightly simpler to use a loop with an upper bound.

We computed the irrational s kz + value and created a Fraction value from this value
by itself. If the value for z is also a Fraction value and not a float value then, the
value for t2 will be a Fraction value. The value for term() function will then be a
product of two Fraction objects.

We defined a take_until() function that takes values from an iterable, until a given
function is true. Once the function becomes true, no more values are consumed from
the iterable. We also defined a small threshold value, ε, of 810− . We'll take values
from the term() function until the values are less than ε. The sum of these values is
an approximation to the partial gamma function.

Chapter 16

[325]

Here are some test cases we can use to confirm that we're computing this properly:

• () 21, 2 1 0.8646647eγ −= − ≈

• () 31,3 1 0.9502129eγ −= − ≈

• ()1 ,2 erf 2 1.6918067
2

γ π = × ≈

The error function, erf(), is another interesting function. We won't look into it here
because it's available in the Python math library.

Our interest is narrowly focused on the chi-squared distribution. We're not generally
interested in the incomplete gamma function for other mathematical purposes.
Because of this, we can narrow our test cases to the kinds of values we expect to be
using. We can also limit the accuracy of the results. Most chi-squared tests involve
three digits of precision. We've shown seven digits in the test data, which is more
than we might properly need.

Computing the complete gamma value
The complete gamma function is a bit more difficult. There are a number of different
approximations. For more information, visit http://dlmf.nist.gov/5. There's
a version available in the Python math library. It represents a broadly useful
approximation that is designed for many situations.

We're not actually interested in a general implementation of the complete gamma
function. We're interested in just two special cases: integer values and halves. For
these two special cases, we can get exact answers, and don't need to rely on an
approximation.

For integer values, ()1 !n nΓ = − . The gamma function for integers can rely on the
factorial function we defined previously.

For halves, there's a special form:

()2n !1
2 4 !nn

n
Γ π+ =

This includes an irrational value, so we can only represent this approximately using
float or Fraction objects.

http://dlmf.nist.gov/5

Optimizations and Improvements

[326]

Since the chi-squared cumulative distribution function only uses the following two
features of the complete gamma function, we don't need a general approach. We can
cheat and use the following two values, which are reasonably precise.

If we use proper Fraction values, then we can design a function with a few
simple cases: an integer value, a Fraction value with 1 in the denominator,
and a Fraction value with 2 in the denominator. We can use the Fraction value
as follows:

sqrt_pi = Fraction(677622787, 382307718)

def Gamma_Half(k):

 if isinstance(k,int):

 return fact(k-1)

 elif isinstance(k,Fraction):

 if k.denominator == 1:

 return fact(k-1)

 elif k.denominator == 2:

 n = k-Fraction(1,2)

 return fact(2*n)/(Fraction(4**n)*fact(n))*sqrt_pi

 raise ValueError("Can't compute Γ({0})".format(k))

We called the function Gamma_Half to emphasize that this is only appropriate for
whole numbers and halves. For integer values, we'll use the fact() function that
was defined previously. For Fraction objects with a denominator of 1, we'll use the
same fact() definition: ()1 !n nΓ = − .

For the cases where the denominator is 2, we can use the more complex "closed
form" value. We used an explicit Fraction() function for the value 4 !n n . We've
also provided a Fraction approximation for the irrational value π .

Here are some test cases:

• ()2 1Γ =

• ()5 24Γ =

•
1 1.7724539
2

Γ π = ≈

• 3 0.8862269
2 2

πΓ = ≈

Chapter 16

[327]

These can also be shown as proper Fraction values. The irrational values lead to
large, hard-to-read fractions. We can use something like this:

 >>> g= Gamma_Half(Fraction(3,2))

 >>> g.limit_denominator(2000000)

 Fraction(291270, 328663)

This provides a value where the denominator has been limited to be in the range of 1
to 2 million; this provides pleasant-looking six-digit numbers that we can use for unit
test purposes.

Computing the odds of a distribution being
random
Now that we have the incomplete gamma function, gamma, and complete gamma
function, Gamma_Half, we can compute the 2X CDF values. The CDF value shows
us the odds of a given 2X value being random or having some possible correlation.

The function itself is quite small:

def cdf(x, k):

 """X² cumulative distribution function.

 :param x: X² value -- generally sum (obs[i]-exp[i])**2/exp[i]

 for parallel sequences of observed and expected values.:
 param k: degrees of freedom >= 1; generally len(data)-1

 """

 return 1-gamma(Fraction(k,2),
 Fraction(x/2))/Gamma_Half(Fraction(k,2))

We included some docstring comments to clarify the parameters. We created
proper Fraction objects from the degrees of freedom and the chi-squared value,
x. When converting a float value to a Fraction object, we'll create a very large
fractional result with a large number of entirely irrelevant digits.

We can use Fraction(x/2).limit_denominator(1000) to limit the size of the
x/2 Fraction method to a respectably small number of digits. This will compute
a correct CDF value, but won't lead to gargantuan fractions with dozens of digits.

Here are some sample data called from a table of 2X . Visit http://en.wikipedia.
org/wiki/Chi-squared_distribution for more information.

http://en.wikipedia.org/wiki/Chi-squared_distribution
http://en.wikipedia.org/wiki/Chi-squared_distribution

Optimizations and Improvements

[328]

To compute the correct CDF values execute the following commands:

>>> round(float(cdf(0.004, 1)), 2)

0.95

>>> cdf(0.004, 1).limit_denominator(100)

Fraction(94, 99)

>>> round(float(cdf(10.83, 1)), 3)

0.001

>>> cdf(10.83, 1).limit_denominator(1000)

Fraction(1, 1000)

>>> round(float(cdf(3.94, 10)), 2)

0.95

>>> cdf(3.94, 10).limit_denominator(100)

Fraction(19, 20)

>>> round(float(cdf(29.59, 10)), 3)

0.001

>>> cdf(29.59, 10).limit_denominator(10000)

Fraction(8, 8005)

Given 2X and a number of degrees of freedom, our CDF function produces the same
results as a widely used table of values.

Here's an entire row from a 2X table, computed with a simple generator expression:

>>> chi2= [0.004, 0.02, 0.06, 0.15, 0.46, 1.07, 1.64, 2.71, 3.84,
6.64, 10.83]

>>> act= [round(float(x), 3) for x in map(cdf, chi2, [1]*len(chi2))]

>>> act

[0.95, 0.888, 0.806, 0.699, 0.498, 0.301, 0.2, 0.1, 0.05, 0.01,
0.001]

The expected values are as follows:

[0.95, 0.90, 0.80, 0.70, 0.50, 0.30, 0.20, 0.10, 0.05, 0.01, 0.001]

We have some tiny discrepancies in the third decimal place.

What we can do with this is get a probability from a 2X value. From our example
shown previously, the 0.05 probability for six degrees of freedom has a 2X value
12.5916

>>> round(float(cdf(12.5916, 6)), 2)

0.05

Chapter 16

[329]

The actual value we got for 2X in the example was 19.18. Here's the probability that
this value is random:

>>> round(float(cdf(19.18, 6)), 5)

0.00387

This probability is 3/775, with the denominator limited to 1000. Those are not good
odds of the data being random.

Summary
In this chapter, we looked at three optimization techniques. The first technique
involves finding the right algorithm and data structure. This has more impact on
performance than any other single design or programming decision. Using the
right algorithm can easily reduce runtimes from minutes to fractions of a second.
Changing a poorly used sequence to a properly used mapping, for example, may
reduce run time by a factor of 200.

We should generally optimize all of our recursions to be loops. This will be faster in
Python and it won't be stopped by the call stack limit that Python imposes. There are
many examples of how recursions are flattened into loops in other chapters, primarily,
Chapter 6, Recursions and Reductions. Additionally, we may be able to improve
performance in two other ways. First, we can apply memoization to cache results.
For numeric calculations, this can have a large impact; for collections, the impact may
be less. Secondly, replacing large materialized data objects with iterables may also
improve performance by reducing the amount of memory management required.

In the case study presented in this chapter, we looked at the advantage of using
Python for exploratory data analysis—the initial data acquisition including a little bit
of parsing and filtering. In some cases, a significant amount of effort is required to
normalize data from various sources. This is a task at which Python excels.

The calculation of a 2X value involved three sum() functions: two intermediate
generator expressions, and a final generator expression to create a dictionary with
expected values. A final sum() function created the statistic. In under a dozen
expressions, we created a sophisticated analysis of data that will help us accept
or reject the null hypothesis.

We also evaluated some complex statistical functions: the incomplete and the
complete gamma function. The incomplete gamma function involves a potentially
infinite series; we truncated this and summed the values. The complete gamma
function has some potential complexity, but it doesn't happen to apply in our case.

Optimizations and Improvements

[330]

Using a functional approach, we can write succinct and expressive programs that
accomplish a great deal of processing. Python isn't a properly functional programming
language. For example, we're required to use some imperative programming
techniques. This limitation forces away from purely functional recursions. We gain
some performance advantage, since we're forced to optimize tail recursions into
explicit loops.

We also saw numerous advantages of adopting Python's hybrid style of functional
programming. In particular, the use of Python's higher order functions and generator
expressions give us a number of ways to write high performance programs that are
often quite clear and simple.

Index
Symbols
@lru_cache decorator 197
@then_convert(converter) style

decorator 225
@total_ordering decorator 197
@wraps decorator 216

A
access_detail_iter() function 235
AccessDetails objects 241
access_iter() function 235
accumulate() function

about 165, 167
totals, running with 167, 168

accuracy
optimizing 311, 312
reducing, based on audience

requirements 312
alt_range() function 269
anscombe_filter() function 294
Anscombe's Quartet 48
Apache httpd 290
API Key

about 301
usage, tracking 301-303

B
base case states 13
bind() function 274, 275
binning 127
bisect module

used, for creating mapping 55, 56

body mass index (BMI) 265
by_dist() function 91

C
Callable class

higher-order functions, building
with 111, 112

Cartesian product
enumerating 182

CDF values
computing 327-329

chain() function
about 165, 169
iterators, combining with 169

chi-squared decision
alternative summary approaches 318, 319
making 312-314
probabilities, computing from Counter

object 317, 318
raw data, filtering with Counter

object 314-316
raw data, reducing with Counter

object 314-316
summarized data, reading 316, 317
threshold, computing 322, 323
value, computing 321, 322

chunking 107
classes

defining, with total ordering 201-203
number classes 203, 204

Clojure 53
collections.Counter method 127
combinations() function 181

[332]

combinations_with_replacement()
function 181

come_out_roll() function 277
Common Log Format (CLF) 234
Communicating Sequential Processes

(CSP) 233
complete gamma value

computing 325, 326
complex descriptors

implementing 223
complex multiprocessing architectures 248
composite analysis() function 244
composite design

about 218, 219
bad data, preprocessing 219, 220

compress() function
about 165, 171
filtering with 171, 172

concurrency 230, 231
concurrent.futures module

using 248
concurrent.futures thread pools

using 249
concurrent processing

designing 250, 251
conditional expressions

evaluating 254, 255
non-strict dictionary rules, exploiting 255
true conditional expressions, filtering 256

consume function 178
contingency table

creating 321
convert() function 103
count() function

about 160
used, for counting 160-162

CPython 229
cross-cutting concerns 217
Cross-Site Request Forgeries (CSRF) 286
csrf function 286
CSV serializer 298
curl 282
currency() function 222
curried functions

creating 268

curried higher-order functions
using 266, 267

currying
about 35, 93, 264
example 266

cycle() function
about 162-164
used, for reiterating cycle 162-164

D
decorator

about 213, 214
cross-cutting concerns 217
design limitations, recognizing 223-226
parameter, adding 220-222
using 213-216
using, as higher-order functions 213

design patterns 114, 115
dicts

using 50-53
distance() function 105
dotproduct function 179
double factorial 256
dropwhile() function

about 165, 173
stateful filtering with 173, 174

E
enumerate() function

about 147, 165, 166
numbers, assigning with 166, 167
used, for including sequence number 85

Erlang 16
example, functional programming 17
expected values

CDF values, computing 327-329
chi-squared threshold, computing 322, 323
chi-squared value, computing 321, 322
complete gamma value, computing 325-327
computing 319-321
partial gamma value, computing 323-325

Exploratory Data Analysis (EDA)
about 9, 20
stages 21

[333]

F
faster() function 40
file parsers, reductions

CSV files, parsing 137, 138
plain text files, parsing with

headers 138-140
writing 135-137

fillvalue parameter 258
filterfalse() function

about 165, 175
filtering with 175

filter() function
about 96
filtering with 175
used, for identifying outliers 98, 99
used, for passing data 96-98
used, for rejecting data 96-98
using 256

finite iterators
accumulate() 165
accumulate(), used for running

totals 167, 168
chain() 165
chain(), used for combining iterators 169
compress() 165
compress(), filtering with 171, 172
dropwhile() 165
dropwhile(), stateful filtering with 173, 174
enumerate() 165
enumerate(), used for assigning

numbers 166, 167
filterfalse() 165
filterfalse(), filtering with 175
filter(), filtering with 175
groupby() 165
groupby(), used for partitioning

iterator 170, 171
islice() 165
islice(), subsets picking with 172, 173
starmap() 165
starmap(), used for applying function to

data 176, 177
takewhile() 165

takewhile(), stateful filtering with 173, 174
tee(), iterators cloning with 177
using 165
zip_longest() 165
zip_longest(), used for merging

iterables 171
first-class functions 24
first-class objects 39, 40
First Normal Form 136
flatten function 179
float_lat_lon() function 136
Fortran code 18
functional composition

about 264
example 265
PyMonad multiplication operator,

using 268, 269
functional features

about 23
advanced concepts 34
familiar territory 34
first-class functions 24
functional type systems 33
higher-order functions 25, 26
immutable data 26, 27
non-strict evaluation 27-29
pure functions 24, 25
recursion 29-33
strict evaluation 27-29

functional hybrid
using 14, 15

functional paradigm
using 12-14

functional programming
about 9
classic example 17-20

functional type systems 33
functions, as first-class objects 39-41
function tools 198
functools.reduce() function 260, 266
functools.wraps() function 215
functor

about 270
applicative functors 270, 271

[334]

G
generator expressions

combining 47, 48
limitations 46, 47
using 43-46

generator functions
used, for cleaning raw data 48, 49
writing 108-111

Global Interpreter Lock (GIL)
about 229
URL 229

groupby() function
about 165, 170
iterator, partitioning with 170, 171

group-by reductions
from many to fewer 126, 127
writing 132, 133

grouper function 179
group() function 129

H
Haskell 16, 33
higher-order functions

about 25, 26, 87
building, with Callables 111, 112
filter() function 96
good functional design, assuring 112-114
iter() function 99
lambda forms 91
map() function 93
max() function 88-91
min() function 88-91
sorted() function 100
writing 101

higher-order mappings and filters
additional data, wrapping while

mapping 104, 105
data, flattening while mapping 106, 107
data, structuring while filtering 107, 108
data, unwrapping while mapping 103, 104
writing 101-103

higher-order reductions
writing 133-135

HTTP request-response model
about 282, 283
functional view 285
server, considering with functional

design 284, 285
services, nesting 286, 287
state, injecting via cookies 284

I
imap(function, iterable) method 246
imap_unordered(function, iterable)

method 246
immutable namedtuple

rewrapping 150, 151
Spearman rank-order correlation,

computing 152, 153
statistical ranks, assigning 148, 149
using 145-147
using, as record 142-144
wrapping 149, 150

immutable objects
about 26
Higher-order Functions, using 26
Wrap-Process-Unwrap pattern, using 26

infinite iterators
count() 160
count(), counting with 160-162
cycle() 160
cycle(), used for reiterating cycle 162-164
repeat() 160
repeat(), used for repeating single

value 164
working with 160

islice() function
about 165-173
subsets, picking with 172, 173

itemgetter() function 257
iterables

all() function, using 73-75
any() function, using 73-75
counts, using for statistics 76-78
file, parsing at higher level 63-65

[335]

generator expressions, applying to scalar
functions 72, 73

items, picking up from sequence 65-67
iter() function, using 67, 68
len() fucntion, using 75
simple loop, extending 68-71
sum() function, using 75
sums, using for statistics 76-78
working with 60, 61
XML file, parsing 61-63

iter_except function 179
iter() function

about 99
using 99

itertools functions
combinations() 181
combinations_with_replacement() 181
permutations() 181
product() 181

itertools module
about 160
all combinations, generating 191-194
Cartesian product, enumerating 182
finite iterators 165
iterator functions 159

itertools recipes 178, 194
itertools.starmap() function 258
itertools.zip_longest() function 258

J
Jinja2 templates 287
JSON serializer 298

L
lambda calculus 93
lambda forms

working with 94
lazy List() functor

using 271-274
lists

about 50
using 50-53

local_gzip() function 235

lru_cache decorator
about 198
used, for caching previous results 198-200

LRU (Least Recently Used) 198

M
map() function

about 93
used, for applying function to data 176, 177
using 93, 94
using, with multiple sequence 95, 96
working with 94

map(function, iterable) method 246
mapping

building, by sorting 128, 129
building, with Counter 127, 128
creating, bisect module used 55, 56

max() function
using 88-91

mean() function 98
memoization

about 305
specializing 307, 308

min() function
using 88-91

monad 274
monoid 279
multiprocessing module

about 229, 230
access details, analyzing 243, 244
access details, filtering 241-243
Access object fields, parsing 238-241
boundary conditions 231
complete analysis process 244
large files, processing 234, 235
log files, parsing 235, 236
log lines, parsing into namedtuples 236-238
resources, sharing with process 231, 232
resources, sharing with threading 231, 232
using 233, 234

multiprocessing pool, for concurrent
processing

apply_async() function, using 247
apply(), used for making single request 247

[336]

complex multiprocessing architectures 248
concurrent.futures module, using 248, 249
concurrent.futures thread pools, using 249
concurrent processing, designing 250-252
map_async(), using 247
queue module, using 250
starmap_async(), using 247
threading module, using 250
using 244-246

Multipurpose Internet Mail Extension
(MIME) 285

multy() function 40
myreduce() function 267

N
named attributes

obtaining, when using higher-order
functions 257, 258

namedtuples
building, with functional constructors 145
using 42, 43

ncycles function 178
nested generator expressions 14
Nginx 290
non-strict dictionary rules

exploiting 255
non-strict evaluation 27-29
nth function 178
null_wrapper() function 215
num variable 259

O
Object-Oriented Programming (OOP)

language 26
OCaml 16
operator module

named attributes, obtaining when using
higher-order functions 257, 258

using 256, 257
operators

reducing with 260, 261
starmapping with 258-260

operators.truediv() function 259
optimization techniques

accuracy, optimizing 311, 312
caching 306, 307
memoization 305
storage, optimizing 311

P
padnone function 178
pairwise function 179
parallelism 149
parameterized decorator

about 221
abstract decorator 222
decorating wrapper 222
overall decorator 222

partial() function
about 197, 205
used, for applying partial arguments 205

partial gamma value
computing 323-325

partition function 179
path_filter() function 241
PATH_INFO request 294
Peano axioms 118
permutations() function 181
point_roll() function 277
polymorphism pattern matching 153-158
powerset function 194
previous results

caching, lru_cache decorator used 198-200
procedural paradigm

functional hybrid, using 14, 15
functional paradigm, using 12-14
object creation 15, 16
stacks of abstractions 16, 17
subdividing 11, 12

product() function 181
product, reducing

about 182, 183
all pixels and all colors,

enumerating 185, 186
collection of values, permuting 190, 191

[337]

distances, computing 184, 185
performance analysis 186-188
problem, rearranging 188, 189
transformations, combining 189, 190

programming paradigms
functional programming 10
identifying 10, 11
imperative programming 10

pure functions
about 24, 25, 38, 39
features 279
writing 38, 39

PyMonad.List() function 272
PyMonad module

about 263
downloading 263
installing 263, 264
URL 263

PyMonad multiplication operator
used, for functional composition 268, 269

PyPi 110
Python

about 9
Object-Oriented Programming (OOP)

features 11
Pythonic pattern matching 153-158
Python Imaging Library (PIL) package 183
Python lambda forms

using 91, 92
Python Package Index (PyPi) 263
Python Standard Library document 171

Q
quantify function 178
QUERY_STRING request 294

R
random_combination function 194
random_permutation function 194
random_product function 194
rank() function 149

raw data
cleaning, with generator functions 48, 49

raw_data() function 294
read_head() function 139
read_tail() function 139
recursion 29-33
recursive case states 13
reduce() function

about 197, 198
combining, with map() function 207, 208
groupby(), using with 210-212
partial() function, using with 208
used, for reducing sets of data 206, 207
used, for sanitizing raw data 209, 210

reductions
data, grouping by key values 130-132
data, partitioning by key values 130-132
file parsers, writing 135-137
from many to one 124-126
group-by reductions 126, 127
group-by reduction, writing 132, 133
higher-order reductions, writing 133-135
mapping, building by sorting 128, 129
mapping, building with Counter 127, 128

referential transparency 35
repeatfunc function 179
repeat() function

about 164
used, for repeating single value 164

Representational State Transfer (REST) 281
reversed() function

used, for changing order 84, 85
roundrobin function 179
routing() function 288

S
Scala 33
Secured Socket Layer (SSL) protocols 284
semifact() function 256
serialism 149
serialization 296

[338]

sets
using 50-53

shifty() function 40
Sieve of Eratosthenes algorithm 98
simple numerical recursions

about 118, 119
collections, processing via

recursion 122, 123
recursion, leaving in place 120-122
tail-call optimization, for collection 123, 124
tail-call optimization,

implementing 119, 120
simulation

implementing, with monads 275-279
sorted() function

used, for data sorting 100
Spearman rank-order correlation

about 152
computing 152, 153

stacks of abstractions 17
starmap() function

about 165, 176, 258, 259
used, for applying function to data 176

starmap(function, iterable) method 246
start_response function 287
stateful mappings

using 53-55
stateful sets

using 56, 57
stdev() function 98
storage

optimizing 311
Strategy design pattern 40
strict evaluation 27-29
strings

using 41, 42
string.Template() function 301
systolic_bp() function 271

T
tabulate function 178
Tail recursion example 32
tail recursion optimizations 308-310

take function 178
takewhile() function

about 165, 173, 259
stateful filtering with 173, 174

tee() function
about 177
iterators, cloning with 177

total_ordering decorator
about 201
classes, defining with 201-203

true conditional expressions
filtering 256

tuples 42, 43

U
unique_everseen function 179
unique_justseen function 179
update_wrapper() function

about 216
using 216, 217

W
Web Server Gateway Interface. See WSGI
web services, defining as functions

about 291
data, serializing into CSV format 298, 299
data, serializing into HTML 300, 301
data, serializing into JSON format 298
data, serializing into XML 299, 300
filter, applying 295, 296
raw data, obtaining 294, 295
results, serializing 296-298
WSGI application, creating 292-294

wget 282
wrapper() function

using 215
wrapping

parallelism 149
serialism 149

Wrap-Unwrap design patterns
about 145
applying 146

writerows() method 299

[339]

WSGI
about 287, 288
application, creating 292-294
exceptions, throwing 288, 289
pragmatic WSGI applications 290

X
XML serialization 299

Z
z() function 98

zip() function
about 78, 96
alternate approach, for structuring flat

sequences 83, 84
flat sequences, structuring 81-83
used, for flattening sequences 80, 81
using 78-80
zipped sequence, unzipping 80

zip_longest() function
about 165, 171
iterables, merging with 171

Thank you for buying
Functional Python Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering Object-oriented Python
ISBN: 978-1-78328-097-1 Paperback: 634 pages

Grasp the intricacies of object-oriented programming
in Python in order to efficiently build powerful
real-world applications

1. Create applications with flexible logging,
powerful configuration and command-line
options, automated unit tests, and good
documentation.

2. Use the Python special methods to integrate
seamlessly with built-in features and the
standard library.

3. Design classes to support object persistence
in JSON, YAML, Pickle, CSV, XML, Shelve,
and SQL.

Learning Python Data
Visualization
ISBN: 978-1-78355-333-4 Paperback: 212 pages

Master how to build dynamic HTML5-ready SVG
charts using Python and the pygal library

1. A practical guide that helps you break into
the world of data visualization with Python.

2. Understand the fundamentals of building
charts in Python.

3. Packed with easy-to-understand tutorials for
developers who are new to Python or charting
in Python.

Please check www.PacktPub.com for information on our titles

Python Network Programming
Cookbook
ISBN: 978-1-84951-346-3 Paperback: 234 pages

Over 70 detailed recipes to develop practical
solutions for a wide range of real-world network
programming tasks

1. Demonstrates how to write various besopke
client/server networking applications using
standard and popular third-party Python
libraries.

2. Learn how to develop client programs for
networking protocols such as HTTP/HTTPS,
SMTP, POP3, FTP, CGI, XML-RPC, SOAP
and REST.

Building Machine Learning
Systems with Python
ISBN: 978-1-78216-140-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective machine learning systems with this
intensive hands-on guide

1. Master Machine Learning using a broad set of
Python libraries and start building your own
Python-based ML systems.

2. Covers classification, regression, feature
engineering, and much more guided by
practical examples.

3. A scenario-based tutorial to get into
the right mind-set of a machine learner
(data exploration) and successfully implement
this in your new or existing projects.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Functional Programming
	Identifying a paradigm
	Subdividing the procedural paradigm
	Using the functional paradigm
	Using a functional hybrid
	Looking at object creation
	The stack of turtles

	A classic example of functional programming
	Exploratory Data Analysis
	Summary

	Chapter 2: Introducing Some Functional Features
	First-class functions
	Pure functions
	Higher-order functions

	Immutable data
	Strict and non-strict evaluation
	Recursion instead of a explicit loop state
	Functional type systems
	Familiar territory
	Saving some advanced concepts
	Summary

	Chapter 3: Functions, Iterators, and Generators
	Writing pure functions
	Functions as first-class objects
	Using strings
	Using tuples and namedtuples
	Using generator expressions
	Exploring the limitations of generators
	Combining generator expressions

	Cleaning raw data with generator functions
	Using lists, dicts, and sets
	Using stateful mappings
	Using the bisect module to create a mapping
	Using stateful sets

	Summary

	Chapter 4: Working with Collections
	An overview of function varieties
	Working with iterables
	Parsing an XML file
	Parsing a file at a higher level
	Pairing up items from a sequence
	Using the iter() function explicitly
	Extending a simple loop
	Applying generator expressions to scalar functions
	Using any() and all() as reductions
	Using len() and sum()
	Using sums and counts for statistics

	Using zip() to structure and flatten sequences
	Unzipping a zipped sequence
	Flattening sequences
	Structuring flat sequences
	Structuring flat sequences—an alternative approach

	Using reversed() to change the order
	Using enumerate() to include a sequence number
	Summary

	Chapter 5: Higher-Order Functions
	Using max() and min() to find extrema
	Using Python lambda forms
	Lambdas and the lambda calculus
	Using the map() function to apply a function to a collection
	Working with lambda forms and map()

	Using map() with multiple sequences
	Using the filter() function to pass or reject data
	Using filter() to identify outliers
	The iter() function with a sentinel value
	Using sorted() to put data in order
	Writing higher-order functions
	Writing higher-order mappings and filters
	Unwrapping data while mapping
	Wrapping additional data while mapping
	Flattening data while mapping
	Structuring data while filtering

	Writing generator functions
	Building higher-order functions with Callables
	Assuring good functional design

	Looking at some of the design patterns
	Summary

	Chapter 6: Recursions and Reductions
	Simple numerical recursions
	Implementing tail-call optimization
	Leaving recursion in place
	Handling difficult tail-call optimization
	Processing collections via recursion
	Tail-call optimization for collections
	Reductions and folding – from many to one

	Group-by reductions – from many
to fewer
	Building a mapping with Counter
	Building a mapping by sorting
	Grouping or partitioning data by key values
	Writing more general group-by reductions
	Writing higher-order reductions
	Writing file parsers
	Parsing CSV files
	Parsing plain text files with headers

	Summary

	Chapter 7: Additional Tuple Techniques
	Using an immutable namedtuple as a record
	Building namedtuples with functional constructors
	Avoiding stateful classes by using families of tuples
	Assigning statistical ranks
	Wrapping instead of state changing
	Rewrapping instead of state changing
	Computing the Spearman rank-order correlation

	Polymorphism and Pythonic pattern matching
	Summary

	Chapter 8: The Itertools Module
	Working with the infinite iterators
	Counting with count()
	Reiterating a cycle with cycle()
	Repeating a single value with repeat()

	Using the finite iterators
	Assigning numbers with enumerate()
	Running totals with accumulate()
	Combining iterators with chain()
	Partitioning an iterator with groupby()
	Merging iterables with zip_longest() and zip()
	Filtering with compress()
	Picking subsets with islice()
	Stateful filtering with dropwhile() and takewhile()
	Two approaches to filtering with filterfalse() and filter()
	Applying a function to data via starmap() and map()

	Cloning iterators with tee()
	The itertools recipes
	Summary

	Chapter 9: More Itertools Techniques
	Enumerating the Cartesian product
	Reducing a product
	Computing distances
	Getting all pixels and all colors
	Performance analysis
	Rearranging the problem
	Combining two transformations

	Permuting a collection of values
	Generating all combinations
	Recipes
	Summary

	Chapter 10: The Functools Module
	Function tools
	Memoizing previous results with
lru_cache
	Defining classes with total ordering
	Defining number classes

	Applying partial arguments with partial()
	Reducing sets of data with reduce()
	Combining map() and reduce()
	Using reduce() and partial()
	Using map() and reduce() to sanitize raw data
	Using groupby() and reduce()

	Summary

	Chapter 11: Decorator Design Techniques
	Decorators as higher-order functions
	Using functool's update_wrapper() functions

	Cross-cutting concerns
	Composite design
	Preprocessing bad data

	Adding a parameter to a decorator
	Implementing more complex descriptors
	Recognizing design limitations
	Summary

	Chapter 12: The Multiprocessing and Threading Modules
	What concurrency really means
	The boundary conditions
	Sharing resources with process or threads
	Where benefits will accrue

	Using multiprocessing pools and tasks
	Processing many large files
	Parsing log files – gathering the rows
	Parsing log lines into namedtuples
	Parsing additional fields of an Access object
	Filtering the access details
	Analyzing the access details
	The complete analysis process

	Using a multiprocessing pool for concurrent processing
	Using apply() to make a single request
	Using map_async(), starmap_async(), and apply_async()
	More complex multiprocessing architectures
	Using the concurrent.futures module
	Using concurrent.futures thread pools
	Using the threading and queue modules
	Designing concurrent processing

	Summary

	Chapter 13: Conditional Expressions and the Operator Module
	Evaluating conditional expressions
	Exploiting non-strict dictionary rules
	Filtering true conditional expressions

	Using the operator module instead of lambdas
	Getting named attributes when using
higher-order functions

	Starmapping with operators
	Reducing with operators
	Summary

	Chapter 14: The PyMonad Library
	Downloading and installing
	Functional composition and currying
	Using curried higher-order functions
	Currying the hard way

	Functional composition and the PyMonad multiplication operator
	Functors and applicative functors
	Using the lazy List() functor

	Monad concepts, the bind() function and the Binary Right Shift operator
	Implementing simulation with monads
	Additional PyMonad features
	Summary

	Chapter 15: A Functional Approach to Web Services
	The HTTP request-response model
	Injecting a state via cookies
	Considering a server with a functional design
	Looking more deeply into the functional view
	Nesting the services

	The WSGI standard
	Throwing exceptions during WSGI processing
	Pragmatic WSGI applications

	Defining web services as functions
	Creating the WSGI application
	Getting raw data
	Applying a filter
	Serializing the results
	Serializing data into the JSON or CSV format
	Serializing data into XML
	Serializing data into HTML

	Tracking usage
	Summary

	Chapter 16: Optimizations and Improvements
	Memoization and caching
	Specializing memoization
	Optimizing storage
	Optimizing accuracy
	Reducing accuracy based on audience requirements

	Case study – making a chi-squared decision
	Filtering and reducing the raw data with a Counter object
	Reading summarized data
	Computing probabilities from a Counter object
	Alternative summary approaches

	Computing expected values and displaying a contingency table
	Computing the chi-squared value
	Computing the chi-squared threshold
	Computing the partial gamma value
	Computing the complete gamma value
	Computing the odds of a distribution being random

	Summary

	Index

